
Controllable Procedural Content Generation via
Constrained Multi-Dimensional Markov Chain Sampling

Sam Snodgrass, Santiago Ontañón
Drexel University

Philadelphia, PA USA
sps74@drexel.edu, santi@cs.drexel.edu

Abstract
Statistical models, such as Markov chains, have re-
cently started to be studied for the purpose of Pro-
cedural Content Generation (PCG). A major prob-
lem with this approach is controlling the sampling
process in order to obtain output satisfying some
desired constraints. In this paper we present three
approaches to constraining the content generated
using multi-dimensional Markov chains: (1) a gen-
erate and test approach that simply resamples the
content until the desired constraints are satisfied,
(2) an approach that finds and resamples parts of
the generated content that violate the constraints,
and (3) an incremental method that checks for con-
straint violations during sampling. We test our ap-
proaches by generating maps for two classic video
games, Super Mario Bros. and Kid Icarus.

1 Introduction
Procedural content generation (PCG) studies the generation
of content (e.g., textures, maps, quests, stories, etc.) algo-
rithmically, allowing players to experience new and unique
content. Recently there has been increased interest in using
statistical approaches to model and produce video game maps
[Dahlskog et al., 2014; Guzdial and Riedl, 2015].

In previous work [Snodgrass and Ontañón, 2014] we intro-
duced an approach using multi-dimensional Markov chains
(MdMCs) which learned a statistical model from a set of
training maps that could then be used to sample new maps
with the same statistical properties. The main drawback of
statistical approaches is that they do not provide the user
much control over the output. In this paper, we describe
three algorithms that, when paired with a probabilistic sam-
pling approach, offer the user control over the properties of
the output maps. Notice, however, that in addition to PCG
the proposed algorithms generalize to other domains where
(multi-dimensional) Markov chains are used to sample con-
tent (e.g., texture synthesis or music generation).

There has been work in constraining Markov models in
order to steer the sampling process [Pachet and Roy, 2011]
where the problem is formulated as a branch and bound prob-
lem searching over the set of sequences satisfying a set of
constraints, and using variations on the log likelihood of the

sequence as cost functions. The key differences with the
work presented in this paper are that (1) we focus on multi-
dimensional sequences (video game maps), instead of one-
dimensional sequences, and (2) we focus on sampling large-
scale sequences, which would be infeasible with the branch-
and-bound approach. Therefore, we employ larger section
sizes to avoid the combinatorial increase in the search space.

The remainder of this paper is organized as follows. We
start by specifically formulating the problem we try to ad-
dress. After that, Section 2 provides some background on
PCG and Markov chain-based map generation. Section 3
presents the proposed algorithms for constrained sampling on
MdMCs, and Section 4 presents our experimental evaluation.

1.1 Problem Statement
The problem we are addressing in this paper is that of control-
lability in PCG algorithms based on statistical models, such
as Markov chains. Currently, users are only able to control the
output of a statistical generator by changing the training data
or model configuration, both of which are unintuitive and in-
effective methods when trying to produce maps with specific
characteristics. To address this problem, we propose three
constrained sampling algorithms that allow the user to define
specific constraints to be enforced in the output maps.

2 Background
2.1 Procedural Map Generation
Procedural content generation (PCG) studies the algorithmic
creation of content [Shaker et al., 2015], typically for video
games. This section discusses statistical and constraint-based
techniques for level generation.

We are interested in generators that learn statistical prop-
erties from training data (i.e., existing maps), and use them
to sample new maps. Some interesting work in this area in-
cludes sampling new maps using n-grams trained on input
maps [Dahlskog et al., 2014], as well as generating maps us-
ing a statistical model trained on gameplay footage [Guzdial
and Riedl, 2015]. For testing our approach, we use the multi-
dimensional Markov chain (MdMC) generator developed in
our previous work [Snodgrass and Ontañón, 2014].

We are also interested in techniques that produce out-
puts satisfying defined constraints. For example, Smith and

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

780

Mateas [Smith and Mateas, 2011] describe an answer set pro-
gramming approach to level generation. However, their ap-
proach produces levels satisfying the provided constraints us-
ing search, whereas our approaches aim to satisfy constraints
while adhering to an underlying probability distribution.

In addition to the above approaches, many other level gen-
eration approaches have been put forward. For example,
Smith et al. experimented with a rhythm-based approach
[Smith et al., 2009], and Mawhorter and Mateas [Mawhorter
and Mateas, 2010] explored using occupancy-regulated ex-
tension, a geometry assembly approach. There have even
been level generation competitions [Shaker et al., 2011].

2.2 Markov-chain-based Map Generation
In this section we give a brief introduction to multi-
dimensional Markov chains (MdMCs). We then discuss how
they are used to model training maps and sample new maps.

Markov Chains
Markov chains [Markov, 1971] model stochastic transitions
between states over time. A Markov chain is defined as a set
of states S = {s1, s2, ..., sn} and the conditional probability
distribution (CPD) P (St|St−1), representing the probability
of transitioning to a state St 2 S given that the previous state
was St−1 2 S. The set of previous states that influence the
CPD are referred to as the network structure of the model.

Higher-order Markov chains allow the network structure
to include d 2 N previous states [Ching et al., 2013]. The
CPD defining an order d Markov chain can be written as
P (St|St−1, ..., St−d). That is, P is the conditional proba-
bility of transitioning to a state St, given the past d states.

Multi-dimensional Markov chains (MdMCs) are an exten-
sion of higher-order Markov chains that relax the network
structure even further, allowing any surrounding state in a
multi-dimensional graph to be included. For example, the
CPD defining the MdMC in Figure 2 (ns3) can be written as
P (St,r|St−1,r, St,r−1, St−1,r−1). Notice that there are other
combinations of previous states that satisfy the definition of
an order three MdMC. By redefining what a previous state
can be in this way, the model is able to more easily capture
relations from two-dimensional training data, as shown in our
previous work [Snodgrass and Ontañón, 2014]

Map Representation
A map is represented by an h⇥w two-dimensional array, M,
where h is the height of the map, and w is the width. Each
cell of M is mapped to an element of S, the set of tile types
which correspond to the states of the MdMC. Figure 1 shows
a portion of a Super Mario Bros. map (left) and how that
portion is represented as an array of tiles (right). Notice, we
added sentinel tiles to the map to signify the boundaries.

Training
Training an MdMC requires two things: 1) the network struc-
ture and 2) training maps. Figure 2 shows example network
structures that can be used to train an MdMC. Training hap-
pens in two steps: Absolute Counts and Probability Estima-
tion. First, given the network structure, the number of times
each tile follows each tile configuration is counted. Next, the
probability distribution of the MdMC is estimated from these
counts as the observed tile frequencies in the training data.

S E E E E E E E E E E E E
S E E E E E E E E E E E E
S E E E E E E E E E E E E
S E E E E ? E E E E E E E
S E E E E E E E E E E E E
S E E E E E E E E E E E E
S E E E E E E E E E E E E
S E E B ? B ? B E E E E E
S E E E E E E E E E E E E
S E E E E E E E E E E p P
S E E E E E E E E E E p P
S G G G G G G G G G G G G
S S S S S S S S S S S S S

(1)! (2)!

Figure 1: A portion of a Super Mario Bros. map as a tile grid.

S1,1

P(St,r)

ns0 :! S1,1 S2,1!

P(St,r | St-1,r)

ns1 :!

S2,2!

S1,1! S2,1!

P(St,r | St-1,r , St,r-1)

ns2 :! S1,1 S2,2!

S1,2! S2,1!

P(St,r | St-1,r , St,r-1, St-1,r-1)

ns3 :!

Figure 2: The network structures used in our experiments.

Sampling
A map is sampled with an MdMC one tile at time, starting,
for example, in the bottom left corner, and completing an en-
tire row before moving onto the next row. In more detail, a
map is sampled in the following way: Given a desired map
size, h ⇥ w, and a trained MdMC as described above, we
probabilistically choose a tile based on the configuration of
previous tiles and probability distribution of the trained chain.

While sampling, this method may encounter a set of pre-
vious tiles that was not seen during training. The probability
estimation would thus have not been properly estimated (ab-
solute counts would be 0). We call this an unseen state. We
incorporate two strategies to avoid unseen states: look-ahead
and fallback. These methods attempt to sample with the con-
dition that no unseen states are reached. The look-ahead pro-
cess samples a fixed number of tiles in advance, trying to en-
sure that no unseen state is reached. If the look-ahead is un-
successful and a tile cannot be found that results in no unseen
states, then our method falls back to an MdMC trained with a
simpler network structure. In our experiments, we start with
network structure ns3 (shown in Figure 2), which can fall
back to ns2, which itself can fall back to ns1, and then to ns0,
the raw distribution of tiles in the training maps. For more
details on this training and sampling approach, the reader is
referred to [Snodgrass and Ontañón, 2014].

3 Constraining Sampling
The MdMC model explained above is able to sample new
maps in the domain of the training data. However, the only

781

way to affect the output maps is to modify the configuration of
the MdMC or use different training maps, but these methods
do not provide the user with intuitive control over the output
maps, which is desirable [Togelius et al., 2013]. Furthermore,
those methods of control do not give any guarantees that the
desired traits will be present in the output maps.

To address the issue of controlling the output, we pro-
pose an approach where the user provides a set of constraints.
Thus, we need methods for sampling maps that will uphold
these constraints, which we describe below. We define two
types of constraints:

• Simple Constraints: These constraints take a section
of a map (or an entire map) as input, and return a cost
representing the degree to which the provided section
violates the constraint. The cost is 0 if the constraint is
satisfied, and some positive value otherwise. Formally,
c : M ! [0,1), where c is the constraint function, and
M is the section of the map.

• Location-Aware Constraints: These constraints take
the entire map as input. They return a set of sections
of the map that if resampled may allow the map to sat-
isfy the constraint, as well as the total cost of c over
M in the range of [0,1), where 0 is satisfied and more
positive costs are progressively less satisfied. Formally,
c : M ! (2S , [0,1)), where c and M are as above,
and 2S is the set of all subsets of map sections. We
use c(m).cost and c(m).sections to represent the cost
and sections returned by constraint c in map m. Notice,
location-aware constraints could be used as simple con-
straints by ignoring the returned map sections.

An example of a simple constraint for Super Mario Bros.
could be one that is satisfied if there is a path from the be-
ginning to the end of the map, whereas a location-aware con-
straint could be one that is satisfied if each rows contains non-
empty tiles, and otherwise returns the empty rows.

The set of constraints used in our experiments for each of
our domains is described in Section 4.2. Next, we describe
our algorithms for sampling a map that abides by the provided
constraints using a multi-dimensional Markov chain. Notice
that not all algorithms support both types of constraints. That
is, an algorithm may require specific sections in the map to
resample, whereas another algorithm may only require the
cost associated with the constraint.

3.1 Generate and Test
The algorithm for this approach can be seen in Algorithm 1.
This algorithm is the simplest; it follows a standard generate
and test methodology. It takes a set of simple constraints, C,
and the desired height and width of the output map, and starts
by sampling a new map of the desired dimensions using the
MdMC function (line 2), as described in Section 2.2. It then
determines whether the map satisfies the provided constraints
(line 3) by checking if the cost is 0 over all constraints. If it
is not, the loop repeats, and an entirely new map is sampled.

3.2 Violation Location Resampling
This approach can be seen in Algorithm 2. At a high level,
this algorithm works by sampling a new map and determining

Algorithm 1 GenerateAndTest(width, height , C)
1: repeat
2: Map = MdMC([0, 0], [width, height])
3: until

(∑
c∈C c(Map)

)
= 0

4: return Map

Algorithm 2 ViolationLocationResampling(w, h,C)
1: Map = MdMC([0, 0], [w, h])
2: while

(∑
c∈C c(Map).cost

)
> 0 do

3: for all c 2 C do
4: for all ([x1, y1], [x2, y2]) 2 c(Map).sections do
5: for all ci 2 C do
6: costci = ci(Map[x1, y1][x2, y2]).cost
7: end for
8: repeat
9: m = MdMC([x1, y1], [x2, y2])

10: for all ci 2 C \ c do
11: if costci > ci(m).cost then
12: GoTo line 9
13: end if
14: end for
15: until c(m).cost < costc

16: Map[x1, y1][x2, y2] = m
17: end for
18: end for
19: end while
20: return Map

which sections of the map should be resampled according to
the constraints. Next, it resamples each of those sections until
the cost of that section is reduced with regards to the current
constraint (without raising the cost of any other constraints).
Afterwards, if any constraints are not satisfied, the process of
finding and resampling sections is repeated.

In more detail, this algorithm takes the dimensions of the
output map and a set of location-aware constraints, C, and
returns a map satisfying those constraints. The algorithm first
samples a new map, Map (line 1). Next, if any constraints are
unsatisfied (line 2), then for each constraint, c 2 C (line 3), it
iterates over the sections which violate constraint c (line 4). It
then records the cost of the current section according to each
constraint (lines 5-7). When checking the cost of a section,
we use the location-aware constraint as a simple constraint.
The algorithm then samples a new section, m, of the same
dimensions as the current section (line 9), and checks if the
cost of m is greater than the previous cost for any other con-
straint (lines 10-14). If so, m is resampled, and cost checking
is repeated. If the cost with regards to the other constraints is
not raised, then m is only accepted if the cost with regards to
the current constraint, c, is lowered (line 15). This process of
finding violated sections and improving their costs is repeated
until all constraints return cost 0 (line 2).

3.3 Incremental Sampling
This approach can be seen in Algorithm 3. This algorithm
samples a map one section of the map at a time, resampling a
section as needed until it satisfies the provided constraints.

782

Algorithm 3 IncrementalSampling(SecW , h, n, C)
1: Map = empty map
2: for i = 0 ! n� 1 do
3: repeat
4: m = MdMC([i⇥ SecW , 0], [(i+1)⇥SecW , h])
5: until

(∑
c∈C c(m)

)
= 0

6: Map[i⇥ SecW , 0][(i+1)⇥SecW , h] = m
7: end for
8: return Map

For simplicity, we explain a version of the algorithm that
assumes sections follow each other horizontally to the right.
However, this ordering is domain dependent. Changing the
ordering requires only modifying the indices passed to the
MdMC function (line 4) and used during rewriting (line 6).

This algorithm takes the width of the sections to be sam-
pled, SecW , the height of the map, h, the number of sections
in a complete map, n, and a set of simple constraints, C. It
first initializes an empty map, Map (line 1). Next, for each
section to be sampled (line 2), it samples that section using
the MdMC function and stores the newly sampled section in
m (line 4). The algorithm then checks whether m satisfies
the given constraints (i.e., the total cost of m over all con-
straints is 0, line 5). If m does not satisfy the constraints, it is
resampled. Otherwise, m is appended to Map (line 6).

4 Experiments
We test our algorithms by sampling maps for two classic
video games (Super Mario Bros. and Kid Icarus).1 The re-
mainder of this section describes these domains, and the spe-
cific constraints used in each domain, before elaborating on
our experimental set-up and reporting the obtained results.

4.1 Domains
Super Mario Bros.: is a platforming game with linear maps
(as defined by [Dahlskog et al., 2014]). The player traverses
the maps from left to right while avoiding enemies and holes
to complete the level. Our training set is 16 maps from Super
Mario Bros. and Super Mario Bros.: The Lost Levels.
KidIcarus: is a platforming game with linear (albeit verti-
cally oriented) maps. The player traverses the maps from
bottom to top while avoiding hazards and holes to complete
the level. Our training set includes 6 vertically-oriented maps
from Kid Icarus.

4.2 Constraints
We defined constraints for each domain ranging from aes-
thetic constraints to playability constraints. Below we outline
each constraint for each domain. Constraints listed with a
with a • are simple constraints, and those listed with a are
location-aware constraints. Recall that location-aware con-
straints can be used as simple constraints, but simple con-
straints cannot be used as location-aware constraints.

1All datasets used in our experiments can be downloaded from
https://sites.google.com/site/sampsnodgrass

Each constraint that enforces an interval has two settings:
an easy setting (denoted below by E) that is tuned to the av-
erage value over the training maps plus a standard deviation
for the maximum value and minus a standard deviation for
the minimum value, and a hard setting (denoted below by H)
that sets the minimum value to the average and the maximum
value to the average plus two standard deviations .

For Super Mario Bros. we used the following constraints:
Number-of-Pipes(min,max): To satisfy this con-
straint, a map must contain a number of pipes falling
within [min,max]. If not, sections where pipes can
be added or removed are returned. E = Number-of-
Pipes(1, 13), H = Number-of-Pipes(7, 19).
Number-of-Enemies(min,max): To satisfy this con-
straint, a map must contain a number of enemies falling
within [min,max]. If not, sections where enemies can
be added or removed are returned. E = Number-of-
Enemies(11, 31), H = Number-of-Enemies(21, 41).
Number-of-Gaps(min,max): To satisfy this con-
straint, a map must contain a number of gaps falling
within [min,max]. If not, sections where gaps can
be added or removed are returned. E = Number-of-
Gaps(4, 12), H = Number-of-Gaps(8, 16).
Longest-Gap(min,max): To satisfy this constraint, the
longest gap’s length must fall within [min,max]. If not,
sections where gaps can be modified are returned. E =
Longest-Gap(4, 8), H = Longest-Gap(6, 10)
No-Ill-Formed-Pipes(): To satisfy this constraint, a
map must contain no ill-formed pipes. An ill-formed
pipe is any pipe not consisting of both left and right pipe
tiles or without solid tiles beneath it (pipes that extend
to the bottom of the map are not considered ill-formed).
Sections containing ill-formed pipes are returned.
Playability(): To satisfy this constraint, a path must ex-
ist from the beginning to the end of the map. This is
tested with Summerville’s A* agent [Summerville et al.,
2015]. Unplayable sections are returned for resampling.

• Linearity(min,max): To satisfy this constraint, the lin-
earity of the map must fall within [min,max]. Linearity
is the sum of distances from a best-fit line, where solid
tiles are treated as points [Smith and Whitehead, 2010].
E = Linearity(280, 566), H = Linearity(423, 709)

• Leniency(min,max): To satisfy this constraint, the le-
niency of the map must fall within [min,max]. Le-
niency is the weighted sum of the number of enemies
and gaps weighted by length [Smith and Whitehead,
2010]. E = Leniency(14, 46), H = Leniency(30, 62)

Notice, linearity and leniency are used as global constraints,
and as such are only checked on an entire map, not sections.

For Kid Icarus we used the following constraints:

Number-of-Hazards(min,max): To satisfy this con-
straint, a map must contain a number of hazards falling
within [min,max]. If not, sections where hazards can
be added or removed are returned. E = Number-of-
Hazards(0, 27), H = Number-of-Hazards(13, 41)

783

Longest-Gap(min,max): To satisfy this constraint, the
longest gap’s length must fall within [min,max]. If not,
sections where gaps can be modified are returned. E =
Longest-Gap(10, 12), H = Longest-Gap(11, 13)
Average-Platform-Length(min,max): To satisfy this
constraint, the average length of the platforms in
a map must fall within [min,max]. If not, sec-
tions where platforms can be modified are returned.
E = Average-Platform-Length(3, 4), H = Average-
Platform-Length(3.5, 4.5)
Playability(): To satisfy this constraint, a path must ex-
ist from the beginning to the end of the map. This is
tested by checking the distances between platforms. Un-
playable sections are returned for resampling.

The section sizes used are explained in the following section.

4.3 Experimental Setup
We tested our algorithms by training MdMCs (as described
in Section 2.2) on the training maps. The employed MdMC
approach allows configuring parameters to better suit certain
domains (see [Snodgrass and Ontañón, 2014]). In our experi-
ments we set those parameters to the following values: for Su-
per Mario Bros. we configure an MdMC with rowsplits = 12
and look-ahead = 3. For Kid Icarus we configure an MdMC
with rowsplits = 10 and look-ahead = 3, which were the
most promising configurations over some preliminary runs
without constraints . We use these MdMCs to sample new
maps within our constraint enforcement algorithms. How-
ever, not all algorithms support all the constraints we defined.
Thus, we experimented with three subsets of constraints:

• IS : For Super Mario Bros., IS ={Playability, No-ill-
Formed-Pipes}. For Kid Icarus, IS ={Playability}.
These sets pair with all three of our algorithms.

• VLR: For Super Mario Bros., VLR = IS [
{Number-of-Pipes, Number-of-Enemies, Number-of-
Gaps, Longest-Gap}. For Kid Icarus, VLR = IS [
{Number-of-Hazards, Longest-Gap, Average-Platform-
Length}. These sets pair with the Violation Location Re-
sampling and Generate and Test algorithms.

• GT : For Super Mario Bros., GT = VLR [{Linearity,
Leniency}. For Kid Icarus GT = VLR. These sets pair
with the Generate and Test algorithm.

We will use the subindex e to represent easy constraint value
settings and h to represent hard constraint value settings.

Location-aware constraints experiments return sections of
size 10⇥12 for Super Mario Bros. and 16⇥10 for Kid Icarus
(width by height). The constraints select the sections to return
via a sliding window approach. Each of the windows tested
where a violation was found is returned by the constraints;
overlapping windows are combined.

For the Incremental Sampling algorithm we used the same
section sizes as above. With these section sizes, Super Mario
Bros. maps are one section tall, and Kid Icarus maps are one
section wide. We sampled maps that are 21 sections long for
Super Mario Bros. and 17 section tall for Kid Icarus, as these
are typical sizes observed in the training sets.

During preliminary experiments we found that occasion-
ally an algorithm would get stuck and be unable to satisfy
the constraints (or take an excessive amount of time to do so).
Thus, in our experiments, we limit the number of times a map
could be resampled. That is, given a map of L sections, we
limit the number of total sections sampled to 50L, after which
we consider the execution to have failed. Note that on a stan-
dard laptop the baseline MdMC approach is able to sample
50 complete maps in about one second.

In our preliminary experiments, we tested our sampling
algorithms with a uniform distribution MdMC to determine
whether the algorithms were overwriting the distribution by
enforcing the constraints. We found that none of the algo-
rithms paired with the uniform distribution MdMC could sat-
isfy even the simplest constraints, showing the trained MdMC
probability distribution is an important part of sampling.

To evaluate our algorithms, we sampled 100 maps with
each viable combination of algorithm and set of constraints.
We recorded the percentage of maps sampled that satisfied
the provided constraints (Satisfied) and the average num-
ber of sections sampled per satisfied map (Attempts). Note,
Attempts includes the initial sections sampled as well as
the sections resampled. Lastly, we compare our algorithms
against a baseline, where we sampled 100 maps using an
MdMC with the same configuration as our algorithms, but
without enforcing any constraints. We then compute how
many of those maps satisfy the various sets of constraints.

4.4 Results
Table 1 shows the results of our experiments. Rows labeled
with “MdMC” are the baseline model, as in Section 2.2 (with-
out considering any constraints), where the number of maps
satisfying each set of constraints is computed afterwards.

As expected, all of our algorithms (excluding the Generate
and Test algorithm when used with Kid Icarus) were able to
produce a higher percentage of maps satisfying the provided
constraints than the MdMC alone was able to. This suggests
that by providing constraints, we are able to guide the sampler
towards more desirable maps.

An interesting trend, when looking at the Super Mario
Bros. results, is that when comparing our three algorithms
using the VLRe ,VLRh , and IS constraints the three algo-
rithms achieve the same satisfaction percentage for each set
of constraints, but the Violation Location Resampling (VLR)
and the Incremental Sampling (IS) algorithms outperform the
Generate and Test (G+T) algorithm with respect to the num-
ber of sections sampled. This is because G+T must resam-
ple all sections if a constraint is violated anywhere, whereas
VLR and IS selectively resample particular sections in viola-
tion of the constraints. However, in Kid Icarus, notice that
VLR outperforms IS in terms of sections sampled (VLR, sam-
pling fewer than half as many sections as IS). This may stem
from the dependence a section has on the previous section in
Super Mario Bros., where each row continues from the row
of the previous section, whereas in Kid Icarus a section is
far less dependent on the previous section, due to the vertical
orientation of the map, which can lead to more diversity in
the sections being sampled, and therefore may require more
resamplings to produce a satisfactory section.

784

Figure 3: A portion of a Super Mario Bros. map sampled using the Violation Location Resampling algorithm while enforcing
the VLRh constraints. Notice the number of enemies and the drastically varying heights within the map.

Figure 4: A portion of a Kid Icarus map sampled using
the Generate and Test algorithm that was unable to satisfy
the GT e constraints where an unplayable location is circled
(left), and a portion sampled using the Violation Location Re-
sampling algorithm enforcing the VLRe constraints (right).

Furthermore, in Kid Icarus, the VLR and IS algorithms both
outperform the G+T algorithm, achieving the same percent-
age of satisfied maps, where the G+T algorithm and the base-
line were unable to produce any. This is a remarkable result
as it indicates that with the proper constraints, an MdMC can
sample usable maps for domains which are beyond the reach
of current statistical sampling-based PCG methods.

Figure 3 shows a portion of a map sampled using the VLR
algorithm enforcing the VLRh constraints, as evidenced by
the drastically varying heights and large number of enemies.
Figure 4 (left) shows a portion of an unsatisfied map sam-
pled using the G+T algorithm enforcing the GT e constraints,

Table 1: Comparison of Algorithms
Super Mario Bros. KidIcarus

Alg. C Satisfied Attempts Satisfied Attempts
MdMC GT e 42% 21.00 0% NA
MdMC GT h 1% 21.00 0% NA
MdMC VLRe 50% 21.00 0% NA
MdMC VLRh 3% 21.00 0% NA
MdMC IS 72% 21.00 0% NA

G+T GT e 100% 75.18 0% NA
G+T GT h 59% 419.29 0% NA
G+T VLRe 100% 72.66 0% NA
G+T VLRh 75% 435.96 0% NA
G+T IS 100% 54.81 0% NA
VLR VLRe 100% 23.01 94% 275.04
VLR VLRh 75% 176.43 0% NA
VLR IS 100% 21.32 100% 98.36

IS IS 100% 21.02 100% 210.76

where a gap that is too long to jump over is circled. Figure
4 (right) shows a portion of a map sampled using the VLR
algorithm enforcing the VLRe constraints.

5 Conclusions
This paper presented three algorithms for enforcing con-
straints while sampling using multi-dimensional Markov
chains (MdMCs), tested in the domain of video game map
generation. We found our algorithms provide the user with
more control over the qualities of the output maps than sam-
pling with the MdMC alone, though the Violation Location
Resampling and Incremental Sampling algorithms converge
to a solution more quickly than the Generate and Test algo-
rithm. Additionally, the algorithms produced playable maps
for Kid Icarus which we were unable to do previously with
the standard MdMC approach, suggesting these algorithms
will enable us to sample maps for domains which are beyond
the reach of current statistical sampling-based PCG methods.
Moreover, while the proposed algorithms were evaluated in
the context of video game map generation, they constitute a
general approach to constrained sampling of Markov mod-
els, which may have applications beyond video games (e.g.,
music generation, texture synthesis, and text generation).

For our future work, we would like to explore sampling al-
gorithms that can handle a wider range of constraints. Addi-
tionally, we would like to evaluate our methods in more com-
plex video games, such as puzzle-platformers (e.g., Loderun-
ner), where complex paths through the maps are important.

785

References
[Ching et al., 2013] Wai-Ki Ching, Ximin Huang,

Michael K Ng, and Tak-Kuen Siu. Higher-order
markov chains. In Markov Chains, pages 141–176.
Springer, 2013.

[Dahlskog et al., 2014] Steve Dahlskog, Julian Togelius, and
Mark J Nelson. Linear levels through n-grams. Proceed-
ings of the 18th International Academic MindTrek, 2014.

[Guzdial and Riedl, 2015] Mathew Guzdial and Mark Riedl.
Toward game level generation from gameplay videos. In
FDG 2015, 2015.

[Markov, 1971] Andrey Markov. Extension of the limit theo-
rems of probability theory to a sum of variables connected
in a chain. In Dynamic Probabilistic Systems: Vol. 1:
Markov Models, pages 552–577. Wiley, 1971.

[Mawhorter and Mateas, 2010] Peter Mawhorter and
Michael Mateas. Procedural level generation using
occupancy-regulated extension. In Computational Intel-
ligence and Games (CIG), 2010 IEEE Symposium on,
pages 351–358. IEEE, 2010.

[Pachet and Roy, 2011] François Pachet and Pierre Roy.
Markov constraints: steerable generation of markov se-
quences. Constraints, 16(2):148–172, 2011.

[Shaker et al., 2011] Noor Shaker, Julian Togelius, Geor-
gios N Yannakakis, Ben Weber, Tomoyuki Shimizu,
Tomonori Hashiyama, Nathan Sorenson, Philippe
Pasquier, Peter Mawhorter, Glen Takahashi, et al. The
2010 mario AI championship: Level generation track.
TCIAIG, IEEE Transactions on, 3(4):332–347, 2011.

[Shaker et al., 2015] Noor Shaker, Julian Togelius, and
Mark J. Nelson. Procedural Content Generation in
Games: A Textbook and an Overview of Current Research.
Springer, 2015.

[Smith and Mateas, 2011] Adam M Smith and Michael
Mateas. Answer set programming for procedural con-
tent generation: A design space approach. Computa-
tional Intelligence and AI in Games, IEEE Transactions
on, 3(3):187–200, 2011.

[Smith and Whitehead, 2010] Gillian Smith and Jim White-
head. Analyzing the expressive range of a level generator.
In Proceedings of the 2010 Workshop on Procedural Con-
tent Generation in Games, page 4. ACM, 2010.

[Smith et al., 2009] Gillian Smith, Mike Treanor, Jim White-
head, and Michael Mateas. Rhythm-based level generation
for 2D platformers. In Proceedings of the 4th International
Conference on Foundations of Digital Games, pages 175–
182. ACM, 2009.

[Snodgrass and Ontañón, 2014] Sam Snodgrass and Santi-
ago Ontañón. Experiments in map generation using
markov chains. In FDG 2014, 2014.

[Summerville et al., 2015] Adam James Summerville,
Shweta Philip, and Michael Mateas. Mcmcts pcg 4 smb:
Monte carlo tree search to guide platformer level gener-
ation. In Eleventh Artificial Intelligence and Interactive
Digital Entertainment Conference, 2015.

[Togelius et al., 2013] Julian Togelius, Alex J Champandard,
Pier Luca Lanzi, Michael Mateas, Ana Paiva, Mike Preuss,
Kenneth O Stanley, Simon M Lucas, Michael Mateas, and
Mike Preuss. Procedural content generation: Goals, chal-
lenges and actionable steps. Artificial and Computational
Intelligence in Games, 6:61–75, 2013.

786

