


that some proposed techniques will only work on satisfiable
instances [Battiti and Mascia, 2007].

The lack of unsatisfiable instances cannot be addressed by
using a pattern graph from one of the random suites with
the “wrong” target graph: this tends to give either a trivially
unsatisfiable instance, or a satisfiable instance. (In particular, it
is not the case that a relatively small random graph is unlikely
to appear in a larger random graph.)

Here we present and evaluate a new method for creating
random pattern/target pairs. This method generates both satis-
fiable and unsatisfiable instances, and can produce computa-
tionally challenging instances with only a few tens of vertices
in the pattern, and 150 vertices in the target. Our work builds
upon the phase transition phenomena observed in satisfiability
and graph colouring problems first described by Cheeseman
et al. [1991] and Mitchell et al. [1992]. For subgraph isomor-
phism we identify three relevant control parameters: we can
independently alter the edge probability of the pattern graph,
the edge probability of the target graph, and the relative orders
(number of vertices) of the pattern and target graphs. For non-
induced isomorphisms, with the correct choice of parameters
we see results very similar to those observed with boolean
satisfiability problems: there is a phase transition (whose loca-
tion we can predict) from satisfiable to unsatisfiable, we see
a solver-independent complexity peak occur near this phase
transition, and understanding this behaviour helps us to select
variable and value ordering heuristics.

For certain choices of parameters for induced isomorphisms,
there are two phase transitions, going from satisfiable to unsat-
isfiable, and then from unsatisfiable back to satisfiable. Again,
when going from satisfiable to unsatisfiable (from either direc-
tion), instances go from being trivial to really hard to solve.
However, each of the three solvers we tested also finds the
central unsatisfiable region to be hard, despite it not being near
a phase transition. To show that this is not a simple weakness
of current subgraph isomorphism algorithms, we verify that
this region is also hard when using a pseudo-boolean encoding,
and under reduction to the clique problem. Interestingly, the
constrainedness measure proposed by Gent et al. [1996b] does
predict this difficult region—these instances provide evidence
in favour of constrainedness, rather than proximity to a phase
transition, being an accurate predictor of difficulty, and show
that constrainedness is not simply a refinement of a phase
transition prediction.

1.1 Definitions
Throughout, our graphs are unlabelled, undirected, and do not
have any loops. The order of a graph is the cardinality of its
vertex set. We write V(G) for the vertex set of a graph G.
The complement of a graph G, denoted G, is the graph with
the same vertex set as G, and with an edge between distinct
vertices v and w if and only if v and w are not adjacent in G.
We write G(n, p) for an Erdős-Rényi random graph with n
vertices, and an edge between each distinct pair of vertices
with independent probability p.

A non-induced subgraph isomorphism from a graph P
(called the pattern) to a graph T (called the target) is an injec-
tive mapping from V(P ) to V(T ) which preserves adjacency—
that is, for every adjacent v and w in V(P ), the vertices i(v)

and i(w) are adjacent in T . An induced subgraph isomor-
phism additionally preserves non-adjacency—that is, if v and
w are not adjacent in P , then i(v) and i(w) must not be adja-
cent in T . We use the notation i : P ! T for a non-induced
isomorphism, and i : P ↪→ T for an induced isomorphism.
Observe that an induced isomorphism i : P ↪→ T is a non-
induced isomorphism i : P ! T which is also a non-induced
isomorphism i : P ! T .

1.2 Experimental Setup
Our experiments were performed on systems with Intel Xeon
E5-4650 v2 CPUs, running Scientific Linux release 6.7. We
selected three subgraph isomorphism solvers: the Glasgow
solver [McCreesh and Prosser, 2015], LAD [Solnon, 2010],
and VF2 [Cordella et al., 2004]; each was compiled using
GCC 4.9.

The Glasgow and LAD solvers use backtracking search to
build up an assignment of target vertices (values) to pattern
vertices (variables), but differ in terms of inference and order-
ing heuristics. The approach used by VF2 is similar, although
the domains of variables are not stored (in the style of con-
ventional backtracking, rather than forward-checking), and so
domain wipeouts are not detected until an assignment is made.

In each case we measure the number of recursive calls
(guessed assignments) made, not runtimes. We are not aiming
to compare absolute performance between solvers; rather, we
are looking for solver-independent patterns of difficulty. We
used a timeout of 1,000 seconds, which was enough for the
Glasgow solver to solve nearly all our instances (whose orders
were selected with this timeout in mind), although we may
slightly overestimate the proportion of unsatisfiable instances
for extremely sparse or dense pattern graphs. The LAD and
VF2 solvers experienced many more failures with this timeout,
so our picture of just how hard the hardest instances are with
these solvers is less detailed.

2 Non-Induced Subgraph Isomorphisms
Suppose we arbitrarily decide upon a pattern graph order of 20,
a target graph order of 150, and a fixed target edge probability
of 0.40. As we vary the pattern edge probability from 0 to
1, we would expect to see a shift from entirely satisfiable
instances (with no edges in the pattern, we can always find a
match) to entirely unsatisfiable instances (a maximum clique
in this order and edge probability of target graph will usually
have between 9 and 12 vertices). The dark line in Figure 2
shows that this is the case. For densities of 0.67 or greater,
no instance is satisfiable; with densities of 0.44 or less, every
instance is satisfiable; and with a density of 0.55, roughly half
the instances are satisfiable.

The light line plots mean search effort using the Glasgow
solver: for sparse patterns, the problem is trivial, for dense
patterns proving unsatisfiability is not particularly difficult,
and we see a complexity peak around the point where half the
instances are satisfiable. We also plot the search cost of indi-
vidual instances, as points. The behaviour we observe looks
remarkably similar to random 3SAT problems—compare, for
example, Figure 1 of Leyton-Brown et al. [2014]. In partic-
ular, satisfiable instances tend to be easier, but show greater

632



101

102

103

104

105

106

107

108

109

0 0.2 0.4 0.6 0.8 1
0

0.5

1

Se
ar

ch
no

de
s

Proportion
SAT

Pattern density

Mean search
Satisfiable

Unsatisfiable

Proportion SAT

Figure 2: With a fixed pattern graph order of 20, a target graph
order of 150, a target edge probability of 0.40, and varying
pattern edge probability, we observe a phase transition and
complexity peak with the Glasgow solver in the non-induced
variant. Each point represents one instance. The lines show
mean search effort and mean proportion satisfiable.

variation than unsatisfiable instances, and there are exception-
ally hard satisfiable instances [Smith and Grant, 1997]. (The
Glasgow solver supports parallel search with a work-stealing
strategy explicitly designed to eliminate these. We have not
enabled this option to avoid dealing with the complexity of
search tree measurements under parallelism.)

What if we alter the edge probabilities for both the pattern
graph and the target graph? In the top row of Figure 3 we show
the satisfiability phase transition for the non-induced variant,
for patterns of order 10, 20 and 30, targets of order 150, and
varying pattern (x-axis) and target (y-axis) edge probabilities.
Each axis runs over 101 edge probabilities, from 0 to 1 in steps
of 0.01, except for the VF2 row which uses steps of 0.02. For
each of these points, we generate ten random instances. The
colour denotes the proportion of these instances which were
found to be satisfiable. Inside the orange region, at the bottom
right of each plot, every instance is unsatisfiable—here we are
trying to find a dense pattern in a sparse target. In the purple
region, at the top left, every instance is satisfiable—we are
looking for a sparse pattern in a dense target (which is easy,
since we only have to preserve adjacency, not non-adjacency).
The white band between the regions shows the location of the
phase transition: here, roughly half the instances are satisfiable.
(We discuss the black line below.)

On subsequent rows, we show the average number of search
nodes used by the different algorithms. In general, satisfiable
instances are easy, until very close to the phase transition. As
we hit the phase transition and move into the unsatisfiable re-
gion, we see complexity increase. Finally, as we pass through
the phase transition and move deeper into the unsatisfiable re-
gion, instances become easier again. This behaviour is largely
solver-independent, although VF2 has a larger hard region than

Sa
tis

fia
bl

e?

G(10, x)⇢G(150, y)G(20, x)⇢G(150, y)G(30, x)⇢G(150, y)

0

0.5

1

G
la

sg
ow

102

�108

104

106

LA
D

102

�108

104

106

V
F2

102

�108

104

106

Figure 3: Behaviour of algorithms on the non-induced variant.
For each plot, the x-axis is the pattern edge probability and the
y-axis is the target edge probability, both from 0 to 1. Along
the top row, we show the proportion of instances which are
satisfiable; the white bands shows the phase transitions, and
the black lines are our predictions of where the phase transition
will occur. On the final three rows, we show the number of
search nodes used by the Glasgow, LAD and VF2 solvers; the
dark regions indicate “really hard” instances.

Glasgow or LAD. Thus, although we have moved away from
a single control parameter, we still observe the easy-hard-easy
pattern seen in many other NP-complete problems.

2.1 Locating the Phase Transition
We can approximately predict the location of the phase transi-
tion by calculating (with simplifications regarding rounding
and independence) the expected number of solutions for given
parameters. Since we are trying to find an injective mapping
from a pattern P = G(p, d

p

) to a target T = G(t, d
t

), there
are

tp = t · (t − 1) · . . . · (t − p + 1)
possible assignments of target vertices to pattern vertices. We
expect the pattern to have d

p

·
�
p

2

�
edges, so we obtain the

probability of all of these edges being mapped to edges in the
target by raising d

t

to this power, giving an expected number
of solutions of

〈Sol〉 = tp · d
t

dp·(p
2).

This formula predicts a very sharp phase transition from
〈Sol〉 & 1 to 〈Sol〉 ' 1, which may easily be located numer-

633



ically. We plot where this occurs using black lines in the first
row of Figure 3.

This prediction is generally reasonably accurate, except that
for very low and very high pattern densities, we overestimate
the satisfiable region. This is due to variance: although an
expected number of solutions much below one implies a high
likelihood of unsatisfiability, it is not true that a high expected
number of solutions implies that any particular instance is
likely to be satisfiable. (Consider, for example, a sparse graph
which has several isolated vertices. If one solution exists, other
symmetric solutions can be obtained by permuting the isolated
vertices. Thus although the expected number of solutions
may be one, there cannot be exactly one solution.) A similar
behaviour is seen with random constraint satisfaction problems
[Smith and Dyer, 1996].

2.2 Variable and Value Ordering Heuristics
Various general principles have been considered when design-
ing variable and value ordering heuristics for backtracking
search algorithms—one of these is to try to maximise the
expected number of solutions inside any subproblem consid-
ered during search [Gent et al., 1996a]. This is usually done
by cheaper surrogates, rather than direct calculation. When
branching, both LAD and Glasgow pick a variable with fewest
remaining values in its domain: doing this will generally re-
duce the first part of the 〈Sol〉 equation by as little as possible.
When two or more domains are of equal size, LAD simply
breaks ties lexicographically, whereas Glasgow will pick a
variable corresponding to a pattern vertex of highest degree.
This strategy was determined empirically, but could have been
derived from the 〈Sol〉 formula: picking a pattern vertex of
high degree will make the remaining pattern subgraph sparser,
which will decrease the exponent in the second half of the
formula, maximising the overall value. LAD does not apply a
value ordering heuristic, but Glasgow does: it prefers target
vertices of lowest degree. Again, this was determined empir-
ically, but it has the effect of increasing 〈Sol〉 by increasing
the remaining target density. The VF2 heuristics, in contrast,
are based around preserving connectivity, which gives very
little discrimination except on the sparsest of inputs.

3 Induced Subgraph Isomorphisms
In the first four rows of Figure 4 we repeat our experiments,
finding induced isomorphisms. With a pattern of order 10, we
get two independent phase transitions: the bottom right half
of the plots resemble the non-induced results, and the top left
half is close to a mirror image. The central satisfiable region,
which is away from either phase transition, is computationally
easy, but instances near the phase transition are hard.

For larger patterns of order 20 and 30, we have a large un-
satisfiable region in the middle. Despite not being near either
phase transition, instances in the centre remain computation-
ally challenging. We also plot patterns of orders 14, 15 and
16, to show the transition between the two behaviours.

3.1 Predictions and Heuristics
To predict the location of the induced phase transition, we
repeat the argument for locating the non-induced phase transi-
tion and additionally considering non-edges, to get an expected

number of solutions of

〈Sol〉 = tp · d
t

dp·(p
2) · (1 − d

t

)(1�dp)·(p
2).

We plot this using black lines on the top row of Figure 4—
again, our prediction is accurate except for very sparse or very
dense patterns.

We might guess that degree-based heuristics would just not
work for the induced problem: for any claim about the de-
gree, the opposite will hold for the complement constraints.
However, empirically, this is not the case: on the final row
of Figure 4, we show whether it is better to use the original
pattern and target as the input to the Glasgow algorithm, or
to take the complements. (The only steps performed by the
Glagsow algorithm which differ under taking the complements
are the degree-based heuristics. LAD and VF2 are not sym-
metric in this way: LAD performs a filtering step using degree
information, but does not consider the complement degree,
and VF2 uses connectivity in the pattern graph.)

For patterns of order 10, it is always better to try to move
towards the satisfiable region: if we are in the bottom right
diagonal half, we are best retaining the original heuristics
(which move us towards the top left), and if we are in the top
left we should use the complement instead. This goes against
a suggestion by Walsh [1998] that switching heuristics based
upon an estimate of the solubility of the problem may offer
good performance.

For larger patterns, more complex behaviour emerges. If we
are in the intersection of the bottom half and the bottom right
diagonal of the search space, we should always retain the orig-
inal heuristic, and if we are in the intersection of the top half
and the top left diagonal, we should always use the comple-
ments. This behaviour can be predicted by taking the partial
derivatives of 〈Sol〉 in the −p

d

and t
d

directions. However,
when inside the remaining two eighths of the parameter space,
the partial derivatives of 〈Sol〉 disagree on which heuristic to
use, and using directional derivatives is not enough to resolve
the problem. A close observation of the data suggests that
the actual location of the phase transition may be involved
(and perhaps Walsh’s suggestion applies only in these condi-
tions). In any case, 〈Sol〉 is insufficient to explain the observed
behaviour in these two eighths of the parameter space.

In practice, this is unlikely to be a problem: most real-
world instances are extremely sparse and are usually easy,
which perhaps explains the continuing popularity of VF2’s
connectivity-based heuristics [Carletti et al., 2015]. In this
situation, these experiments justify reusing the non-induced
heuristics on induced problems.

3.2 Is the Central Region Genuinely Hard?
The region in the parameter space where both pattern and tar-
get have medium density is far from a phase transition, but nev-
ertheless contains instances that are hard for all three solvers.
We would like to know whether this is due to a weakness
in current solvers (perhaps our solvers cannot reason about
adjacency and non-adjacency simultaneously?), or whether
instances in this region are inherently difficult to solve. Thus
we repeat the induced experiments on smaller pattern and tar-
get graphs, using different solving techniques. Although these
techniques are not competitive in absolute terms, we wish to

634



Sa
tis

fia
bl

e?

G(10, x),!G(150, y) G(14, x),!G(150, y) G(15, x),!G(150, y) G(16, x),!G(150, y) G(20, x),!G(150, y) G(30, x),!G(150, y)

0

0.5

1

G
la

sg
ow

102

�108

104

106

LA
D

102

�108

104

106

V
F2

102

�108

104

106

C
on

st
ra

in
ed

ne
ss

0

1

2

3

C
om

pl
em

en
tb

et
te

r
fo

rG
la

sg
ow

?

never

neutral

always

Figure 4: Behaviour of algorithms on the induced variant, shown in the style of Figure 3. The second, third and fourth rows show
the number of search nodes used by the Glasgow, LAD and VF2 algorithms. The fifth row plots constrainedness: the darkest
region is where κ = 1, and the lighter regions show where the problem is either over- or under-constrained. The final row shows
when the Glasgow algorithm performs better when given the complements of the pattern and target graphs as inputs—the solid
lines show the location of the phase transition, and the dotted lines are t

d

= 0.5 and the p
d

= t
d

diagonal.

see if the same pattern of behaviour occurs. The results are
plotted in Figure 5.

The pseudo-boolean (PB) encoding is as follows. For each
pattern vertex v and each target vertex w, we have a binary
variable which takes the value 1 if and only if v is mapped to
w. Constraints are added to ensure that each pattern vertex
maps to exactly one target vertex, that each target vertex is
mapped to by at most one pattern vertex, that adjacent vertices
are mapped to adjacent vertices, and that non-adjacent ver-
tices are mapped to non-adjacent vertices. We used the Clasp
solver [Gebser et al., 2011] version 3.1.3 to solve the pseudo-
boolean instances. The instances that are hard for the Glasgow

solver remain hard for the PB solver, including instances inside
the central region, and the easy satisfiable instances remain
easy. Similar results were seen with the Glucose SAT solver
[Audemard and Simon, 2014] using a direct encoding of the
cardinality constraints. (We also implemented an integer pro-
gram encoding; the Gurobi solver was only able to solve some
of the trivial satisfiable instances, and was almost never able
to prove unsatisfiability within the time limit.)

The association graph encoding of a subgraph isomorphism
problem (illustrated in Figure 1) is constructed by creating a
new graph with a vertex for each pair (p, t) of vertices from
the pattern and target graphs respectively. There is an edge

635



Sa
tis

fia
bl

e?
G(10, x),!G(75, y) G(12, x),!G(75, y) G(14, x),!G(75, y) G(16, x),!G(75, y) G(18, x),!G(75, y) G(25, x),!G(75, y)

0

0.5

1

G
la

sg
ow

102

�106

103

104

105

C
la

sp
(P

B
)

102

�108

104

106

G
lu

co
se

(S
AT

)

102

�108

104

106

B
B

M
C

(C
liq

ue
)

102

�108

104

106

Figure 5: Behaviour of other solvers on the induced variant on smaller graphs, shown in the style of Figure 3. The second row
shows the number of search nodes used by the Glasgow algorithm, the third and fourth rows show the number of decisions made
by the pseudo-boolean and SAT solvers, and the final shows the number of search nodes used on the clique encoding.

between vertex (p1, t1) and vertex (p2, t2) if mapping p1 to t1
and p2 to t2 simultaneously is permitted, i.e. p1 is adjacent to
p2 if and only if t1 is adjacent to t2. A clique of size equal to
the order of the pattern graph exists in the association graph if
and only if the problem is satisfiable [Levi, 1973]. We used
this encoding with the BBMC clique algorithm [San Segundo
et al., 2011], which we implemented in C++. Usually BBMC
solves the optimisation version of the clique problem; we
adapted it to solve the decision problem by initialising the
incumbent to be one less than the decision value, and allowing
it to exit as soon as a clique with size equal to the decision
value is encountered. Again, our results show that the instances
in the central region remain hard, and additionally, some of
the easy unsatisfiable instances become hard.

Together, these experiments suggest that the central region
may be genuinely hard, despite not being near a phase tran-

sition. The clique results in particular rule out the hypothe-
sis that subgraph isomorphism solvers only find this region
hard due to not reasoning simultaneously about adjacency
and non-adjacency, since the association graph encoding con-
straints consider compatibility rather than adjacency and non-
adjacency.

3.3 Constrainedness
Constrainedness, denoted κ, is an alternative measure of dif-
ficulty designed to refine the phase transition concept, and
to generalise hardness parameters across different combina-
torial problems [Gent et al., 1996b]. A problem with κ < 1
is said to be underconstrained, and is likely to be satisfiable;
a problem with κ > 1 is overconstrained, and is likely to be
unsatisfiable. Empirically, problems with κ close to 1 are hard,
and problems where κ is very small or very large are usually

636



easy. By handling injectivity as a restriction on the size of the
state space rather than as a constraint, we derive

κ = 1 −
log

⇣
tp · d

t

dp·(p
2) · (1 − d

t

)(1�dp)·(p
2)
⌘

log tp

for induced isomorphisms, which we plot on the fifth row of
Figure 4. We see that constrainedness predicts that the cen-
tral region will still be relatively difficult for larger pattern
graphs: although the problem is overconstrained, it is less
overconstrained than in the regions the Glasgow and LAD
solvers found easy. Thus it seems that rather than just be-
ing a unification of existing generalised heuristic techniques,
constrainedness also gives a better predictor of difficulty than
proximity to a phase transition—our method generates in-
stances where constrainedness and “close to a phase transition”
give very different predictions, and constrainedness gives the
better prediction.

Unfortunately, constrainedness does not help us with heuris-
tics: minimising constrainedness gives the same predictions
as maximising the expected number of solutions.

4 Conclusion
We have shown how to generate small but hard instances for
the non-induced and induced subgraph isomorphism problems,
which will help offset the bias in existing datasets. For non-
induced isomorphisms, behaviour was as in many other hard
problems, but for induced isomorphisms we uncovered several
interesting phenomena: there are hard instances far from a
phase transition, constrainedness predicts this, and existing
general techniques for designing heuristics do not work in
certain portions of the parameter space.

The model we have proposed may be extended to graphs
with labels on the vertices or edges, which arise naturally in
many applications. Broadly speaking, randomly allocated la-
bels make the problem easier by restricting the search space,
although there are pathological cases where increasing the
number of labels shifts an instance from the easy satisfiable
region to being close to the phase transition. The model may
also be extended to the (decision version of the) maximum
common subgraph problem. The maximum clique approach
is competitive for the maximum common subgraph problem,
so it is interesting to observe that some of the easy portions
of the search space become hard under this reduction—this
suggests a possible unnecessary weakness of maximum clique
algorithms on certain kinds of input. (Maximum clique algo-
rithms use a greedy colouring as a bound, and a preliminary
investigation suggests that the association graphs produced by
this reduction can be very bad for greedy colourings in the
same way that crown graphs are.)

In contrast, it is worth noting that this technique does not
give a way of generating hard instances for graph isomorphism
problems: the pattern graph must be substantially smaller than
the target graph for independent pairs of randomly generated
instances to give interesting behaviour.

In future work, we intend to repeat the experiments using
other random models, including bounded, regular degree, and
scale-free; regular degree graphs in particular foil existing
degree-based heuristics. Similarly, we will look at alternatives

to simple randomness for labelling strategies—for example,
in chemical datasets, label sets tend to differ based upon the
degrees of their corresponding vertices. We will also look at
dynamic heuristics, and switching pattern and target heuris-
tics independently. Finally, we intend to investigate whether
variance can be calculated efficiently enough to give better
predictions for very sparse or dense pattern graphs.

Acknowledgements
The authors wish to thank Kitty Meeks and Craig Reilly for
their comments.

References
[Anton and Olson, 2009] Cǎlin Anton and Lane Olson. Gen-

erating satisfiable sat instances using random subgraph iso-
morphism. In Yong Gao and Nathalie Japkowicz, editors,
Advances in Artificial Intelligence, volume 5549 of Lecture
Notes in Computer Science, pages 16–26. Springer Berlin
Heidelberg, 2009.

[Audemard and Simon, 2014] Gilles Audemard and Laurent
Simon. The Glucose SAT solver, 2014.

[Audemard et al., 2014] Gilles Audemard, Christophe
Lecoutre, Mouny Samy Modeliar, Gilles Goncalves, and
Daniel Porumbel. Scoring-based neighborhood dominance
for the subgraph isomorphism problem. In Principles and
Practice of Constraint Programming - 20th International
Conference, CP 2014, Lyon, France, September 8-12, 2014.
Proceedings, pages 125–141, 2014.

[Battiti and Mascia, 2007] R. Battiti and F. Mascia. An algo-
rithm portfolio for the sub-graph isomorphism problem. In
Engineering Stochastic Local Search Algorithms. Design-
ing, Implementing and Analyzing Effective Heuristics, Inter-
national Workshop, SLS 2007, Brussels, Belgium, Septem-
ber 6-8, 2007, Proceedings, volume 4638 of Lecture Notes
in Computer Science, pages 106–120. Springer, 2007.

[Carletti et al., 2015] Vincenzo Carletti, Pasquale Foggia,
and Mario Vento. Graph-Based Representations in Pattern
Recognition: 10th IAPR-TC-15 International Workshop,
GbRPR 2015, Beijing, China, May 13-15, 2015. Proceed-
ings, chapter VF2 Plus: An Improved version of VF2 for
Biological Graphs, pages 168–177. Springer International
Publishing, Cham, 2015.

[Cheeseman et al., 1991] Peter Cheeseman, Bob Kanefsky,
and William M. Taylor. Where the really hard problems
are. In John Mylopoulos and Raymond Reiter, editors,
Proceedings of the 12th International Joint Conference
on Artificial Intelligence. Sydney, Australia, August 24-30,
1991, pages 331–340. Morgan Kaufmann, 1991.

[Conte et al., 2004] D. Conte, P. Foggia, C. Sansone, and
M. Vento. Thirty years of graph matching in pattern recog-
nition. International Journal of Pattern Recognition and
Artificial Intelligence, 18(03):265–298, 2004.

[Cordella et al., 2004] Luigi P. Cordella, Pasquale Foggia,
Carlo Sansone, and Mario Vento. A (sub)graph isomor-
phism algorithm for matching large graphs. IEEE Trans.
Pattern Anal. Mach. Intell., 26(10):1367–1372, 2004.

637



[Damiand et al., 2011] Guillaume Damiand, Christine Sol-
non, Colin de la Higuera, Jean-Christophe Janodet, and
Émilie Samuel. Polynomial algorithms for subisomorphism
of nD open combinatorial maps. Computer Vision and Im-
age Understanding, 115(7):996 – 1010, 2011. Special issue
on Graph-Based Representations in Computer Vision.

[De Santo et al., 2003] M. De Santo, P. Foggia, C. Sansone,
and M. Vento. A large database of graphs and its use
for benchmarking graph isomorphism algorithms. Pattern
Recogn. Lett., 24(8):10671079, May 2003.

[Gebser et al., 2011] M. Gebser, R. Kaminski, B. Kaufmann,
M. Ostrowski, T. Schaub, and M. Schneider. Potassco: The
Potsdam answer set solving collection. AI Communications,
24(2):107–124, 2011.

[Gent et al., 1996a] Ian P. Gent, Ewan MacIntyre, Patrick
Prosser, Barbara M. Smith, and Toby Walsh. An empiri-
cal study of dynamic variable ordering heuristics for the
constraint satisfaction problem. In Proceedings of the Sec-
ond International Conference on Principles and Practice of
Constraint Programming, Cambridge, Massachusetts, USA,
August 19-22, 1996, pages 179–193, 1996.

[Gent et al., 1996b] Ian P. Gent, Ewan MacIntyre, Patrick
Prosser, and Toby Walsh. The constrainedness of search.
In Proceedings of the Thirteenth National Conference on
Artificial Intelligence and Eighth Innovative Applications of
Artificial Intelligence Conference, AAAI 96, IAAI 96, Port-
land, Oregon, August 4-8, 1996, Volume 1., pages 246–252,
1996.

[Giugno et al., 2013] Rosalba Giugno, Vincenzo Bonnici,
Nicola Bombieri, Alfredo Pulvirenti, Alfredo Ferro, and
Dennis Shasha. GRAPES: A software for parallel search-
ing on biological graphs targeting multi-core architectures.
PLoS ONE, 8(10):e76911, 10 2013.

[Levi, 1973] G. Levi. A note on the derivation of maximal
common subgraphs of two directed or undirected graphs.
CALCOLO, 9(4):341–352, 1973.

[Leyton-Brown et al., 2014] Kevin Leyton-Brown, Holger H.
Hoos, Frank Hutter, and Lin Xu. Understanding the empir-
ical hardness of NP-complete problems. Commun. ACM,
57(5):98–107, May 2014.

[McCreesh and Prosser, 2015] Ciaran McCreesh and Patrick
Prosser. A parallel, backjumping subgraph isomorphism
algorithm using supplemental graphs. In Gilles Pesant,
editor, Principles and Practice of Constraint Programming,
volume 9255 of Lecture Notes in Computer Science, pages
295–312. Springer International Publishing, 2015.

[Mitchell et al., 1992] David G. Mitchell, Bart Selman, and
Hector J. Levesque. Hard and easy distributions of SAT
problems. In Proceedings of the 10th National Conference
on Artificial Intelligence. San Jose, CA, July 12-16, 1992.,
pages 459–465, 1992.

[San Segundo et al., 2011] Pablo San Segundo, Diego
Rodrı́guez-Losada, and Agustı́n Jiménez. An exact
bit-parallel algorithm for the maximum clique problem.
Comput. Oper. Res., 38(2):571–581, February 2011.

[Smith and Dyer, 1996] Barbara M. Smith and Martin E.
Dyer. Locating the phase transition in binary constraint
satisfaction problems. Artif. Intell., 81(1-2):155–181, 1996.

[Smith and Grant, 1997] Barbara M. Smith and Stuart A.
Grant. Modelling exceptionally hard constraint satisfaction
problems. In Gert Smolka, editor, Principles and Practice
of Constraint Programming-CP97, volume 1330 of Lec-
ture Notes in Computer Science, pages 182–195. Springer
Berlin Heidelberg, 1997.

[Solnon et al., 2015] Christine Solnon, Guillaume Damiand,
Colin de la Higuera, and Jean-Christophe Janodet. On the
complexity of submap isomorphism and maximum com-
mon submap problems. Pattern Recognition, 48(2):302 –
316, 2015.

[Solnon, 2010] Christine Solnon. Alldifferent-based filtering
for subgraph isomorphism. Artif. Intell., 174(12-13):850–
864, 2010.

[Walsh, 1998] Toby Walsh. The constrainedness knife-edge.
In Proceedings of the Fifteenth National Conference on
Artificial Intelligence and Tenth Innovative Applications of
Artificial Intelligence Conference, AAAI 98, IAAI 98, July
26-30, 1998, Madison, Wisconsin, USA., pages 406–411,
1998.

[Zampelli et al., 2010] S. Zampelli, Y. Deville, and C. Solnon.
Solving subgraph isomorphism problems with constraint
programming. Constraints, 15(3):327–353, 2010.

638


