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Abstract
We consider instance queries mediated by an on-
tology expressed in the expressive DL ALCHIO
with closed predicates. We observe that such
queries are non-monotonic and cannot be expressed
in monotonic variants of DATALOG, but a polyno-
mial time translation into disjunctive DATALOG ex-
tended with negation as failure is feasible. If no
closed predicates are present–in the case of classi-
cal instance checking in ALCHIO–our translation
yields a positive disjunctive DATALOG program of
polynomial size. To the best of our knowledge, this
is the first polynomial time translation of an expres-
sive (non-Horn) DL into disjunctive DATALOG.

1 Introduction
In ontology-mediated queries (OMQs), a database query is
enriched with an ontology, providing domain knowledge to
obtain more complete answers from incomplete data. OMQs
are receiving much attention in the database and knowledge
representation research communities, particularly when the
ontological knowledge is expressed in Description Logics
(DLs) or in rule-based formalisms like existential rules and
DATALOG±, see e.g., [Bienvenu et al., 2014; Bienvenu and
Ortiz, 2015; Gottlob et al., 2015] and their references.

The open-world semantics of these formalisms makes them
suitable for handling incomplete knowledge, but viewing all
data as incomplete can result in too few certain answers.
For this reason, closed predicates have been advocated as a
powerful tool to combine complete and incomplete knowl-
edge, by explicitly specifying predicates assumed complete,
thus given a closed-world semantics [Franconi et al., 2011;
Lutz et al., 2013]. For example, take the following ontology
T (formally, a DL TBox):

BScStudv Student

Studentv 9attends.Course
BScStudv 8attends.¬GradCourse

and the following set of facts A (an ABox):

Course(c1) BScStud(a)

Course(c2) GradCourse(c2)

Then (a, c1) is not a certain answer to the instance query q =
attends(x, y) mediated by T , but if c1 and c2 are known to be
the only courses, then (a, c1) should become a certain answer.
This can be achieved by declaring Course a closed predicate.

In this paper, we investigate the relative expressiveness of
OMQs in terms of more traditional query languages like DAT-
ALOG. More precisely, we are interested in the following
problem: given an OMQ Q (specified by a query and a TBox,
possibly with closed predicates), obtain a DATALOG query
Q0—in a suitable fragment—such that, for any ABox A, the
certain answers to Q and Q0 coincide.

The existence of such a Q0 and its size are crucial for un-
derstanding the expressive power and succinctness of differ-
ent families of OMQs. However, they are also very relevant in
practice, since they allow to reuse existing database technolo-
gies to support OMQ answering. For example, the research
into OMQs that can be rewritten into first-order (FO) queries
has produced the successful DL-Lite family [Calvanese et
al., 2007]. The succinctness of FO-rewritings for DL-Lite,
and for families of existential rules that are FO-rewritable,
has been extensively studied [Gottlob et al., 2014a; Gott-
lob and Schwentick, 2012], and for cases where (succinct)
FO-rewritings do not exists, some authors have considered
rewritings that, unlike the ones we consider here, are not data-
independent [Kontchakov et al., 2011; Gottlob et al., 2014b].

In the presence of closed predicates, the only rewritability
results are FO-rewritability for the core fragment of DL-Lite
[Lutz et al., 2015], and a rewriting algorithm for queries that
satisfy some strong definability criteria [Seylan et al., 2009].
Other works on OMQs with closed predicate have focused on
the complexity of their evaluation, e.g., [Ngo et al., 2015;
Lutz et al., 2013; Franconi et al., 2011]. The latter two
have shown coNP-hardness in data complexity for many
lightweight DLs, barring the existence of FO-rewritings.

Many DLs are not FO-rewritable, but can be rewritten into
monotonic DATALOG queries, leading to implemented sys-
tems, e.g., [Pérez-Urbina et al., 2010; Eiter et al., 2012b;
Trivela et al., 2015]. The pioneering work in [Hustadt et al.,
2007] showed that instance queries in an expressive exten-
sion of ALC can be rewritten into a program in disjunctive
DATALOG, using a constant number of variables per rule, but
exponentially many rules. The first translation from conjunc-
tive queries (CQs) in expressive DLs without closed predi-
cates (SH, SHQ) to programs in disjunctive DATALOG was
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introduced in [Eiter et al., 2012a], but the program may con-
tain double exponentially many predicates. For ALC and for
union of CQs, the existence of exponential rewritings into
disjunctive DATALOG was shown recently [Bienvenu et al.,
2014], and for restricted fragments of SHI and classes of
CQs translations to DATALOG were investigated in [Kaminski
et al., 2014a; 2014b]. A polynomial time DATALOG transla-
tion of instance queries was proposed in [Ortiz et al., 2010],
but for a so-called Horn-DL that lacks disjunction. To our
knowledge, this was until now the only polynomial rewriting
for a DL that is not FO-rewritable.

In this paper, we consider the class Q of OMQs of the
form (T ,⌃, q), where q is an instance query and T is a TBox
in the very expressive DL ALCHIO with closed predicates
⌃. We observe that such queries are non-monotonic. In-
deed, if we take ⌃ = {Course} as the set of closed predi-
cates in the above example, then (a, c1) is a certain answer to
(T ,⌃, q) over A, but it is not a certain answer over the ex-
tended set of facts A0 = A [ {Course(c3)}. For this reason,
these queries cannot be rewritten into monotonic variants of
DATALOG, like positive DATALOG (with or without disjunc-
tion). The main contribution of this paper is a polynomial
time translation of queries in Q into disjunctive DATALOG
extended with negation as failure. Our translation is modu-
lar: if no closed predicates are present—in the case of clas-
sical instance queries in ALCHIO—our translation yields a
positive disjunctive DATALOG program of polynomial size.
A simplified version of this translation for ALCHI can be
found in [Ahmetaj et al., 2016]. To our knowledge, this is the
first polynomial time translation of an expressive (non-Horn)
DL into disjunctive DATALOG.

2 Preliminaries
We give some basic notions of DLs and DATALOG.
The DL ALCHIO We assume countably infinite, mutu-
ally disjoint sets NR of role names, NC of concept names, and
NI of individual names. A role r is either a role name p, or
an expression p�, called the inverse of p. We let r� = p if
r = p�. Concepts are defined inductively as follows:

(i) >, ? and all A 2 NC are concepts;
(ii) if o 2 NI, then {o} is a concept;

(iii) if C1, C2 are concepts, then C1 uC2, C1 tC2 and ¬C1

are concepts;
(iv) if r is a role, and C is a concept, then 9r.C, 8r.C are

concepts.
A concept inclusion is an expression of form C1vC2, where
C1, C2 are concepts. A role inclusion is an expression of form
r1 v r2, where r1, r2 are roles. A TBox T is a finite set of
(concept and role) inclusions. An ABox A is a finite set of
assertions of the forms A(a) (called concept assertion) and
p(a, b) (called role assertion), where {a, b} ✓ NI, A 2 NC,
and p 2 NR. A knowledge base (KB) (with closed predicates)
is a triple K = (T ,⌃,A), where T is a TBox, ⌃ ✓ NC [ NR

is the set of closed predicates in K, and A is an ABox.
An interpretation is a pair I = h�I , ·Ii where �I is a

non-empty set (called the domain), AI ✓ �I for each A 2

NC, rI ✓ �I ⇥ �I for each r 2 NR, and aI 2 �I for
each a 2 NI. The function ·I is extended to the remaining
concepts and roles in the standard way [Baader et al., 2007].

An interpretation I satisfies an inclusion q1 v q2, if qI1 ✓
qI2 , in symbols I |= q1 v q2; and it satisfies an assertion q(~a)
if: (~a)I 2 qI , in symbols, I |= q(~a). For � a TBox or ABox,
we write I |= � if I |= ↵ for all ↵ 2 �. For an ABox A and
⌃ ✓ NC [ NR, we write I |=⌃ A if
(a) I |= A,
(b) for all A 2 ⌃ \ NC, if e 2 AI , then A(e) 2 A, and
(c) for all r 2 ⌃ \ NR, if (e1, e2) 2 rI , then r(e1, e2) 2 A.
For a KB K = (T ,⌃,A), we write I |= K if the following
hold:1 (i) a 2 �I and aI = a for each a 2 NI occurring in
K, (ii) I |= T , and (iii) I |=⌃ A. For an assertion ↵, we
write K |= ↵ if I |= ↵ for all I such that I |= K.
Instance Queries In this paper we consider an (ontology
mediated) instance query. Each such query is given as a triple
Q = (T ,⌃, q), where T is a TBox, ⌃ ✓ NC [ NR, and
q 2 NC [ NR. Let ~a 2 NI in case q 2 NC, and ~a 2 N2

I
otherwise. Then~a is a certain answer to Q over an ABox A if
(T ,⌃,A) |= q(~a); note that if ⌃ = ;, this boils down to the
usual DL instance checking problem. To ease presentation,
we assume that every concept and role of A also occurs in T .
Normal Form We let N+

C = NC[{{a} | a 2 NI}[{>,?}
be the basic concepts. Our results apply to arbitrary TBoxes,
but to simplify presentation, we consider TBoxes in normal
form where inclusions take one of the following forms:

(N1) B1 u · · · uBn vBn+1 t · · · tBk

(N2) Av 9r.A0 (N3) Av 8r.A0 (N4) r v s

with r, s roles, {B1, . . . , Bk} ✓ N+
C , and {A,A0} ✓ NC. We

also assume that T is closed under role inclusions as follows:
(a) p v p 2 T , for each p 2 NR occurring in T ,
(b) if r v s 2 T , then r� v s� 2 T , and
(c) if r1 v r2 2 T and r2 v r3 2 T , then r1 v r3 2 T .

For � a TBox, ABox, or KB, we denote by NI(�), NR(�),
NC(�), and N+

C (�) the set of individuals, role names, concept
names, and basic concepts that occur in �, resp. We write
r(�) 2 ⌃ to mean r 2 ⌃ if r 2 NR, and r� 2 ⌃ otherwise.
Nonmonotonic DATALOG We assume countably infinite
sets NP and NV of predicate symbols (each with an associ-
ated arity) and variables, respectively. We further assume
that NC [ NR ✓ NP with each A 2 NC being unary, and
each r 2 NR being binary. An atom is an expression of the
form R(t1, . . . , tn), where {t1, . . . , tn} ✓ NI [ NV, and R
is an n-ary relation symbol. A negated atom is an expres-
sion of the form not ↵, where ↵ is an atom. A rule ⇢ is an
expression of the form h1 _ . . . _ hn  b1, . . . , bk, where
H = {h1, . . . , hn} is a set of atoms, called the head of ⇢, and
B = {b1, . . . , bk} is a set of possibly negated atoms, called
the body of ⇢. Each variable that occurs in the head of ⇢ must
also occur in a (non-negated) atom in the body of ⇢. Rules

1We make the standard name assumption (SNA), which is com-
mon for closed predicates, for the individuals occurring in K.
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of the form h  (known as facts) are simply identified with
the atom h, thus ABox assertions are valid facts in our syn-
tax. For a role name p, we may use p�(t1, t2) to denote the
atom p(t2, t1). A program is any finite set P of rules. We use
ground(P ) to denote the grounding of P , i.e. the variable-free
program that is obtained from P by applying on its rules all
the possible substitutions of variables by individuals of P . If
negated atoms do not occur in P , then P is positive.

An (Herbrand) interpretation (or, database) I is any fi-
nite set of variable-free (or, ground) atoms. We assume a
binary built-in inequality predicate 6= with a natural mean-
ing: in any interpretation I , a 6= b 2 I iff (i) a 6= b, and
(ii) a (resp. b) occurs in an atom R(~t) 2 I , where R is not
6=. An interpretation I is a model of a positive program P if
{b1, . . . , bk} ✓ I implies I \ {h1, . . . , hn} 6= ; for all rules
h1 _ . . . _ hn  b1, . . . , bk in ground(P ). We say an inter-
pretation I is a minimal model of a positive program P if I is
a model of P , and there is no J 6✓ I that is a model of P .

The GL-reduct of a program P w.r.t. an interpretation I
is the program P I that is obtained from ground(P ) in two
steps: (i) deleting every rule that has not ↵ in the body with
↵ 2 I , and (ii) deleting all negated atoms in the remaining
rules [Gelfond and Lifschitz, 1988]. An interpretation I is a
stable model (also known as answer sets) of a program P if I
is a minimal model of P I .

A query is a pair (P, q), where P is a program, and q is a
predicate symbol from P . A tuple ~a of constants is a certain
answer to (P, q) over a database I if q(~a) 2 J for all stable
models J of P [ I .

3 Characterization of Counter Models
Assume a KB K = (T ,⌃,A) and an assertion q. Towards
deciding K 6|= q using a polynomially sized program, we de-
compose the problem into two steps:
(1) Guess a core interpretation Ic for K, whose domain is

NI(K). Core interpretations fix how the individuals of K
participate in concepts and roles, ensuring the satisfaction
of A and ⌃, and the non-entailment of q.

(2) Check that Ic can be extended to satisfy all axioms in T .
Defining rules that do (1) is not hard, but (2) is more chal-
lenging, and will rely on a game-theoretic characterization
we describe below. But first we need to define the notion of
core interpretations.
Definition 1. A core interpretation for a KB K = (T ,⌃,A)
is any interpretation Ic such that
(c1) �Ic = NI(K) and aIc = a for all a 2 NI(K),
(c2) Ic |=⌃ A,
(c3) Ic |= Av 8r.A0 for all Av 8r.A0 2 T ,
(c4) Ic |= r v s for all r v s 2 T ,
(c5) Ic |= A v 9r.A0 for all A v 9r.A0 2 T , if r v s 2 T

for some s(�) 2 ⌃.
(c6) qIc = ; for each q 62 NC(T ) [ NR(T ).
An interpretation J is called an extension of Ic, if Ic is the
result of restricting J to NI(K), and qJ = qIc for all q 2 ⌃.

A core and its extensions coincide on the assertions they
entail, and deciding non-entailment of an instance query
amounts to deciding whether there is a core that does not en-
tail it, and that can be extended into a model. But verify-
ing whether a core can be extended into a full model is hard,
as it corresponds to testing consistency (of Ic viewed as an
ABox) with respect to T , an EXPTIME-hard problem already
for fragments of ALCHOI. In order to obtain a polynomial
set of rules that solves this EXPTIME-hard problem, we char-
acterize it as a game, revealing a simple algorithm that admits
an elegant implementation in nonmonotonic disjunctive DAT-
ALOG. For this we use types, which we define as follows:
Definition 2. A type (over a TBox T ) ⌧ is a subset of
N+

C (T )[ {>} such that? 62 ⌧ and> 2 ⌧ . We say that ⌧ sat-
isfies an inclusion ↵ = B1u· · ·uBnvBn+1t· · ·tBk of type
(N1), if {B1, . . . , Bn} ✓ ⌧ implies {Bn+1, . . . , Bk} \ ⌧ 6=
;; otherwise ⌧ violates ↵. For an element e 2 �I in an inter-
pretation I, we let type(e, I) = {B 2 N+

C | e 2 BI}. A type
⌧ is realized in I if there is some e 2 �I s.t. type(e, I) = ⌧ .

We now describe a game to decide whether a given core Ic
can be extended into a model of a KB K. The game is played
by Bob (the builder), who wants to extend Ic into a model,
and Sam (the spoiler), who wants to spoil all Bob’s attempts.
Sam starts by picking an individual a, and they look at its
type type(a, Ic). If it doesn’t satisfy certain local consistency
conditions (e.g., the inclusions (N1)) Sam wins. Otherwise,
in each turn Sam chooses an inclusion of the form Av9r.A0
which would need to be satisfied by (an element with) the
current type, forcing Bob to pick a type for the corresponding
r-successor that satisfies A0. The game continues for as long
as Bob can respond to the challenges of Sam.

Formally, for a TBox T , a set ⌃ ✓ NC [ NR and an inter-
pretation I, we define the locally consistent set LC(T ,⌃, I)
as the set of types ⌧ over T such that:
(LCN1) ⌧ satisfies all inclusions of type (N1) in T .
(LC⌃) ⌧ must be realized in I if one of the following holds:

(i) ⌧ \ ⌃ 6= ;, or
(ii) A 2 ⌧ , Av 9r.A0 2 T , r v s 2 T and s(�) 2 ⌃.

(LCO) If ⌧ contains a nominal {a}, then ⌧ = type(a, I).
The game on I starts by Sam choosing an individual a 2 �I ,
and ⌧ = type(a, I) is set to be the current type. Then:
(G) If ⌧ 62 LC(T ,⌃, I), then Sam is declared winner.

Otherwise, Sam chooses an inclusion A v 9r.A0 2 T
with A 2 ⌧ ; if there is no such inclusion, Bob wins the
game. Otherwise, Bob chooses a new type ⌧ 0 such that:
(C1) A0 2 ⌧ 0, and
(C2) for all inclusions A1 v 8s.A2 2 T :

– if r v s 2 T and A1 2 ⌧ then A2 2 ⌧ 0,
– if r� v s 2 T and A1 2 ⌧ 0 then A2 2 ⌧ .

⌧ 0 is set to be the current type, and the game continues
with a new round, i.e. we go back to G.

A run of the game on I is a (possibly infinite) sequence

a↵1⌧1↵2⌧2 . . .
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where a is the individual picked initially by Sam, and each ↵i

and ⌧i are the inclusions picked by Sam and the type picked
by Bob in round i, respectively. A strategy for Bob is a partial
function str that maps pairs of a type ⌧ and an inclusion Av
9r.A0 with A 2 ⌧ to a type ⌧ 0 that satisfies (C1) and (C2);
intuitively, it gives a move for Bob in response to moves of
Sam. A run a↵1⌧1↵2⌧2 . . . with type(a, I) = ⌧0 follows a
strategy str if ⌧i = str(⌧i�1,↵i) for every i � 1.

For a finite run w, we let tail(w) = type(a, I) if w =
a, and tail(w) = ⌧` if w = a . . .↵`⌧` with ` � 1. The
strategy str is called non-losing on I if for every finite run w
that follows str, tail(w) 2 LC(T ,⌃, I) and str(tail(w), A v
9r.A0) is defined for every Av9r.A0 2 T with A 2 tail(w).
Theorem 1. Assume a KB K and an assertion q. Then K 6|= q
iff there is a core interpretations Ic for K such that:
(1) Ic 6|= q, and
(2) there is a non-losing strategy for Bob on Ic.

Proof. (Sketch.) We focus on showing that there is a non-
losing strategy str for Bob on Ic iff there exists an extension
J of Ic s.t. J |= K. The claim follows from this, and the
easy claim that extensions preserve non-entailment of q.

For the “(” direction, we assume an arbitrary extension
J of Ic that models K, and let T be a the set of all the types
realized in J . For each ⌧ 2 T and each Av 9r.A0 2 T with
A 2 ⌧ , let str(⌧, A v 9r.A0) = ⌧ 0 for an arbitrarily chosen
⌧ 0 2 T that satisfies (C1) and (C2), which exists because J
is a model. This str is a non-losing strategy for Bob on Ic.

For the “)” direction, from an arbitrary non-losing str for
Ic, we build J as follows. We call a type ⌧ fixed if it contains
a nominal {a}, some A 2 ⌃, or some A with Av9r.A0 2 T ,
r v s 2 T and s(�) 2 ⌃; note that fixed types cannot be
realized by domain objects outside the core. For each fixed
⌧ that is realized in Ic, we let a⌧ denote a fixed, arbitrary
individual realizing ⌧ (in particular, a⌧ = b if {b} 2 ⌧ ).

We denote by frn(Ic, str) the set of all finite runs a↵1⌧1 · · ·
that follow str where each ⌧i, i � 1, are not fixed types, and
by fxr(Ic, str) the set of all finite runs a↵1⌧1 · · ·↵`⌧` that fol-
low str, where ⌧` is a fixed type, and each ⌧i, 1  i < `, is
not a fixed type. The domain of J is:

�J = �Ic [ frn(Ic, str)

and for each a 2 NI, each A 2 NC, and each p 2 NR we let:

aJ = aIc AJ = {w | A 2 tail(w)}
pJ = pIc [ {(w,w↵i⌧i) | ri v p 2 T } [

{(w↵i⌧i, w) | r�i v p 2 T }[
{(w, a⌧i) | w↵i⌧i 2 fxr(Ic, str), ri v p 2 T } [
{(a⌧i , w) | w↵i⌧i 2 fxr(Ic, str), r�i v p 2 T }

where ↵i = Av 9ri.A0 2 T and {w,w↵i⌧i, a⌧i} ✓ �J .
Note that the interpretation is well defined, since w↵i⌧i 2

fxr(Ic, str) implies that ⌧i is a fixed type in LC(T ,⌃, Ic),
which guarantees that ⌧i is realized in Ic and that a⌧i exists.
One can show that J |= K. Roughly, J |=⌃ A is a direct
consequence of the definition of Ic and the fact that J is its

Algorithm 1: Mark

input : TBox T , set ⌃ ✓ NC [ NR, interpretation I
output: Set of (possibly marked) types
N  {⌧ | ⌧ is a type over T }
(MN1) Mark each ⌧ 2 N that violates some inclusion of
the form (N1) in T

(M⌃) Mark each ⌧ 2 N such that ⌧ is not realized in I
and one of the following holds:

(i) ⌧ \ ⌃ 6= ;, or
(ii) A 2 ⌧ , Av 9r.A0 2 T , r v s 2 T , s(�) 2 ⌃

(MO) Mark each ⌧ 2N with {a}2 ⌧ and ⌧ 6= type(a, I)
repeat

(M9) Mark each ⌧ 2 N such that Av 9r.A0 2 T ,
A 2 ⌧ , and for each ⌧ 0 2 N , at least one the
following holds:

(C0) ⌧ 0 is marked,
(C10) A0 /2 ⌧ 0, or
(C20) there exists A1 v 8s.A2 2 T with

(i) r v s 2 T and A1 2 ⌧ and A2 /2 ⌧ 0, or
(ii) r� v s 2 T and A1 2 ⌧ 0 and A2 /2 ⌧

until no new type is marked
return N

extension. We can similarly argue that J satisfies the inclu-
sions in T for the individuals. For the fresh objects, it follows
from the fact that they have as children in J the types given
by the strategy, which are suitable successors.

To decide whether Bob has a non-losing strategy on a given
core we use the type elimination procedure Mark in Algo-
rithm 1, which marks (or, eliminates) all types from which
Sam has a strategy to defeat Bob. It takes as input the TBox
T , the set ⌃ ✓ NC [ NR, and an interpretation I which in-
tuitively is the core being checked. The algorithm starts by
building the set N of all possible types over T , and then it
marks types that are bad choices for Bob (since they give
Sam a way to defeat him). In steps (MN1), (M⌃) and (MO)
the algorithm respectively marks in N all types that violate
the condition (LCN1), (LC⌃) or (LCO); Sam wins already in
the first round on these types. Then, in the loop, (M9) ex-
haustively marks types ⌧ that allow Sam to pick an inclusion
Av 9r.A0 for which Bob cannot reply with any ⌧ 0.

The formal relationship between the game and the marking
algorithm is established in the following theorem.
Theorem 2. Let Ic be a core interpretation. Then Bob has a
non-losing strategy on Ic iff none of the types realized in Ic
is marked by Mark(T ,⌃, Ic).

Proof. (Sketch.) For the “)” direction, we can show (by in-
duction in the number of iterations of Mark(T ,⌃, Ic)) that
if a type is marked, then it cannot occur in a non-losing str for
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Bob. For the “(” direction, a non-losing str for Ic is obtained
by taking all unmarked ⌧ 2 N , and for each of them, and each
A v 9r.A0 2 T with A 2 ⌧ , setting str(⌧, A v 9r.A0) = ⌧ 0
for an arbitrary unmarked ⌧ 0 that satisfies (C1) and (C2).

4 Rewriting into Nonmonotonic Disjunctive
Datalog

Assume an instance query (T ,⌃, q). We build next a poly-
nomially sized program P such that the queries (T ,⌃, q) and
(P, q) have the same certain answers for all ABoxes over the
signature of T . Roughly, the program P consists of 3 major
components described as follows:
(a) rules to non-deterministically generate a core interpreta-

tion Ic for the KB (T ,⌃,A), where A is an input ABox;
(b) rules that implement the type elimination algorithm pre-

sented in the previous section;
(c) rules that glue (a) and (b) together, ensuring that all types

that occur in Ic are not marked by the marking procedure.
We remark that the construction of P is independent from any
particular ABox.
(I) Collecting the individuals We first add rules to collect
in the unary predicate ind all the individuals that occur in T
or the input ABox. For each A 2 NC(T ), r 2 NR(T ), and
nominal {a} that occurs in T we have:

ind(x) A(x) ind(x) r(x, y)

ind(a) ind(y) r(x, y)

(II) Generating core interpretations For each A 2
NC(T )\⌃ (resp., r 2 NR(T )\⌃) we will use a fresh concept
name A (resp., role name r). We add the following rules to P :

A(x) _A(x)  ind(x) A 2 NC(T ) \ ⌃
 A(x), A(x) A 2 NC(T ) \ ⌃

r(x, y) _ r(x, y)  ind(x), ind(y) r 2 NR(T ) \ ⌃
 r(x, y), r(x, y) r 2 NR(T ) \ ⌃

To ensure (c3) in Definition 1, for each A v 8r.A0 2 T we
add one of the following:

 A(x), r(x, y), not A0(y) if A0 2 ⌃

A0(y)  A(x), r(x, y) if A0 62 ⌃

In principle, a constraint  A(x), r(x, y), not A0(y) could
be for all concept names, not only closed ones. We make
the distinction here and later in order to eventually obtain a
positive program in case ⌃ = ;.

To ensure (c4), for each role inclusion r v s 2 T we add
one of the following:

 r(x, y), not s(x, y) if s(�) 2 ⌃

s(x, y)  r(x, y) if s(�) 62 ⌃

To ensure (c5), for each inclusion A v 9r.A0 2 T with r v
s 2 T and s(�) 2 ⌃, add the following rules

RA0(x)  r(x, y), A0(y)
 A(x), not RA0(x)

Here RA0 is a fresh predicate symbol.
Intuitively, the stable models of the above rules generate

the different core interpretations Ic of the KB K = (T ,⌃,A)
for any given A. We next implement the algorithm Mark
from Section 3. To obtain a polynomially sized program, we
need to use non-ground rules whose number of variables de-
pends on the number of different concept names and nomi-
nals in T . Assume an arbitrary enumeration B1, . . . , Bk of
N+

C (T ), i.e. of the concept names and nominals that occur in
T . Assume also a pair 0, 1 of special individuals. Intuitively,
we will use a k-ary relation Type = {0, 1}k to store the set
of all types over T . Naturally, a k-tuple (b1, . . . , bk) 2 Type
encodes the type ⌧ = {Bi | bi = 1, 1  i  k} [ {>}. We
are most interested in computing a k-ary relation Marked ✓
{0, 1}k that contains precisely the types marked by the Mark
algorithm. We next define the rules to compute Type and
Marked, and other relevant relations.
(III) A linear order over types We use k-ary relation sym-
bols first and last, and add the facts first(0, . . . , 0)  and
last(1, . . . , 1) . We also use a 2k-ary relation next that will
store a lexicographic ordering over {0, 1}k with (0, . . . , 0)
and (1, . . . , 1) the first and the last element, respectively. That
is, given ~u,~v 2 {0, 1}k, the fact next(~u,~v) is true if ~v follows
~u in a lexicographic ordering. The rules to populate next are
standard (see, e.g., Theorem 4.5 in [Dantsin et al., 2001]).

We can now collect in the k-ary relation Type all types over
T (thus computing the set N of the Mark algorithm):

Type(~x)  first(~x)

Type(~y)  next(~x, ~y)

(IV) Implementing Step (MN1) First, we add the auxiliary
facts F(0) and T(1) to P . For a k-tuple of variables
~x, we let B 2 ~x denote the atom T (xj), where j is the index
of B in the enumeration of N+

C (T ). Similarly, we let B 62
~x denote the atom F (xj), where j is the index of B in the
enumeration.

Then the step (MN1), which marks types violating inclu-
sions of type (N1), is implemented using the following rule
for every inclusion B1 u · · · uBn vBn+1 t · · · tBk 2 T :

Marked(~x) Type(~x), B1 2 ~x, . . . , Bn 2 ~x,

Bn+1 62 ~x, . . . , Bk 62 ~x

(V) Collecting realized types We employ (i+1)-ary (“has
type”) relations hasTi for all 0  i  k. We add the rule
hasT0(x) ind(x), and the following rules for all 1 i k:

hasTi(x, ~y, 1)  hasTi�1(x, ~y), Bi(x) Bi 2 NC

hasTi(a, ~y, 1)  hasTi�1(a, ~y) Bi = {a}
hasTi(x, ~y, 0)  hasTi�1(x, ~y), x 6= a Bi = {a}
hasTi(x, ~y, 0)  hasTi�1(x, ~y), Bi(x) Bi 2 NC \ ⌃
hasTi(x, ~y, 0)  hasTi�1(x, ~y), not Bi(x) Bi 2 NC \ ⌃

Intuitively, hasTk stores the type of individuals in a generated
core interpretation for the KB. I.e. the fact hasTk(c,~v) says
that the individual c has the type that is encoded in the bit
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vector ~v. We can now project away the individuals and store
in the relation RealizedType the set of realized types:

RealizedType(~y) hasTk(x, ~y)

(VI) Implementing Step (M⌃) In this step, we mark all
non-realized types that contain a closed concept name, or en-
force an s-neighbor with s(�) 2 ⌃. In particular, for (i) every
A 2 NC(T )\⌃, and (ii) every inclusion Av9r.A0 2 T with
r v s 2 T and s(�) 2 ⌃, we add the rule

Marked(~x) Type(~x), A 2 ~x, not RealizedType(~x)

(VII) Implementing Step (MO) This step marks every
nominal-containing type that is not realized in the core in-
terpretation. We implement it by adding the following rules
for all B 2 N+

C and all nominals {a} that occur in T :

Marked(~x) Type(~x), {a} 2 ~x, hasTk(a, ~y), B 2 ~x,B /2 ~y

Marked(~x) Type(~x), {a} 2 ~x, hasTk(a, ~y), B /2 ~x,B 2 ~y

(VIII) Implementing Step (M9) The following rules are
added for all inclusions ↵ = Av 9r.A0 2 T . Recall that we
need to mark a type ⌧ if A 2 ⌧ , and for each type ⌧ 0 2 N
at least one of (C0), (C10) or (C20) holds. First, for each such
inclusion ↵, we use an auxiliary 2k-ary relation MarkedOne↵
to collect all such types ⌧ 0.

- For collecting each ⌧ 0 that satisfies (C0), we add:

MarkedOne↵(~x, ~y) Type(~x),Marked(~y)

- For the condition (C10), we add the rule:

MarkedOne↵(~x, ~y) Type(~x),Type(~y), A0 62 ~y

- The rules for (C20) are as follows.
- For all A1 v 8s.A2 2 T with r v s 2 T , we add:
MarkedOne↵(~x, ~y) Type(~x),Type(~y), A1 2 ~x,A2 62 ~y

- For all A1 v 8s.A2 2 T with r� v s 2 T , we also add:

MarkedOne↵(~x, ~y) Type(~x),Type(~y), A1 2 ~y,A2 62 ~x

Intuitively, we want to infer Marked(~t) if A is set to true in
~t and MarkedOne↵(~t,~v) is true for all types (bit vectors) ~v.
To achieve this, we rely on another auxiliary 2k-ary relation
MarkedUntil↵ for each inclusion ↵:

MarkedUntil↵(~x, ~z) MarkedOne↵(~x, ~z), first(~z)

MarkedUntil↵(~x, ~u) MarkedUntil↵(~x, ~z), next(~z, ~u),

MarkedOne↵(~x, ~u)

Intuitively, with the above rules we traverse all types checking
the conditions (C0), (C10), (C20) described in (M9). If we
manage to reach the last type, and if A 2 ~x, then we know
the condition is satisfied and mark the type:

Marked(~x) MarkedUntil↵(~x, ~z), A 2 ~x, last(~z)

(IX) Forbidding marked types in the core We need to for-
bid each individual in the generated core interpretation from

having a type from Marked. For all 0  i  k, we take a
fresh (i+ 1)-ary relation symbol Proji. We first add:

Projk(x, ~y) ind(x),Marked(~y)

We will now project away bits from the Proji relations by
looking at the actual types of individuals. For all 1  i  k
we have the following rules:

Proji�1(x, ~y)  Proji(x, ~y, 1), Bi(x) if Bi 2 NC

Proji�1(a, ~y)  Proji(a, ~y, 1) if Bi = {a}
Proji�1(x, ~y)  Proji(x, ~y, 0), x 6= a if Bi = {a}
Proji�1(x, ~y)  Proji(x, ~y, 0), Bi(x) if Bi /2 ⌃

Proji�1(x, ~y)  Proji(x, ~y, 0), not Bi(x) if Bi 2 ⌃

Intuitively, Proji�1(a, b1, . . . , bi�1) says the partial type
given by the bit values b1, . . . , bi�1 can be extended to a
marked type by choosing additional concepts according to the
actual type of the individual a. Thus the fact Proj0(a) repre-
sents the situation where a has a marked type. Such situations
are ruled out by adding the constraint  Proj0(x).

This concludes the rewriting of the instance query
(T ,⌃, q) into the program P . In case ⌃ = ;, our rewriting
does not use not in rule bodies. If nominals are not present
in T , we also don’t use the predicate 6=. This construction
together with Theorems 1 and 2 yields our main result:
Theorem 3. For an instance query (T ,⌃, q), where T is an
ALCHIO TBox, we can build in polynomial time a query
(P, q), where P may use disjunction and negation, such that:

(i) The certain answers to (T ,⌃, q) and (P, q) coincide for
any given ABox A over the signature of T .

(ii) If ⌃ = ;, then P is a positive program.
(iii) If ⌃ = ; and T is an ALCHI TBox, then P is a positive

program with no occurrences of the 6= predicate.
The above encoding employs disjunction, and possibly

negation as failure. Entailment of ground atoms already
in positive disjunctive programs is coNEXPTIME-complete
[Eiter et al., 1997], which does not match the EXPTIME-
completeness of satisfiability of ALCHIO KBs with (or
without) closed predicates. However, we employ disjunction
and negation in a limited way, and thus our programs fall into
a class of programs that can be evaluated in (deterministic)
exponential time. In particular, the above program P can be
partitioned (“stratified”) into programs P1, P2, P3 as follows:
- P1 consists of all rules in (I) and (II), except the constraints.
P1 is a positive disjunctive program with at most two vari-
ables in each rule.

- P2 consists of the constraints in (II), and the rules in (V).
Intuitively, the disjunction-free P2 ensures that P1 gener-
ates a proper core interpretation, and computes the types
realized in it.

- P3 consists of the remaining rules, and is disjunction-free.
Note that P2 and P3 do not define any relations used in P1,
i.e. none of the relation symbols of P1 occurs in the head of a
rule in P2[P3. The program P2 only depends on P1, i.e. none
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of relation symbols in P2 occurs in the head of a rule in P3.
The negative atoms of P2 only involve relations that are fully
defined by P1, i.e. such relation do not appear in the head of
rule in P2. Similarly, the negative atoms of P3 only involve
relations that are fully defined by P1[P2. Assume a set F of
facts over the signature of P1. Due to the above properties, the
successful runs of the following non-deterministic procedure
generate the set of all stable models of P [ F :
(S1) Compute a minimal model I1 of P1 [ F .

(S2) Compute the least model I2 of I1 [ P I1
2 . If I2 does not

exist due to a constraint violation, then return failure.

(S3) Compute the least model I3 of I2 [ P I2
2 . Again, if I3

does not exist, then return failure. Otherwise, output I3.
Since P1 has at most two-variables in every rule, each mini-
mal model I1 of P1 [ F is of polynomial size in the size of
P1 [ F , and the set of all such models can be traversed in
polynomial space. For a given I1, performing steps (S2) and
(S3) is feasible in (deterministic) exponential time, because
P I1
2 and the subsequent P I2

2 are ground disjunction-free pos-
itive programs of exponential size. It follows that computing
the certain answers to (P, q) for any given ABox A over the
signature of T requires single exponential time.

We remark that if there are no closed predicates, i.e. in case
⌃ = ;, the resulting program has an even simpler structure.
It contains all rules of P that do not have not in rule bodies,
and it can be partitioned into two programs:
- a disjunctive program P1 with at most two variables in each

rule, which can include all positive rules in (I) and (II);
- a disjunction-free P2 that does not define any relations in
P1, which consists all the remaining rules.

Analogously as above, we can evaluate P over a given set F
of facts, by traversing the minimal models I1 of P1 [ F , and
for each I1, verifying in (deterministic) exponential time if it
can be extended to a model of P2. More details about this
case, but without nominals, i.e. for the DL ALCHI, can be
found in [Ahmetaj et al., 2016].

5 Discussion
We note that 6=-free positive programs are not expressive
enough to capture instance queries (T , ;, q) when T has
nominals. This follows from the following observation. For
any positive 6=-free program P and a set of facts F , if P [ F
has a model, then also P [ F 0 has a model, were F 0 is ob-
tained from F by renaming its constants with fresh ones that
don’t occur in P [F . However, this property cannot be recast
to ALCHIO. Take the TBox T = {A v {a}} and observe
that T is consistent w.r.t. the ABox A1 = {A(a)}, but is in-
consistent w.r.t. the ABox A2 = {A(b)}.

We have presented our results for ALCHIO, but they also
apply to SHIO, using standard techniques to eliminate tran-
sitivity axioms (see, e.g., [Hustadt et al., 2007]). Moreover,
the results can be easily generalized, e.g., to DL-safe rules of
[Motik et al., 2005], or the quantifier-free CQs like in [Lutz
et al., 2015]. These queries are syntactically restricted to en-
sure that the relevant variable assignments only map into in-
dividuals of the input ABox. Under common assumptions

in complexity theory, our translation cannot be generalized
to CQs, while remaining polynomial. This is because cau-
tious inference from a disjunctive program with negation is in
coNEXPTIMENP, but entailment of (Boolean) CQs is 2EXP-
TIME-hard already for the DL ALCI [Lutz, 2007].
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Motik, and Ian Horrocks. Tractable query answering and
rewriting under description logic constraints. J. Applied
Logic, 8(2):186–209, 2010.
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