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Abstract
Election control encompasses attempts from an ex-
ternal agent to alter the structure of an election in
order to change its outcome. This problem is both
a fundamental theoretical problem in social choice,
and a major practical concern for democratic insti-
tutions. Consequently, this issue has received con-
siderable attention, particularly as it pertains to dif-
ferent voting rules. In contrast, the problem of how
election control can be prevented or deterred has
been largely ignored. We introduce the problem of
optimal protection against election control, where
manipulation is allowed at the granularity of groups
of voters (e.g., voting locations), through a denial-
of-service attack, and the defender allocates limited
protection resources to prevent control. We show
that for plurality voting, election control through
group deletion to prevent a candidate from winning
is in P, while it is NP-Hard to prevent such con-
trol. We then present a double-oracle framework
for computing an optimal prevention strategy, de-
veloping exact mixed-integer linear programming
formulations for both the defender and attacker ora-
cles (both of these subproblems we show to be NP-
Hard), as well as heuristic oracles. Experiments
conducted on both synthetic and real data demon-
strate that the proposed computational framework
can scale to realistic problem instances.

1 Introduction
Democratic institutions rely on the integrity of the voting pro-
cess. A major threat to this integrity is the possibility that the
process can be subverted by malicious parties to their own
goals. Indeed, actual incidents of vote manipulation and con-
trol, sometimes through violence, bear out this concern. For
example, the 2013 election in Pakistan was marred by a se-
ries of election-day bombings, resulting in over 30 dead and
200 injured, in an attempt to subvert the voting process [RT,
2013], and the 2010 Sri Lanka election exhibited 84 major
and 202 minor incidents of poll-related violence [Bhattachar-
jya, 2010]. Moreover, with the dawn of electronic and Inter-
net voting, the additional threat of election control and ma-
nipulation through cyber means has emerged, with a number

of documented demonstration attacks [Bannet et al., 2004;
Wolchok et al., 2012].

The study of the computational complexity of election con-
trol was initiated by Bartholdi et al. [1992] as a novel de-
fense against election control. Since then it has received
considerable attention in prior literature (see Section 2). In
this literature, a voting rule is viewed as resistant if control
is NP-Hard, and vulnerable otherwise. Many voting rules
were shown to be resistant to several types of control, while
plurality—which is widely used—can be controlled through
voter deletion in polynomial time [Bartholdi et al., 1992;
Hemaspaandra et al., 2007]. However, control is usually
studied at the granularity of individual voters, and protection,
when considered, is about designing voting rules which are
NP-Hard to control [Erdélyi et al., 2009; Hemaspaandra et
al., 2009]. While these considerations are crucial if one is to
understand vulnerability of elections, they are also limited in
several respects. First, as the incidents of control described
above attest, control can be exercised for groups of voters
through a single attack, such as a denial-of-service attack on
a voting station or a polling center (of which bombing is an
extreme example). Second, NP-Hardness of control is insuf-
ficient evidence for resistance: it is often possible to solve
large instances of NP-Hard problems in practice (see, e.g., Xu
et al. [2008] in the case of SAT). Resistance to election con-
trol in the broader sense, such as through allocation of lim-
ited protection resources to prevent attacks on specific voter
groups, has, to our knowledge, neither been modeled nor in-
vestigated to date.

To address these limitations, we consider the problem of
optimally protecting elections against control. We model
control as a denial-of-service (deletion) attack on a subset
of voter groups, which may represent polling places or elec-
tronic voting stations, with the goal of preventing a specific
candidate from winning. We show that for plurality voting
optimal election control in this model can be computed in
polynomial time. Next, we consider the problem of protec-
tion against election control, modeling it as a Stackelberg
game in which an outside party deploys limited protection
resources to protect a collection of voter groups, allowing for
randomization, and the adversary responds by attempting to
subvert (control) the election. Protection resources may rep-
resent actual physical security for polling centers or voting
stations, or resources devoted to frequent auditing of spe-
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cific electronic voting systems. In this model, we assume that
the defender’s goal is to ensure that the same candidate wins
with or without an election control attack. We show that the
problem of choosing the minimal set of resources that guar-
antee that an election cannot be controlled is NP-Hard. For
the more general problem, we propose a double-oracle frame-
work to compute an optimal protection. We prove that both
the defender, and attacker oracles are NP-Hard when ran-
domized strategies are allowed. On the positive side, we de-
velop novel mixed-integer linear programming formulations
for both oracles that enable us to compute a provably opti-
mal solution for protecting elections. Moreover, we develop
heuristic defender and attacker oracles which significantly
speed up the framework. Our experiments demonstrate the
effectiveness and scalability of our algorithmic approach.

In summary, we make the following contributions:
• A new model of protecting elections from group-level

election control attacks,
• A polynomial-time algorithm for group-level election

control,
• Complexity analysis of guaranteeing that an election

cannot be controlled,
• A scalable double-oracle framework for choosing opti-

mal allocation of protection resources.

2 Related Work
The study of the computational complexity of election con-
trol was initiated by Bartholdi et al. [1992], who analyzed
plurality and Condorcet voting with several types of control.
While Bartholdi et al. studied the constructive variant of the
control problem, where the goal is to ensure a given candi-
date’s victory, we study a destructive variant of control, where
the goal is to prevent the current winner from winning. The
destructive variant of control was introduced by Hemaspaan-
dra et al. [2007], who also analyzed the approval voting rule.
The study of election control was further extended to a num-
ber of other models and voting rules [Betzler and Uhlmann,
2009; Liu et al., 2009; Liu and Zhu, 2010; Faliszewski et
al., 2011; Parkes and Xia, 2012; Faliszewski et al., 2013;
Menton, 2013]. However, all of these consider the election
control problem at the granularity of individual voters. The
work of Chen et al. [2014] was the first to consider group-
level election control, which they termed combinatorial voter
control. They consider control when bundles of voters need
to be added and the voters are grouped according to a given
bundling function. That is, the voters are grouped according
to their preferences and the groups can overlap. In our set-
ting the voters are grouped arbitrarily, with no overlap, and
the election control is by deleting (groups of) voters. Re-
cently, Erdélyi et al. [2015] studied election control of plu-
rality by adding or deleting groups of voters, but they only
consider the variant of constructive control. Finally, Chen
et al. [2015] studied constructive and destructive control by
adding or deleting groups of candidates (but not voters).

There has been extensive research on modeling physical
security problems using Stackelberg games [Tambe, 2011].
Much of prior work has focused on attackers who can only
attack a single target [Gan et al., 2015; An et al., 2013]. Ex-

ceptions to this involved either simultaneous-move scenar-
ios [Korzhyk et al., 2011a] or heuristic approaches [Vorob-
eychik and Letchford, 2015]. In contrast, we consider adver-
saries attacking multiple targets (by deleting subsets of voter
groups), solving the problem to optimality. In addition, the
payoff structure in prior work is typically tied to the assump-
tion of single-target attacks, whereas payoffs in our setting
depend on whether deleted voter groups can affect voting
outcomes. Double-oracle methods have been previously pro-
posed for solving large Stackelberg security games [Mcma-
han et al., 2003; Jain et al., 2013; Wang et al., 2016]. How-
ever, as oracles are model dependent, the special structure of
our problem requires novel scalable algorithms.

3 Election Control by Deleting Voter Groups
A common question in election control is whether it is pos-
sible to prevent a specific candidate from winning by delet-
ing a subset of voters. We begin by analyzing this destruc-
tive control problem whereby we allow attackers to delete (or
deploy a denial-of-service attack against) groups of voters,
which may represent polling locations. Formally, suppose
that there is a set I of n non-overlapping groups of voters
and a set of candidates C over which voters have preferences.
Throughout, we focus on plurality voting, in which only a sin-
gle candidate is selected by each voter, and the candidate with
the most votes wins (we assume that the tie-breaking rule is
adversarial to the defender). For each group i 2 I , let vic
be the number of votes for candidate c, and let vc =

P
i vic

be the total vote tally for c 2 C. Let ! 2 C be the can-
didate who would have won with the original set of voters:
! = argmaxc vc. We now consider the problem of election
control in which the attacker may choose to delete a subset
of at most k  n groups, with the goal of preventing ! from
winning.1

It is well known that optimal constructive and destruc-
tive control of plurality by deleting individual voters can
be computed in polynomial time [Bartholdi et al., 1992;
Hemaspaandra et al., 2007]. Allowing the attacker to se-
lect specific groups may appear to significantly complicate
the problem. Indeed, [Erdélyi et al., 2015] showed that this
type of constructive control is NP-Complete even with plu-
rality. Surprisingly, we show that the destructive variant can
still be computed in polynomial time, significantly general-
izing the previous result of [Hemaspaandra et al., 2007]. In-
tuitively, control succeeds as long as there exists a candidate
c 2 C who has at least as many votes as ! after k groups are
removed. Consequently, the attacker can consider one candi-
date c at a time, checking if k groups can be deleted so that c
has a higher vote count than !. Moreover, if we fix c 2 C, it
is easy to check whether it is possible to get more votes for c
than !: we would just delete the k groups in which ! is most
favored over c.

Formally, let dc = hdci : i 2 Ii be a vector with d

c
i =

vic � vi! , that is, the vote advantage of c over ! in group
i 2 I . For a vector d

c, define sum(d

c
) =

P
i d

c
i . Then,

sum(d

c
) is the total difference of votes between c and !. For

1Note that “traditional” election control by deleting votes is a
special case of our setting, where each group contains a single voter.
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example, suppose that dc is h�3,�2, 1i. This means that !
has more votes than c in the first two groups, but fewer (by
1) in the third. If the attacker can attack 2 groups, he will
succeed by attacking the first two, leading c to have 1 more
vote left than !. The following proposition shows that it is,
in fact, sufficient to delete k groups with smallest dci to ver-
ify whether it is possible to make c have a larger vote count
than !. For convenience, define d

c�k to be the portion of the
vector dc remaining after the k groups with smallest dci have
been deleted.
Proposition 1. For a given candidate c 2 C, it is possible to
delete k groups to ensure that vc > v! iff sum(d

c�k
) > 0.

Proof Sketch. The ( direction is straightforward: if
sum(d

c�k
) > 0, then by definition of dc�k we have accom-

plished our goal and vc > v! . For the ) direction, if delet-
ing the smallest k elements in d

c still leaves sum(d

c�k
) < 0,

then it is impossible to find any other subset of groups G ✓ I

to delete and have vc > v! , since we chose the k groups with
the largest vi,! � vi,c, and, consequently, added the largest
possible

P
i vi,!�vi,c to sum(d

c
). Since the remaining tally

difference is still negative, it is not possible to make c have
more votes than !.

The process of computing a group-level election control
approach is shown in Algorithm 1. For each candidate

Algorithm 1: Optimal Election Control by Group Dele-
tion

1 for c 2 C

�! do
2 d

c�k  Sort dc in ascending order, delete the first k
elements in d

c;
3 if sum(dc�k) > 0 then
4 return Attack voter groups corresponding to deleted

elements;

5 return No control approach;

c 2 C\{!}, denoted by C

�! , Lines 1 - 4 check whether there
exists an attack where c beats ! (based on Proposition 1). If
no such attack exists for all candidates in C

�! , election con-
trol is not possible. It is not difficult to see that the complexity
of Algorithm 1 is O(|C|n log n), which yields the following:
Theorem 1. Election control preventing a candidate ! from
winning by deleting k voter groups can be accomplished in
O(|C|n log n) time.

4 Protecting Elections
Given that plurality is extremely vulnerable to control by
deleting voter groups, we now pose the dual question: is
it possible for a party interested in maintaining election in-
tegrity (henceforth, defender) to ensure that plurality is re-
silient to control? To address this question, we consider
the following model of protection. The defender can deploy
m  n protection resources (e.g., physical protection, elec-
tronic auditing, etc) to protect individual voter groups from
attacks. If a group i is protected, we assume that it cannot
be deleted by the adversary. We now ask: how hard is it for

the defender to guarantee that a given set of resources m is
sufficient to protect the election, that is, to ensure that it is
impossible for an attacker to make ! lose by deleting unpro-
tected voter groups?
Definition 1 (Hitting Set Problem). A set G, a set U consist-
ing of subsets ˆ

G of G. Question: does there exist a ‘hitting
set’ G0 ✓ G with |G0| = m, so that 8 ˆ

G 2 U,G

0 \ ˆ

G 6= ;.

Theorem 2. Checking whether m protection resources is suf-
ficient to prevent control is NP-Complete.

Proof. It is easy to see that this decision problem is in NP. To
show that it is NP-Hard, we reduce from the hitting set prob-
lem. Specifically, we show that for any hitting set problem,
we can construct an election with n voter groups, so that there
exists a hitting set G0 iff it is possible to prevent any control
with m resources, i.e., the attacker cannot make ! lose by
attacking any subset of the n�m unprotected groups.

Given a hitting set problem, we construct an election as fol-
lows. There are n = |G| voter groups and |U |+1 candidates.
Each i 2 G corresponds to a voter group. Each ˆ

G 2 U can
be considered as a label of a specific candidate other than !.
For candidate c with label ˆ

G, for any voter group i, if i 2 ˆ

G,
then we assume that dci = �1, i.e., c has 1 fewer vote than !

in group i; otherwise let dci = 0, i.e., c and ! ties in group i.
Assume that up to k = n�m groups are attacked.

The ( direction: If there exists a defender strategy which
protects m voter groups, i.e., G0 ⇢ G with |G0| = m, so that
the attacker has no way to control the election, it indicates
that for each candidate c, i.e., an element ˆ

G 2 U , at least
one voter group i in which d

c
i = �1 is protected, i.e., G0 \

ˆ

G 6= ;. This is because if there exists a candidate c, all voter
groups with d

c
i = �1 are unprotected, then the attacker can

successfully attack all such groups and c will tie with ! in the
remaining votes. Thus the protected voter groups satisfy that
8 ˆ

G 2 U,G

0 \ ˆ

G 6= ;, which is a required hitting set.
The ) direction: Given a hitting set G0 ⇢ G, the defender

can protect all voter groups i 2 G

0. Thus, even if the attacker
attacks all the unprotected voter groups, each candidate c 2
C

�! still has at least 1 vote fewer than !. Therefore, no
attacker strategy can control the election.

Theorem 2 leaves us with two questions: 1) does this mean
that we cannot protect elections in practice, and 2) is all hope
lost if m is insufficient to protect an election? In answering
question 2, clearly we cannot protect the election if protection
resources are allocated deterministically. However, when re-
sources are limited, randomized allocation can offer tremen-
dous value, increasing uncertainty and raising the stakes for
attackers [Paruchuri et al., 2008]. We propose to address both
of these questions through a single framework: a Stackel-
berg game model in which the defender (of the election) first
chooses a randomized allocation of m protection resources,
and the attacker follows by choosing k groups to attack. For-
mally, let s denote a pure strategy of the defender, where
si 2 {0, 1} indicates whether a voter group i is protected.
Similarly, the attacker’s pure strategy is a vector a where ai

indicates whether group i is attacked. We use S and A to
represent the strategy space of the defender and the attacker
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respectively. Let P (s, a) 2 {0, 1} be an indicator denoting
whether an attack a succeeds when a pure protection strategy
s is played. Implicitly, we have assumed that both the attacker
and defender know the net voting tallies for each location i.
We relax this assumption in Section 6. Utilities of the at-
tacker and defender are then defined by uA(s, a) = P (s, a)

and uD(s, a) = �P (s, a), respectively, so that the game is
zero-sum. Since we allow randomization for the defender, let
x denote its randomized (mixed) strategy, with xs the proba-
bility that a pure strategy s 2 S is used.

Since the game is zero-sum, the Stackelberg equilibrium
strategy for the defender is equivalent to its Nash equilib-
ria [Korzhyk et al., 2011b]. Consequently, one can use a well-
known linear programming formulation, shown as a Linear
Program 1b (henceforth, Core-LP) below, for solving zero-
sum normal-form games [Conitzer and Sandholm, 2006].

Core-LP(S,A) : min

x,p p (1a)

p �
X

s2S
xsP (s, a), 8a 2 A. (1b)

The central challenge with this approach is that it requires
one to explicitly enumerate all pure strategies for both the
defender and attacker. Since in our cases the strategy space
for both players is combinatorial, this is a non-starter. We
therefore develop a Double Oracle approach for addressing
this scalability issue.

5 Double Oracle Approach
The double oracle framework is a common approach for solv-
ing zero-sum games with exponential strategy spaces of both
players [Mcmahan et al., 2003; Jain et al., 2013]. The idea is
to start with a small set of strategies for both players, compute
equilibrium in this restricted game using Core-LP, and check
whether either player has a best response in the full strategy
space that improves their payoff. If such a strategy exists for
either player, it is added to the Core-LP, which is re-solved.
Otherwise, we have proven that the resulting restricted equi-
librium is a Stackelberg / Nash equilibrium of the full game.

The Double-Oracle approach is not itself an algorithm, as
it does not specify how to compute a best response for each
player in the full strategy space. Indeed, in general this would
require full enumeration of player strategies. The key is to de-
velop effective approaches to compute such best responses—
that is, effective oracles for both players—which is prob-
lem dependent. For example, none of the prior approaches
(e.g., [Jain et al., 2013]) are applicable in our case, because
of modeling differences. Our central contributions in this
section are therefore: 1) novel mixed-integer linear program-
ming (MILP) formulations for both oracles, and 2) heuristic
algorithms to speed up the computation of the oracles.

Our full double-oracle method is shown in Algorithm 2.
Line 3 computes the mixed strategy equilibrium of the re-
stricted game, (x,y), where y is the dual solution of Core-
LP representing attacker’s mixed strategy. We then make use
of two types of oracles: heuristic oracles, which allow us to
quickly check the existence of better responses (AO-Better
and DO-Better, for attacker and defender, respectively), and
exact oracles (AO-MILP and DO-MILP), which are optimal.

Algorithm 2: Double Oracle Approach
1 Input: S 0 ⇢ S; A0 ⇢ A;
2 while do
3 (x,y) Core-LP(S 0

,A0);
4 a AO-Better(x);
5 if a = ; then a AO-MILP(x);
6 s DO-Better(y);
7 if s = ; then s DO-MILP(y);
8 if a 2 A and s 2 S then
9 return x;

10 else
11 A0  A0 [ {a},S 0  S 0 [ {s};

Next, we describe both the exact and heuristic oracles for
the defender and attacker, observing in the process that both
best response problems are NP-Hard.

5.1 Attacker Oracle
Complexity: It would seem that in Theorem 1 we had al-
ready shown that controling election in our model is in P.
However, this result assumed that no protection is deployed
(equivalently, that protection is deterministic). Surprisingly,
when protection is randomized, election control, which we
also refer to as the attacker’s best response or oracle, is NP-
Hard, as the following result attests (in this result, S 0 repre-
sents the support of the defender’s mixed strategy).
Theorem 3. Let S 0 be a set of defender strategies. Checking
whether there exist k groups an attack on which would control
an election no matter which s 2 S 0 is played by the defender
is NP-Complete, even with only two candidates.

Proof. It is easy to see that this decision problem is in NP. To
show that it is NP-Hard, we reduce from the hitting set prob-
lem shown in Definition 1. Specifically, we show that for any
hitting set problem, we can construct an election with n voter
groups, 2 candidates, and a set S 0 of defender strategies, so
that there exists a hitting set G0 iff there exists an attacker
strategy which can control the election no matter which de-
fender strategy s 2 S 0 is played.

Given a hitting set problem as is shown in Definition 1, we
construct an election with |G| + 1 voter groups, two candi-
dates, ! and another candidate c. Each i 2 G corresponds to a
voter group, in which we assume that dci = �1, i.e., c has one
fewer vote than ! in voter group i. In the extra voter group j

which does not correspond to any element in G, we assume
that dcj = |G| � 1. Thus c has 1 less vote than ! in total.
Each ˆ

G 2 U can be considered as a label of a defender’s pure
strategy, in which voter group j and voter groups i 2 G \ ˆ

G

are protected. For example, assume that G = {1, 2, 3} and
U = {{1, 2}}. Then there are 4 groups. In the first three c

has 1 fewer vote than !, while in the last group c has 2 more
votes than !. In the defender strategy labeled by {1, 2} 2 U ,
group 3 and 4 are protected.

The ( direction: If there exists an attacker strategy which
attacks k voter groups i.e., G0 ⇢ G with |G0| = m, so that
he can control the election no matter which defender strategy
s 2 S 0 is played, it indicates that given the defender strategy
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s labeled by ˆ

G 2 U , at least one voter group i with i 2 ˆ

G

and d

c
i = �1 is attacked. Thus 8 ˆ

G 2 U,G

0 \ ˆ

G 6= ;. Oth-
erwise the attacker cannot control the election if s is played.
Therefore, G0 is a required hitting set.

The ) direction: Given a hitting set G0 ⇢ G with |G0| =
k, the attacker can attack all voter groups i 2 G

0. Thus no
matter which s 2 S 0 is played by the defender, at least one
unprotected voter group with d

c
i = �1 is attacked. Since !

only has 1 more vote than c in the original voting, the attacker
can prevent ! from winning no matter which s 2 S 0 is played.

Exact Solution: Although computing attacker’s best re-
sponse (oracle) is NP-Hard, we now develop an exact com-
pact mixed-integer linear program (MILP) for it, which we
term AO-MILP. Formally, the attacker’s best response in-
volves solving maxa2A

P
s2S0 P (s, a)xs for a given mixed

strategy x. Our first step is to formulate the attacker oracle
as a mathematical (non-linear) program. The main technical
challenge involved is representing P (s, a), which is a non-
trivial function of s and a. We do this implicitly in AO-MP
by using an auxiliary binary variable zs.

AO-MP : maxai,zs,ecs2{0,1}
X

s2S0
zs · xs (2a)

X
i
ai  k (2b)

X
c2C�!

e

c
s = 1, 8s 2 S 0 (2c)

zs

X
c2C�!

e

c
s

⇣X
i
d

c
i (1� (1� si)ai)

⌘
� 0, 8s 2 S 0

.

(2d)

Constraint (2b) enforces feasibility of the attacker’s strategy
vector a. Next we explain Constraints (2c)-(2d). Given a
strategy pair (s, a), votes in group i are deleted only if si = 0

and ai = 1. Thus for each candidate c 2 C

�! , the vote differ-
ence between c and ! is dc0 =

P
i d

c
i �

P
i(1�si)aid

c
i . Note

that zs = 1, i.e., attacker succeeds given strategy pair (s, a),
as long as there exists one candidate who has no fewer votes
left than ! given (s, a), i.e., dc0 � 0. Variables e

c
s are thus

introduced to check whether there exists such a candidate.
Constraints (2c), (2d), and the objective together ensure that if
there exists such a candidate c⇤ for some s, the corresponding
e

c⇤
s will be set as 1 and e

c
s for all other candidates will be set

as 0. Thus,
P

c2C�! e

c
s (
P

i d
c
i (1� (1� si)ai)) � 0, and

the associated zs = 1, yielding, in combination with Con-
straint (2b) a pure strategy for the attacker that maximizes
its success probability given x. While AO-MP includes non-
linear constraint (2d), because all variables involved are bi-
nary, this constraint can be linearized in a standard way us-
ing McCormick inequalities [McCormick, 1976], yielding an
MILP for computing the attacker’s best response.
Heuristic “Better” Response: The main issue with AO-MP
is poor scalability. However, we need only compute a bet-
ter response for the attacker in each iteration of the Double-
Oracle method to make progress; by doing so quickly, even if
heuristically, we can considerably speed up equilibrium com-
putation. As long as we ultimately fall back on the MILP to
check optimality, we lose no solution guarantee.

We take two steps to find a better response for the attacker.
First, we look for a subset S 00 ⇢ S 0 with

P
s2S00 xs > p,

where p is the objective value of Core-LP restricted to a small
subset of attacker strategies A0 in the previous iteration. Sec-
ond, we look for an attacker pure strategy a which can suc-
cessfully affect the voting result no matter which pure strat-
egy s 2 S 00 is played by the defender, i.e., P (s, a) = 1 8s 2
S 00. If we can successfully find such a set S 00 and a pure strat-
egy a, the attacker will succeed with a probability of at leastP

s2S00 xs if he plays pure strategy a. Since
P

s2S00 xs > p,
a is a better strategy than any a

0 2 A0.
The full heuristic approach, AO-Better, is shown in Algo-

rithm 3. We first sort the defender strategies in S 0 in decreas-
ing order of xs, obtaining a sorted vector ¯

S with s

⇢ the ⇢th
largest element (Line 3). We then look for set S 00 consisting
of adjacent strategies in ¯

S (Lines 5 - 6). For each S 00, we
check if there exists a candidate c, such that if the attacker at-
tacks k areas which are not protected by any strategy s 2 S 00,
c will have more votes remaining than !. If there exists such
a candidate, then the corresponding attacker strategy leads to
success no matter which s 2 S 00 is played by the defender,
and is better than any in A0 (Lines 8 - 11). If no better strat-
egy is found, then AO-Better returns an empty set.

Algorithm 3: Attacker’s Better Response (AO-Better).
1 input: S 0

,x, p;
2 S̄ = hs⇢, ⇢ 2 1, 2, 3, · · · i  sort s 2 S 0 by decreasing xs;
3 for ⇢ in 1..|S̄| do
4 p

0  xs⇢ ,S 00  {s⇢}, ⇢0  ⇢+ 1;
5 while p

0  p and ⇢

0  |S̄| do
6 p

0  p

0 + xs⇢
0
,S 00  S 00 [ {s⇢

0
}, ⇢0  ⇢

0 + 1;
7 if p0 > p then
8 for c 2 C

�! do
9 d

c0  hdci : i with si = 0, 8s 2 S 00i;
10 d

(c�k)0  delete the smallest k elements in d

c0;
11 if sum(d(c�k)0) � 0 then
12 return attack the k groups corresponding to

deleted elements;

13 return ;;

5.2 Defender Oracle
We now proceed to analyze the NP-Hard defender oracle
(Theorem 2).
Exact Solution: The defender’s oracle, or best response,
can be defined as: maxs2S

P
a2A0(1 � P (s, a))ya. Just as

in the attacker oracle formulation, we proceed to develop the
(non-linear) mathematical integer program to compute the de-
fender’s best response.

DO-MP: maxsi,za2{0,1}
X

a2A0

za · ya (3a)

X
i
si  m (3b)

za

X
i
(d

c
i (1�(1�si)ai)+1)  0, 8c 2 C

�!
, a 2A0

. (3c)
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There is an important difference from the attacker oracle: in
particular, za = 1 (that is, the defender successfully blocks
an attack strategy a 2 A0, where A0 is the attacker strat-
egy from the previous iteration of Double-Oracle) only if all
candidates c 2 C

�! have fewer votes remaining than !.
Constraint (3c) ensures that za = 1 only when 8c 2 C

�! ,P
i d

c
i �

P
i(1� si)aid

c
i < 0, while Constraint (3b) enforces

feasibility of the defender’s strategy. The resulting DO-MP
thereby chooses the defender strategy which minimizes the
probability of a successful attack for a fixed attacker mixed
strategy y. We can then linearize the nonlinear constraint (3c)
by using McCormick inequalities [McCormick, 1976], ob-
taining an MILP formulation of the defender oracle.
Heuristic “Better” Response (Algorithm 4): We first look
for a subset A00 ⇢ A0 with

P
a2A00 ya > 1�p. Then we look

for a defender pure strategy s which can “block” all attacker
strategies a 2 A00, ensuring that the attacker will succeed
with probability less than p. If such a strategy is found, then
it is a better response for the defender. Algorithm 4 presents
the full heuristic procedure.

Algorithm 4: Defender Oracle with Better Response
1 s = hsi = 0 : 8i 2 {1, · · · , n}i, res = 0;
2 for each A00 with

P
a2A00 ya > 1� p do

3 for c 2 C

�! do
4 d

c0  hdci : i with ai = 0, 8a 2 A00 or si = 1i;
5 while sum(dc0) � 0 and res < m do
6 d

c00  d

c \ dc0, i⇤  argmini{dci 00};
7 d

c0  d

c0 [ {dci⇤}, si⇤  1, res res + 1;

8 if 8c 2 C

�!
, d

c0
< 0 then

9 return s;

10 return ;;

6 Uncertainty about Voter Preferences
Our entire treatment of the problem so far assumed com-
plete information about voter preferences for both the attacker
and defender. We now show that this assumption is rela-
tively straightforward to relax (from a technical perspective).
Specifically, we retain the assumption that the attacker has
complete information, but assume that the defender is uncer-
tain about voter preferences. Formally, let V denote a partic-
ular voting preference outcome, with RV the defender’s prior
distribution over V . The defender’s goal in this setting is to
minimize the expected probability that the attacker can suc-
cessfully control the election. Since the attacker knows V ,
this gives rise to a Bayesian Stackelberg game with V the
attacker’s type. Let pV (s, a) be a binary indicator represent-
ing whether the attacker can successfully control the voting
given voting preferences V and a strategy pair (s, a). The op-
timal mixed strategy for the defender can then be computed
by solving the following LP, which is a Bayesian extension of
the Core-LP above:

Bayesian-LP(S,A): min

x

X

V

RV PV (4a)

PV �
X

s2S
xspV (s, a), 8a 2 A, 8V (4b)

Note that this formulation is amenable to the same double
oracle framework that was used to solve the complete infor-
mation game. The primary difference is that now the attacker
oracle must be run for each V , whereas the defender oracle re-
quires a modified objective involving expected probability of
the election being controlled with respect to RV . In practice,
since the space of relevant voting preferences V is extremely
large, we can take a collection of samples from this distribu-
tion and solve the linear program (4) solely using these sam-
ples to obtain an approximately optimal defense.

7 Evaluation
We evaluate the proposed algorithms on both synthetic and
real data with respect to solution quality and scalability. So-
lution quality of our approach is compared to two baselines.
The first, termed Random, is a uniformly random defense.
The second, termed Greedy, deterministically protects m

groups in which ! has the greatest advantage over the next
best candidate in that group. Linear and mixed integer pro-
grams were solved using CPLEX 12.6.1.We randomly gener-
ated a tally for each candidate within each group uniformly in
[0, 100]. Each data point is an average over 30 such samples.

Figures 1(a) and 1(b) show the solution quality of the pro-
posed algorithms and the baselines when there are 30 voter
groups and 5 candidates. The Stackelberg equilibrium solu-
tion always outperforms both baselines above, in most cases
quite dramatically. We also tested the algorithms on other
combinations of voters and candidates and observed similar
results. In addition, we compared solution quality of our ap-
proach extended to account for defender’s uncertainty about
voter preferences with the two baselines. The results were
qualitatively the same: the Bayesian Stackelberg game ap-
proach significantly outperformed the alternatives. In addi-
tion, we consider the effect of the number of samples from the
entire voter preference outcome space used in the Bayesian
Stackelberg game to compute an approximate defense under
uncertainty. We model uncertainty by taking baseline voting
tallies (generated as described above), and adding zero-mean
Gaussian noise. We study two cases: low uncertainty, where
the variance of Gaussian noise is 10, and high uncertainty,
where tallies of candidates are drawn uniformly in [1, 400]

and variance is 20. In both cases, we take 60 attacker types
(drawn from this distribution) to be the ground truth. In Fig-
ures 2(a) and 2(b), the x-axis is the number of samples taken
by the defender to solve Baysian-LP, while the y-axis indi-
cates the optimal expected success probability of attackers.
We observe that in both treatments very few samples ( 6)
suffice to achieve a near-optimal solution. Additionally, we
performed several robustness experiments, considering the
impact of errors in problem parameters (e.g., voter prefer-
ences, in the complete information case and probability dis-
tribution over types in Bayesian games) on solution quality.
We found that solutions are robust to such errors.

Next we compare the scalability of the Core-LP algorithm
with the two proposed double oracle approaches: 1) using
only MILP oracles (DORA), and 2) using the heuristic meth-
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Figure 1: Comparison of solution quality on synthetic data.
“Stackelberg Equi” is the Stackelberg equilibrium solution.
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Figure 2: Bayesian-LP: Impact of the number of samples on
solution quality.

ods as well (DORABE). The results in Figure 3 show that
with increased problem size, either in terms of the number
of voter groups or defender resources, the double oracle ap-
proaches significantly outperform Core-LP. We also tested the
effect of better oracles. Results show that DORABE usually
takes more iterations than DORA to converge, but the runtime
of each iteration in DORABE is far less.

Finally, we evaluate our algorithms on the 2002 French
president election dataset [Laslier and Van der Straeten,
2008], consisting of 2597 votes for 16 candidates by voters
in 6 districts (voter groups). Figures 4(a) and 4(b) again com-
pares the baselines to our algorithmic approach in terms of
solution quality. As in the experiments with synthetic data,
our approach demonstrates substantial improvement in de-
fender’s performance compared to baselines: in an extreme
case, the attack success probability drops from 1 to nearly 0.

8 Conclusion
We study the problem of optimally protecting an election
against group-deletion-control. We show that although plu-
rality voting is vulnerable to control, it is NP-Hard to protect
an election against it. We propose a double-oracle framework
for computing an optimal protection strategy and develop
compact mixed integer linear programs for both oracles, even
though these are NP-Hard. We also propose heuristic ora-
cles to further speed the double oracle framework up. Exper-
imental results show that our algorithms outperform baseline
alternatives, and scale to realistic problem instances.
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