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Abstract
We present a new preprocessing technique for
propositional model counting. This technique
leverages definability, i.e., the ability to determine
that some gates are implied by the input formula
⌃. Such gates can be exploited to simplify ⌃ with-
out modifying its number of models. Unlike previ-
ous techniques based on gate detection and replace-
ment, gates do not need to be made explicit in our
approach. Our preprocessing technique thus con-
sists of two phases: computing a bipartition hI, Oi
of the variables of ⌃ where the variables from O
are defined in ⌃ in terms of I, then eliminating
some variables of O in ⌃. Our experiments show
the computational benefits which can be achieved
by taking advantage of our preprocessing technique
for model counting.

1 Introduction
Propositional model counting (alias the #SAT problem) is the
task consisting in computing the number of models of a given
propositional formula ⌃. This problem and its direct gener-
alization, weighted model counting, are central to many AI
problems including probabilistic inference [Sang et al., 2005;
Chavira and Darwiche, 2008; Apsel and Brafman, 2012; Choi
et al., 2013] and forms of planning [Palacios et al., 2005;
Domshlak and Hoffmann, 2006]. They have also many ap-
plications outside AI, like in SAT-based automatic test pat-
tern generation, for evaluating the vulnerability to malicious
fault attacks in hardware circuits (see e.g., [Feiten et al.,
2012]). However, propositional model counting is computa-
tionally hard (a #P-complete problem), actually much harder
in practice than the satisfiability issue (the SAT problem).
Its significance explains why much effort has been spent
for the last decade in developing new algorithms for model
counting (either exact or approximate) which prove practi-
cal for larger and larger instances [Samer and Szeider, 2010;
Bacchus et al., 2003; Gomes et al., 2009].

In this paper, we present a new preprocessing technique
for improving exact model counting. Preprocessing tech-
niques are nowadays acknowledged as computationally valu-
able for a number of automated reasoning tasks, especially
SAT solving and QBF solving [Bacchus and Winter, 2004;

Subbarayan and Pradhan, 2004; Lynce and Marques-Silva,
2003; Een and Biere, 2005; Piette et al., 2008; Han and
Somenzi, 2007; Heule et al., 2010; Järvisalo et al., 2012;
Heule et al., 2011]. As such, they are now embodied in
some state-of-the-art SAT solvers, like Glucose [Audemard
and Simon, 2009] which takes advantage of the SatELite
preprocessor [Een and Biere, 2005], Lingeling [Biere,
2014] which has an internal preprocessor, and Riss

[Man-
they, 2012b] which takes advantage of the Coprocessor
preprocessor [Manthey, 2012a].

Our approach elaborates on [Lagniez and Marquis, 2014],
which describes a number of preprocessing techniques that
can be exploited for improving the model counting task, com-
putationally speaking. Among them is gate detection and re-
placement. Basically, every variable y of the input formula
⌃ which turns out to be defined in ⌃ in terms of other vari-
ables X = {x1, . . . , xk} can be replaced by its definition �X,
while preserving the number of models of ⌃. Indeed, when-
ever a partial assignment over the variables of X is consid-
ered, either it is jointly inconsistent with ⌃ or every model of
⌃ which extends this partial assignment gives to y the same
truth value. In [Lagniez and Marquis, 2014], literal equiv-
alences, AND/OR gates and XOR gates are detected (either
syntactically or using Boolean Constraint Propagation). The
empirical results reported in [Lagniez and Marquis, 2014]
about the preprocessor pmc equipped with the so-called #eq
combination of preprocessings clearly show that huge com-
putational benefits can be achieved through the detection and
the replacement of gates. However, pmc remains limited due
to the small number of families of gates which are targeted
(literal, AND, XOR gates and their negations).

In order to fill the gap, our preprocessing technique to
model counting aims at exploiting in a much more aggressive
way the existence of gates within the input formula ⌃. The
key idea of our approach is that one does not need to iden-
tify the gates themselves but it can be enough to determine
that such gates exist. To be more precise, it proves sufficient
to detect that some definability relations between variables
hold, without needing to identify the corresponding defini-
tions. This distinction is of tremendous importance since on
the one hand, the search space for the possible definitions �X
is very large (22k

elements up to logical equivalence, when
X contains k variables), and on the other hand, in the gen-
eral case, the size of any explicit definition �X of y in ⌃ is
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not polynomially bounded in |⌃| + |X| unless NP \ coNP ✓
P/poly (which is considered unlikely in complexity theory)
[Lang and Marquis, 2008].

Thus, in the following, we describe a new preprocessor
B + E which associates with a given CNF formula1 ⌃ a CNF
formula � which has the same number of models as ⌃, but is
at least as simple as ⌃ w.r.t. the number of variables and the
size. B + E consists of two parts: Bwhich aims at determining
a Bipartition hI, Oi of the variables of ⌃ such that every vari-
able of O is defined in ⌃ in terms of the remaining variables
(in I), and E which aims at Eliminating in ⌃ some variables
of O. Our contribution mainly consists of the presentation of
the algorithms B and E, a property establishing the correct-
ness of our preprocessor, and some empirical results showing
the computational improvements for model counting offered
by B + E compared to pmc. The benchmarks used, the imple-
mentation (runtime code) of B + E, some detailed empirical
results, and a full-proof version of the paper are available on
line from www.cril.fr/KC/.

The rest of the paper is organized as follows. Section 2
gives some background on propositional definability. In Sec-
tion 3 we introduce our preprocessor B + E and prove that it
is correct. Section 4 presents results from our large scale ex-
periments, showing B + E as a challenging preprocessor for
model counting, especially when compared with pmc. Fi-
nally, Section 5 concludes the paper and lists some perspec-
tives for further research.

2 On Definability
Let L be the (classical) propositional language defined in-
ductively from a countable set P of propositional variables,
the usual connectives (¬, _, ^, $, etc.) and including the
Boolean constants > and ?. Formulae are interpreted in the
classical way. |= denotes logical entailment and ⌘ logical
equivalence. For any formula ⌃ from L, Var(⌃) is the set of
variables from P occurring in ⌃, and k⌃k is the number of
models of ⌃ over Var(⌃). A literal ` is a variable ` = x from
P or a negated one ` = ¬x. When ` is a literal, var(`) denotes
the variable upon which ` is built. A term is a conjunction of
literals or >, and a clause is a disjunction of literals or ?. A
CNF formula is a conjunction of clauses. Let X be any subset
of P . A canonical term �X over X is a consistent term into
which every variable from X appears (either as a positive lit-
eral or as a negative one, i.e., as a negated variable). 9X.⌃
denotes any formula from L equivalent to the forgetting of
X in ⌃, i.e., the strongest logical consequence of ⌃ which is
independent of variables from X.

Let us now recall the two (equivalent) forms under which
the concept of definability in propositional logic can be en-
countered:

1Requiring the input to be a CNF formula is not a major restric-
tion since Tseitin transformation [Tseitin, 1968] can be used to turn
any propositional circuit into a CNF formula which has the same
number of models – indeed, the variables which are introduced are
actually defined from the original ones and the transformation con-
sists in adding gates to the input. Interestingly, the CNF format is the
one considered by state-of-the-art model counters.

Definition 1 (implicit definability) Let ⌃ 2 L, X ✓ P and
y 2 P . ⌃ implicitly defines y in terms of X if and only if
for every canonical term �X over X, we have �X ^ ⌃ |= y or
�X ^ ⌃ |= ¬y.
Definition 2 (explicit definability) Let ⌃ 2 L, X ✓ P and
y 2 P . ⌃ explicitly defines y in terms of X if and only if there
exists a formula �X 2 PROPX s.t. ⌃ |= �X $ y. In such a
case, �X is called a definition (or gate) of y on X in ⌃, y is
the output variable of the gate, and X are its input variables.
Example 1 Let ⌃ be the CNF formula consisting of the fol-
lowing clauses:

a _ b,
a _ c _ ¬e,
a _ ¬d,
b _ c _ ¬d,

¬a _ ¬b _ d,
¬a _ ¬c _ d,
¬a_¬b_ c_¬e,
¬a_b_¬c_¬e,

a _ e,
b _ c _ e,
¬b _ ¬c _ e.

d and e are implicitly defined in ⌃ in terms of X = {a, b, c}.
For instance, the canonical term �X = a^ b^¬c is such that
�X ^ ⌃ |= d ^ ¬e. On the other hand, � 0X = ¬a ^ ¬b ^ ¬c
is such that � 0X ^⌃ is inconsistent. d and e are also explicitly
defined in ⌃ in terms of X = {a, b, c} since ⌃ implies

d$ (a ^ (b _ c)) and e$ (¬a _ (b$ c)).
What happens in this example is not fortuitous due to the

following theorem from [Beth, 1953]:
Theorem 1 Let ⌃ 2 L, X ✓ P and y 2 P . ⌃ implicitly
defines y in terms of X if and only if ⌃ explicitly defines y in
terms of X.

Since implicit definability and explicit definability coin-
cide, one can simply say that y is defined in terms of X in
⌃. An interesting consequence of this theorem is that it is
not mandatory to point out a definition �X of y in terms of
X in order to prove that such a definition exists. Indeed, it is
enough to show that ⌃ implicitly defines y in terms of X to
do the job, and this problem is ”only” coNP-complete [Lang
and Marquis, 2008]. To prove it, we can take advantage of the
following result (Padoa’s theorem [Padoa, 1903]), restricted
to propositional logic and recalled in [Lang and Marquis,
2008]; this theorem gives an entailment-based characteriza-
tion of (implicit) definability:
Theorem 2 For any ⌃ 2 L and any X ✓ P , let ⌃0

X be the
formula obtained by replacing in ⌃ in a uniform way every
propositional symbol z from Var(⌃) \ X by a new proposi-
tional symbol z0. Let y 2 P . If y 62 X, then ⌃ (implicitly)
defines y in terms of X if and only if ⌃ ^ ⌃0

X ^ y ^ ¬y0 is
inconsistent.2

3 A New Preprocessor to Model Counting
Instead of detecting gates and replacing them in ⌃ in order
to remove output variables, our preprocessing technique con-
sists in detecting output variables, then in forgetting them in
⌃. To be more precise, the objective is first to find (if possi-
ble) a definability bipartition hI, Oi of ⌃ where I contains as
few elements as possible.

2Obviously enough, in the remaining case when y 2 X, ⌃ de-
fines y in terms of X.

752



Definition 3 (definability bipartition) Let ⌃ 2 L. A de-
finability bipartition of ⌃ is a pair hI, Oi such that I [ O =
Var(⌃), I \ O = ;, and ⌃ defines every variable o 2 O in
terms of I.

Then in a second step, variables from O are forgotten in ⌃
so as to simplify it. This leads to the preprocessing algorithm
B + E (B(ipartition), then E(liminate)) given at Algorithm 1:

Algorithm 1: B + E
input : a CNF formula ⌃
output: a CNF formula � such that k�k = k⌃k
O B(⌃);1
� E(O,⌃);2
return �3

Interestingly, both steps in this algorithm can be tuned in
order to keep the preprocessing phase light from a compu-
tational standpoint. On the one hand, it is not necessary to
determine a definability bipartition hI, Oi of ⌃ for which the
cardinality of I is minimal (identifying a reasonable amount
of output variables can prove sufficient). On the other hand, it
is not necessary to forget (i.e., eliminate) in ⌃ every variable
from O but focusing on a subset E ✓ O is enough. Formally,
our approach is based on the following result, which estab-
lishes the correctness of B + E:
Proposition 1 Let ⌃ 2 L. Let hI, Oi be a definability bipar-
tition of Var(⌃). Let E ✓ O. Then k⌃k = k9E.⌃k.

The ability to identify only a subset O of output variables
in the bipartition generation phase, and to consider only a
subset E of O in the elimination phase is valuable. In fact,
computing a shortest base (i.e., a subset I of minimal cardi-
nality such that every variable not in I is definable in ⌃ in
terms of I) [Lang and Marquis, 2008] would be prohibitive;
indeed, computing such a base using a branch-and-bound al-
gorithm would require, in the worst case, exponentially many
definability tests in the number of variables occurring in ⌃.
Furthermore, while forgetting variables in ⌃ obviously leads
to diminishing the number of variables occurring in it, it may
also lead to an exponential increase of its size. Eliminating in
⌃ only a subset E of variables from those found in O renders
it possible to focus on those variables for which the elimina-
tion step will not increase the size of ⌃ (à la NiVER [Sub-
barayan and Pradhan, 2004]), or only by a negligible factor.
More generally, the elimination of an output variable can be
committed only if the size of ⌃ after the elimination step re-
mains small enough, once some additional preprocessing has
been achieved. Among the equivalence-preserving prepro-
cessings of interest are occurrence simplification [Lynce and
Marques-Silva, 2003] and vivification [Piette et al., 2008] (al-
ready considered in [Lagniez and Marquis, 2014]), which aim
at shortening some clauses, and at removing some clauses
(for vivification).
Example 2 (Example 1 cont’ed) No literal equivalences,
AND/OR gates or XOR gates are logical consequences of ⌃.
Nevertheless, since ⌃ implies

d$ (a ^ (b _ c)) and e$ (¬a _ (b$ c))

a definability bipartition of Var(⌃) is h{a, b, c}, {d, e}i. Now,
forgetting d and e in ⌃ leads to the generation of two non-
valid clauses a _ c and a _ b _ c so that 9{d, e}.⌃ can then
be computed as the conjunction of:

a _ b, a _ c, a _ b _ c.

which can be simplified further into (a_b)^ (a_c). This CNF
formula has only 5 models, hence this is also the case of ⌃.

Algorithm 2: B
input : a CNF formula ⌃
output: a set O of output variables, i.e., variables defined

in ⌃ in terms of I = Var(⌃) \ O
h⌃, Oi backbone(⌃);1
V sort(Var(⌃));2
I ;;3
foreach x 2 V do4

if defined?(x,⌃, I [ succ(x, V),max#C) then5
O O [ {x};6

else7
I I [ {x};8

return O9

Algorithm 2 shows how a bipartition hI, Oi of Var(⌃) is
computed by B in a greedy fashion. At line 1, backbone(⌃)
computes the backbone of ⌃ (i.e., the set of all literals implied
by ⌃), and initializes O with the corresponding variables (in-
deed, a literal ` belongs to the backbone of ⌃ precisely when
var(`) is defined in ⌃ in terms of ;). Boolean Constraint
Propagation is also done on ⌃ completed by its backbone
(this typically leads to simplifying ⌃). While the variables
of the backbone can be simplified away in ⌃ by fixing their
values, they are nevertheless kept in O in order to ensure that
the set O of variables returned by B is such that {I, O} is a
bipartition of Var(⌃). At line 2, the remaining variables oc-
curring in ⌃ are sorted by considering their number of oc-
currences from less to more frequent. At line 4, defined?
takes advantage of Padoa’s method (Theorem 2) for deter-
mining whether x is defined in ⌃ in terms of I [ succ(x, V),
where succ(x, V) is the set of all variables of V which ap-
pear after x in V. defined? takes advantage of an anytime
SAT solver solve based on CDCL architecture for achiev-
ing the (un)satisfiability test required by Padoa’s method. In
our implementation, the input of solve is the CNF formula
⌃^⌃0

;^
V

z2Var(⌃)((¬sz_¬z_z0)^(¬sz_z_¬z0)), completed
by assumptions: for every z belonging to I [ succ(x, V), the
unit clause sz associated with z is added as an assumption to
the CNF formula (its effect is to make z equivalent to its copy
z0); then, x and ¬x0 are also added as assumptions. Inter-
estingly, clauses which are learnt at each call to solve are
kept for the subsequent calls. defined? is parameterized
by max#C which bounds the number of clauses which can be
learnt. When no contradiction has been found before max#C
is reached, defined? returns false (i.e., x is considered as
not defined in ⌃ in terms of I [ succ(x, V), while this could
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be questioned had a larger bound be considered). Clearly, the
number of output variables found by B is not guaranteed to
be maximal, but this is on purpose for the sake of efficiency
(observe that the number of calls to solve does not exceed
the number of variables occurring in ⌃).

Algorithm 3: E
input : a CNF formula ⌃ and a set of output variables

O ✓ Var(⌃)
output: a CNF formula � such that � ⌘ 9E.⌃ for some

E ✓ O
� ⌃;1
iterate true; P O;2
while iterate do3

E P; P ;; iterate false;4
� vivificationSimpl(�, E);5
while E 6= ; do6

x select(E,�);7
E E \ {x};8
� occurrenceSimpl(�, x);9
if #(�x)⇥ #(�¬x) > max#Res then10

P P [ {x}11
else12

R removeSub(Res(x,�),�);13
if #((� \ �x,¬x) [ R)  #(�) then14

� (� \ �x,¬x) [ R;15
iterate true;16

else17
P P [ {x}18

return �19

Algorithm 3 shows how variables from O are eliminated in
⌃ by E. P contains variables x from O which are candidates
for elimination. P is initialized with the full set O (line 2).
The main loop at line 3 is repeated while the elimination of
at least one variable is effective (line 16). At line 4, the set
E of variables that will be tentatively eliminated during the
iteration is initialized with P, and P is reset to ;. At line 5,
the clauses of � are successively vivified using a slight vari-
ant of the vivification algorithm vivificationSimpl re-
ported in [Lagniez and Marquis, 2014]. Vivification [Piette et
al., 2008] is a preprocessing technique which aims at reduc-
ing the input CNF formula, i.e., to remove some clauses in it
and some literals in the other clauses while preserving equiva-
lence, using Boolean Constraint Propagation. The additional
parameter E is used to sort the literals within the clauses of
⌃ so that the literals over E are put first (i.e., one tries to
eliminate occurrences of literals over E in priority). At line
6, one enters into the inner loop that operates while there are
remaining variables in E. At line 7, a variable x is selected
in E for being possibly eliminated by counting the number
#(�x) of clauses of � where x appears as a positive literal,
and the number #(�¬x) of clauses of � where ¬x appears as
a negative literal; x is retained if it minimizes #(�x)⇥#(�¬x),
which is a upper bound of the number of resolvents that the
elimination of x in � may generate. At line 8, x is removed

from E. Then, at line 9, one tries first to eliminate in �
some occurrences of variable x using occurrenceSimpl.
occurrenceSimpl is a restriction of the algorithm for
occurrence simplification reported in [Lagniez and Marquis,
2014], where instead of considering the whole set of literals
occurring in �, we just focus on those in {x,¬x}. At line
10, one recomputes #(�x)⇥#(�¬x) and checks whether it ex-
ceeds or not a preset bound max#Res. If this is the case,
then we possibly postpone the elimination of x in � at the
next iteration by adding it to P (line 11). Otherwise, we com-
pute the set Res(x,�) of all non-valid resolvents of clauses
from � on x and we remove from it using removeSub ev-
ery clause which is properly subsumed by a clause of � or
another clause from Res(x,�); the resulting set of clauses is
R (line 13). At line 14, we test whether the elimination of x
in �, obtained by removing from � its subset �x,¬x of the
clauses into which variable x occurs (either as a positive lit-
eral or as a negative literal), and adding the resolvents from
R, leads or not to increasing the number of clauses in �. If
so, we possibly postpone the elimination of x in � at the next
iteration by adding it to P (line 18). If not, the elimination of
x in � is committed (line 15). Clearly, it can be the case that
some variables of O are not eliminated by E, but again, this is
on purpose for efficiency reasons.

4 Empirical Results
In our experiments, we have considered 703 CNF instances
from the SAT LIBrary.3 They are gathered into 8 data sets,
as follows: BN (Bayesian networks) (192), BMC (Bounded
Model Checking) (18), Circuit (41), Configuration (35),
Handmade (58), Planning (248), Random (104), Qif (7)
(Quantitative Information Flow analysis - security). Our ex-
periments have been conducted on Intel Xeon E5-2643 (3.30
GHz) processors with 32 GiB RAM on Linux CentOS. A
time-out of 1h and a memory-out of 7.6 GiB has been con-
sidered for each instance. We set max#Res to 500.

As a matter of comparison, we have considered the pmc
preprocessor for model counting, described in [Lagniez and
Marquis, 2014] and available from www.cril.fr/KC/. To be
more precise, we considered pmc equipped with the #eq com-
bination of preprocessings, which combines backbone sim-
plification, occurrence elimination, vivification and gates de-
tection and replacement. pmc equipped with #eq proved em-
pirically as a very efficient preprocessor for model counting
[Lagniez and Marquis, 2014].

We evaluated the impact of B + E (for several values of
max#C) by coupling it with exact model counters. We con-
sidered the search-based model counters Cachet4 [Sang et
al., 2004] and SharpSAT

5 [Thurley, 2006], run with their
default settings. Though compilation-based approaches do
much more than model counting (since they compute equiv-
alent, compiled representations of the input CNF formula ⌃
and not only the number of models of ⌃), some of them ap-
pear as competitive for the model counting purpose. Thus, we

3www.cs.ubc.ca/⇠hoos/SATLIB/index-ubc.html
4www.cs.rochester.edu/⇠kautz/Cachet/
5sites.google.com/site/marcthurley/sharpsat
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also took advantage of the C2D compiler 6 [Darwiche, 2001;
2004] for achieving the downstream model counting task.
C2D generates a Decision-DNNF representation ⌃⇤ of ⌃. The
size of ⌃⇤ is exponential in the size of ⌃ in the worst case,
but the number of models of ⌃ conditioned by any consis-
tent term � can be computed efficiently from ⌃⇤ in every
case. And when � is >, one gets the number of models of ⌃.
C2D has been invoked with the following options -count
-in memory -smooth all, which are suited when C2D
is used as a model counter.

By the way, it is worth noting that B + E cannot be con-
sidered upstream to compilation-based approaches to model
counting, while preserving the possibility of counting effi-
ciently the number of models of the input conditioned by any
consistent term. Indeed, when B + E(⌃) is not equivalent to
⌃, the Decision-DNNF representation (B + E(⌃))⇤ computed
by C2D is not equivalent to ⌃⇤. Therefore, the possibility
of efficient model counting after any conditioning is lost, but
general conditioning must be downsized to a restricted form
of conditioning where terms � built up from I are allowed, but
no other terms. Interestingly, such a restricted form of con-
ditioning can prove enough in some scenarios. Especially,
when the set of variables of ⌃ can be partitioned into a set of
controllable variables (those which may require to be condi-
tioned) and a remaining set of uncontrollable variables, one
may take advantage of a slight variant of B + E ensuring that
every controllable variable is put into I in order to simplify
the input CNF formula ⌃ before compiling it.

The next table makes precise the number of instances
(over 703) solved within 1h by each of the model counters
Cachet, SharpSAT, and C2D (first column), when no pre-
processing has been applied (second column), pmc (equipped
with #eq) has been applied first (third column), and finally
B + E(⌃) for several values of max#C has been applied first
(the remaining columns). The preprocessing time is taken
into account in the computations (it is part of the 1h CPU
time allocated per instance).

model counter no preprocessing pmc 10 100 1000 1
Cachet 525 558 586 588 594 602

SharpSAT 507 537 575 581 586 593
C2D 547 602 605 613 616 621

The results reported in this table show the benefits which
can be achieved by applying B + E before using a model
counter. In particular, B + E leads to better performances than
pmc. Since the best performances of B + E are achieved for
max#C = 1, we focus on this parameter assignment in the
following.

The cactus plot given in the next figure illustrates the per-
formances of Cachet, SharpSAT, and C2D, possibly em-
powered by pmc or by B + E. For each value t on the y-axis (a
model counting time, in seconds) and each dot of a curve for
which this value is reached on the y-axis, the corresponding
value on the x-axis makes precise how many instances have
been solved by the approach associated with the curve within
a time limit of t (which includes the preprocessing time, when

6reasoning.cs.ucla.edu/c2d/
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a preprocessing has been used). For the sake of readibil-
ity, only 10% of the dots have been printed. Again, the plot
clearly shows B + E as a better preprocessor than pmc.

In order to determine how much applying B + E leads to
reduction of the input CNF formula ⌃ compared to pmc,
we considered two measures for assessing the reduction of
⌃: #var(⌃), the number of variables of ⌃, and #lit(⌃), the
number of literals occurring in ⌃ (i.e., the size of ⌃). Em-
pirically, the results are presented on the two scatter plots
(a) and (b) where each point corresponds to an instance
⌃, its x-coordinate corresponds to the value of the mea-
sure (#var (a) or #lit (b)) on pmc(⌃) equipped with the #eq
combination of preprocessings, while its y-coordinate corre-
sponds to the value of the same measure on B + E(⌃) (with
max#Conflicts = 1). The scales used for both coordi-
nates are logarithmic ones. Clearly enough, B + E often leads
to much larger reductions than pmc for both measures. The
benefits appear as very significant for instances from the Plan-
ning family.

Finally, we have evaluated how much B + E leads to re-
duction of the overall model counting time compared to pmc.
The results are presented on the two scatter plots (with log-
arithmic scales) (c) and (d), for the two model counters
Cachet and C2D (which appeared as the best counters in
our experiments) considered downstream. Each point cor-
responds to an instance ⌃, its x-coordinate corresponds to
the time (in seconds) required to compute k⌃k by computing
pmc(⌃) first, then calling the model counter on the result-
ing CNF formula, while its y-coordinate corresponds to the
time required to compute k⌃k by computing B + E(⌃) (with
max#Conflicts=1) first, then calling the model counter
on the resulting CNF formula. Again, whatever the down-
stream model counter, B + E appears often as a more efficient
preprocessor than pmc. The rightmost parts of the two scat-
ter plots cohere with the results reported in the previous table,
showing a number of instances which can be solved by any of
the model counters when B + E has been applied first, while
they cannot be solved within the time limit of 1h when pmc is
used instead. Finally, note that considering only the prepro-
cessing times (and not the overall time needed to count the
number of models of the input) for evaluating the preproces-
sor would be misleading: for some instances, the preprocess-
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ing times can be (relatively) long (details are available from
www.cril.fr/KC/), just because the preprocessor does almost
all the job (it may happen that the simplification of the in-
stance is so important that the downstream model counter has
almost nothing to do afterwards).

5 Conclusion
We have defined a new preprocessing technique B + E which
associates with a given CNF formula ⌃ a CNF formula
B + E(⌃) which has the same number of models as ⌃, but
is often simpler w.r.t. the number of variables and the size.
B + E is based on standard theorems in classical logic by Beth
and Padoa. Remarkably enough, while those results are quite
old, they prove useful for defining a very effective prepro-
cessing technique to model counting. Thus, experiments have
shown that for many instances ⌃, the overall computation
time needed to calculate kB + E(⌃)k using state-of-the art ex-
act model counters is often much lower than the time needed
to compute k⌃k with the same counters.

This work opens a number of perspectives for further re-

search. Considering other heuristics in B for determining a
bipartition of the variables and determining how to tune the
constants max#C and max#Res depending on the instance
at hand will be studied in the future. Other perspectives con-
cern the notion of projected model counting, as considered
in [Aziz et al., 2015]. The purpose is to compute k9E.⌃k
given a set E of variables and a formula ⌃. Instead of taking
advantage of B + E followed by any model counter to com-
pute k⌃k, we could instead use B followed by any projected
model counter (where the projection is onto I). The other way
around, we could also exploit E on E and ⌃ as a preprocessor
for projected model counters. It would be interesting to im-
plement both approaches and to determine whether they are
helpful in practice.
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