
Equivalent Stream Reasoning Programs⇤

Harald Beck and Minh Dao-Tran and Thomas Eiter
Institute of Information Systems, Vienna University of Technology

Favoritenstraße 9-11, A-1040 Vienna, Austria
{beck,dao,eiter}@kr.tuwien.ac.at

Abstract

The emerging research field of stream reasoning
faces the challenging trade-off between expressive-
ness of query programs and data throughput. For
optimizing programs methods are needed to tell
whether two programs are equivalent. Towards pro-
viding practical reasoning techniques on streams,
we consider LARS programs, which is a powerful
extension of Answer Set Programming (ASP) for
stream reasoning that supports windows on streams
for discarding information. We define different no-
tions of equivalence between such programs and
give semantic characterizations in terms of models.
We show how a practically relevant fragment can be
alternatively captured using Here-and-There mod-
els, yielding an extension of equilibrium semantics
of ASP to this class of programs. Finally, we char-
acterize the computational complexity of deciding
the considered equivalence relations.

Introduction
Stream reasoning is an emerging research field that aims at
providing logic-oriented techniques on top of stream process-
ing. High throughput of data is a central challenge for stream
processing methods, which usually focus on low-level com-
putations such as filtering and aggregation. Central to modern
stream processing technologies are window mechanisms that
limit the input to snapshots of recent data. Window operators
can be utilized either to define which data is still relevant, or
as a practical means to cope with the volume of data. Also
declarative methods and logic-oriented languages for reason-
ing over data streams have been considered [Do et al., 2011;
Gebser et al., 2012], in particular, ones that allow to express
such windows [Barbieri et al., 2010b]. A recent expressive
formalism is the logic-based LARS framework [Beck et al.,
2015b], which allows for generic window functions and tem-
poral operators in formulas. On top of this, LARS provides
rule-based semantics that can be seen as an extension of An-
swer Set Programming (ASP) for data streams.

⇤This research has been supported by the Austrian Science Fund
(FWF) projects P24090, P26471, and W1255-N23.

Declarative and logic-oriented approaches to stream rea-
soning typically aim for more expressiveness, which makes
efficient evaluation even harder to achieve. One way to miti-
gate this problem is to optimize queries or programs by sim-
plifying them using equivalence preserving transformations.
However, this requires support for checking when two pro-
grams are equivalent in the first place.

Various notions of query or program equivalence have been
studied in the literature, e.g., in database research and for
answer set programs [Lifschitz et al., 2001; Eiter and Fink,
2003; Eiter et al., 2007b]. However, equivalence relations be-
tween declarative programs for stream reasoning have not
been considered so far. Towards optimization of such pro-
grams, we are thus interested in techniques that allow us to
tell when two programs produce the same results. Character-
izing equivalence between LARS programs in purely logical
terms is challenging due to a non-structural definition of the
FLP-semantics [Faber et al., 2004] defined for them, which
imposes some limitations. Yet another difficulty arises from
the generic definition of window operators.

We tackle this issue with the following contributions:

• We develop practically relevant notions of equivalence for
LARS programs that extend well-known equivalence rela-
tions for logic programs and introduce data equivalence for
streams.
• We define a novel logic called Bi-LARS to capture the FLP-
based semantics of a large fragment of LARS programs, in-
cluding the practical one introduced in [Beck et al., 2015a]
that we call plain LARS.
• We lift model-theoretic characterizations of strong/uni-
form/relativized uniform equivalence from ASP to the stream
setting to characterize the defined equivalence relations.
• We introduce the notion of monotone windows and show
how a variant of Bi-LARS leads to an extension of the logic
of Here-and-There for our setting. We thus get a link to equi-
librium logic [Lifschitz et al., 2001] for a class of programs.
• Finally, we investigate the complexity of checking the con-
sidered equivalence relations. Under benign window opera-
tors, the complexity is not worse than for logic programs;
only in some cases the complexity does increase.

To the best of our knowledge, no similar work on equiva-
lence notions in stream reasoning exists to date. Our results

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

929

0 1 2 3 4

a
•

a
•

b
•

a, c
•

Figure 1: Time-based window of size 2 at t = 3

thus give an entry point towards optimization of expressive
rule-based programs for reasoning over data streams.

LARS
We will gradually introduce the main concepts of LARS
[Beck et al., 2015b], a recent logic-based framework for ana-
lyzing and expressing reasoning over streams. Where appro-
priate, we give only informal descriptions. We assume that
the reader is familiar with ASP [Gelfond and Lifschitz, 1991;
Brewka et al., 2011]; for equivalence relations between ASP
programs, we refer to [Lifschitz et al., 2001; Eiter et al.,
2007b].

We consider propositional (ground) LARS. Throughout, A
denotes the set of atoms, which is partitioned into extensional
(input) atoms AE and intensional (derived) atoms AI .
Definition 1 (Stream) A stream S = (T, �) consists of a
timeline T , which is a closed interval T ✓ N of integers
called time points, and an evaluation function � : N 7! 2A.

Intuitively, a stream S associates with each time point a set of
atoms. We call S a data stream, if it contains only extensional
atoms. To cope with the amount of data, one usually considers
only recent atoms. Let S = (T, �) and S0 = (T 0, �0) be two
streams such that S0 ✓ S, i.e., T 0 ✓ T and �0(t0) ✓ �(t0) for
all t0 2 T 0. Then S0 is called a substream or a window of S.
Definition 2 (Window function) Any (computable) function
w that returns, given a stream S = (T, �) and a time point
t 2 T , a substream S0 of S is called a window function.

Important are time-based window functions, which select all
atoms appearing in last n time points, and tuple-based win-
dow functions, which select a fixed number of latest tuples.
Example 1 Figure 1 depicts a stream S = ([0, 4], �) where
� = {0 7! {a}, 1 7! {a}, 3 7! {b}, 4 7! {a, c}}, and the ap-
plication of the time-based window function w on S that
looks back two time units from time point t = 3. This returns
the substream S0 = ([1, 3], {1 7! {a}, 3 7! {b}}). ⌅

Window operators �. Window functions can be accessed
in formulas by window operators. For every window func-
tion w, employing an expression �w↵ has the effect that ↵ is
evaluated on the substream of the data stream delivered by w.
Definition 3 (Formulas) The set F of formulas is given as
follows, where a 2 A is an atom, t 2 N, w a window function.

↵ ::= a | ¬↵ | ↵^↵ | ↵! ↵ | 3↵ | 2↵ | @
t

↵ | �w↵

The precedence of operators 3,2,@
t

and �w is as for ¬;
e.g., ¬�w3a ^@

t

b! c = ((¬�w3a) ^ (@
t

b))! c.
Definition 4 (Structure) A structure is any tuple M =
hS,W,Bi where S is a stream, W is a set of window func-
tions and B ✓ A is the background data of M .

Definition 5 (LARS Entailment) Let M = hS,W,Bi be a
structure, S = (T, �) and t 2 T . The LARS-entailment re-
lation � between (M, t) and formulas is defined as follows.
Let a 2 A be an atom, and let ↵,� 2 F be formulas. Then,
M, t � a iff a 2 �(t) or a 2 B,
M, t � ¬↵ iff M, t 1 ↵,
M, t � ↵ ^ � iff M, t � ↵ and M, t � �,
M, t � ↵! � iff M, t 1 ↵ or M, t � �,
M, t � 3↵ iff M, t0 � ↵ for some t02 T,
M, t � 2↵ iff M, t0 � ↵ for all t02 T,
M, t � @

t

0↵ iff M, t0 � ↵ and t02 T,
M, t � �w↵ iff M 0, t � ↵, where M 0 = hS0,W,Bi

such that S0 = w(S, t).

Throughout, we assume that A contains two special atoms
>/? that are true/false in every structure.

In the sequel, �n stands for a time-based window operator
that takes the last n time points and all data there.
Example 2 Let S = ([0, 3], {07!{a}, 17!{a}, 37!{b, x}})
be a stream and let ' = �23a ^ ¬y ! x be a LARS for-
mula. Consider the structure M = hS, {�2}, ;i. We have
that M, 3 � �23a ^ ¬y. Indeed, since y /2 �(3), it fol-
lows that M, 3 � ¬y. Furthermore, M, 3 � �23a since
M 0, 1 � a, where M 0 is obtained by replacing S with
S0 = ([1, 3], {1 7! {a}, 3 7! {b, x}}), i.e., the result of ap-
plying the time-based window of size 2 on S at time point 3.
Furthermore, M, 3 � x as x 2 �(3); thus M, 3 � ' holds. ⌅

We now turn to LARS programs that build on formulas.

LARS Programs
Syntax. LARS programs [Beck et al., 2015b] are sets of rules

↵ �1, . . . ,�m

, not�
m+1, . . . , not�n

, (1)
where ↵,�1, . . . ,�n

2 F are formulas, and ↵ contains only
intensional atoms; B(r) = {�

i

| 1  i  n} is the body of r.
For instance, rule x �23a, not y amounts to ' of Ex. 2.

Semantics. Let D = (T, v
D

) be a data stream. We call a
stream I = (T, �) ◆ D an interpretation stream for D, if it
coincides with D on AE , i.e., for every a 2 AE and t 2 T ,
a 2 �(t) only if a 2 �

D

(t); the structure M = hI,W,Bi is
then an interpretation for D. Throughout, we assume W (im-
plicit by the considered programs) and B are fixed, and are
thus also omitted. For a rule r of the form (1), we define

�̄(r) = �1 ^ · · · ^ �
m

^ ¬�
m+1 · · · ^ ¬�

n

. (2)
Let t 2 T . We say M satisfies rule r at t, denoted by
M, t |= r, if M, t � �̄(r)! ↵. In this case, M is a model
of r (for D) at t. The notions of satisfaction and models carry
over to programs as usual, i.e., M, t |= P , if M, t |= r for
all r 2 P . Moreover, M is a minimal model of P (for D at
t) if there does not exist an M 0 = hI 0,W,Bi s.t. M 0, t |= P
where I 0 = (T, �0) ⇢ I . Note that smaller models must have
the same timeline.
Definition 6 (Answer Stream) Let P be a program,
D = (T, �) be a data stream and t 2 T . An interpretation
stream I for D is an answer stream of P for D at t, if
M = hI,W,Bi is a minimal model of the (FLP)-reduct

PM,t = {r 2 P | M, t |= �̄(r)} ;
AS(P,D, t) denotes the set of all such answer streams I .

930

Example 3 (cont’d) Consider the stream D = ([0, 3], �),
where �={0 7! {a}, 1 7! {a}, 3 7! {b}} and a program P ,
given by the following rules: x �23a, not y and y
�23a, notx. By taking W = {�2} and B = ;, we get at
t = 3 two answer streams Ix and Iy which augment D by
adding x and y to �(3), respectively. For instance, the reduct
PM,3, where M = hIx,W,Bi, contains only the first rule.
We have M, 3 |= PM,3, since M, 3 � �23a ^ ¬y ! x. To-
wards a smaller model, we can not remove a, as a is exten-
sional (i.e., in the data stream), nor x because this would in-
validate the implication. The argument for Iy is analogous. ⌅

Bi-Structural LARS Evaluation
We now define an extended variant of LARS semantics,
where formulas (resp. programs) are evaluated on a pair of
streams (SL, SR) at the same time. We will later consider a
substream relation SL ✓ SR on according models similar to
the logic of Here-and-There [Heyting, 1930] which was ex-
tensively studied in relation to equivalence notions for ASP.

In the sequel, we use the following notation. Given streams
SL = (T, �L) and SR = (T, �R), we call S = (SL, SR) a
bi-stream and M = hS,W,Bi a bi-structure, where W are
window functions and B is background data as in LARS.
We call SL the left-stream and SR the right-stream. More-
over, L = hSL,W,Bi and R = hSR,W,Bi denote the under-
lying LARS structures of M; the left-structure and the right-
structure, respectively.

Definition 7 (Bi-LARS Entailment) Let M = hS,W,Bi be
as above and let t 2 T . The Bi-LARS-entailment relation �
between (M, t,w) for worlds w 2 {L,R} and formulas is de-
fined as follows (where ↵,� 2 F are formulas):
M, t,w � a iff a 2 �w(t) or a 2 B, for a 2 A,
M, t,w � ↵ ^ � iff M, t,w � ↵ and M, t,w � �,
M, t,w � 3↵ iff M, t0,w � ↵ for some t02 T,
M, t,w � 2↵ iff M, t0,w � ↵ for all t02 T,
M, t,w � @

t

0↵ iff M, t0,w � ↵ and t02 T,
M, t, L � ↵! � iff M, t, L 1 ↵ or M, t, L � �,

and M, t,R � ↵! �
M, t,R � ↵! � iff M, t,R 1 ↵ or M, t,R � �,
M, t, L � ¬↵ iff L, t � ¬↵ and R, t � ¬↵
M, t,R � ¬↵ iff R, t � ¬↵
M, t, L � �w↵ iff L, t � �w↵ and R, t � �w↵ ,
M, t,R � �w↵ iff R, t � �w↵.

Moreover, we define M, t � ↵ iff M, t, L � ↵.

Similarly as for LARS, M, t � >/? always/never holds. If
M, t � ↵ holds, we say that M entails ↵ at time t and we then
call M a bi-model of ↵ at time t. Entailment and the notion
of a model are extended to sets of formulas as usual.

Observe that for the connectives/operators ^, 3, 2, @
t

0

and !, Bi-LARS has a recursive definition, while the eval-
uation for ¬ and � branches into separate evaluation in the
underlying LARS structures. This is required with the aim
to provide semantic characterizations of equivalences for a
large class of LARS programs. However, we will also later
examine when a recursive definition is possible. Note that in
general, entailment in both LARS structures does not imply

entailment in the bi-structure. For instance, consider the bi-
stream S = (SL, SR), where SL = ([0, 0], {0 7! {a}}) and
SR = ([0, 0], {0 7! ;}), and take ↵ = a! ((a! a)! a).
We have L, 0 � ↵ and R, 0 � ↵, but M, 0 1 ↵.

The following lemma, which is immediate from Def. 7, in-
tuitively states that evaluation for the right-stream is indepen-
dent of the left-stream.
Lemma 1 M, t,R � ↵ iff R, t � ↵.
We call a bi-stream (SL, SR) total, if SL = SR. Restrict-
ing the study to total interpretations, Bi-LARS-satisfaction
clearly collapses to LARS-satisfaction.
Proposition 1 Let M = hS,W,Bi be a structure, where
S = (T, �) and M = hS,W,Bi, where S = (S, S), t 2 T
and ↵ be a formula. Then, M, t � ↵ iff M, t � ↵.

Bi-LARS Semantics for LARS programs. Entailment in
Bi-LARS is extended from formulas to programs analogously
as for LARS. Let D = (T, �) be a data stream, t 2 T and
let P be a program. We say a bi-structure M satisfies a rule r
of form (1) at t, denoted by M, t |= r , if M, t � �̄(r)! ↵.
In this case, M is a (bi-)model of r (for D at t). Similarly
as for LARS, M, t |= P , if M, t |= r for all r 2 P . We then
call M a (bi-)model of P (for D at t).
Plain LARS and LARSbi. In [Beck et al., 2015a], a practi-
cal fragment of LARS was introduced. We call this fragment
plain LARS, which restricts the rule head to be of form a or
@

t

a, where a is an atom, and body formulas to be extended
atoms, i.e., expressions of the grammar

a | @
t

a | �@
t

a | �3a | �2a . (3)
While plain LARS serves as guiding fragment, we will obtain
our results for the following broad class of LARS programs.
Definition 8 (Fbi, LARSbi) By Fbi we denote the class of
LARS formulas without!, where 3 only occurs in the scope
of ¬ or �. Moreover, LARSbi is the class of LARS programs
where all formulas ↵,�

i

in rules (1) are in Fbi.
In the sequel, programs are tacitly assumed to be in LARSbi.

Note that the FLP-semantics of answer streams (Def. 6) is
defined non-recursively. Still, we can capture it by branching
in Bi-LARS evaluation of ¬ and � into separate LARS evalu-
ations for left and right, due to the following central property.
Proposition 2 Let M = hS,W,Bi be such that SL ✓ SR

and let ↵ 2 Fbi. Then, M, t � ↵ iff SL, t � ↵ and SR, t � ↵.
The proof is by induction on the structure of formulas. The re-
lation SL ✓ SR naturally arises with minimality checking of
models, where intuitively SR is a model M of a program P
at time t and SL is a candidate model of the reduct PM,t.
It establishes a semantic connection between left and right,
which can be exploited to conclude that M, t � ↵ im-
plies SL, t � ↵; for arbitrary formulas, this fails. E.g., con-
sider SL = ([0, 0], {0 7! ;}), SR = ([0, 0], {0 7! {a}}), and
↵ = ¬a! b; then M, 0 � ↵ but L, 0 1 ↵. Similarly, exclud-
ing 3' is necessary to ensure that the only-if direction of
Proposition 2 holds.

The following result now captures the essence of the
reduct-based semantics: the left-structure must satisfy each
rule whose body is true in the model given by the right-
structure. The proof is based on [Lifschitz et al., 2001].

931

Theorem 1 For any M=hS,W,Bi s.t. SL✓SR, time t and
program P , we have M, t |= P iff R, t |= P and L, t |= PR,t.
We are now going to characterize answer streams similarly as
in [Lifschitz et al., 2001] and [Turner, 2001], by capturing the
minimality condition in terms of bi-equilibrium models.
Definition 9 (bi-Equilibrium Model) Let M = hI,W,Bi
be a structure. We say M = h(I, I),W,Bi is a bi-equilibrium
model of a program P for data stream D at time t, if

(i) M, t |= P , and
(ii) M0, t 6|= P , for each M0 = h(I 0, I),W,Bi such that

D ✓ I 0 ⇢ I and I 0 = (T, �0).
We obtain the next theorem from Def. 6, Prop. 1 and Thm. 1.
Theorem 2 Let M = hI,W,Bi be a structure s.t. I is an
interpretation stream for D at t. Then, I 2 AS(P,D, t) iff
M = h(I, I),W,Bi is a bi-equilibrium model.
This allows us to characterize program equivalences which
include non-trivial window operators, as will be shown next.

Equivalence
We now introduce equivalence notions for stream reasoning
in our setting. Given a timeline T , we say a set A of @-atoms,
i.e., extended atoms of form @

t

a, have time references in T ,
if {t | @

t

a 2 A} ✓ T . This notion carries over naturally for
programs P , i.e., if {t | @

t

a occurs in P} ✓ T .

Definition 10 (Equivalence Notions) Let T be a timeline,
D = (T, �) be a data stream, and let t 2 T be a time point.
We say two LARS programs P and Q are

(i) (ordinary) equivalent (for D at t), denoted by P ⌘ Q, if
AS(P,D, t) = AS(Q,D, t);

(ii) strongly equivalent (for D at t), denoted by P ⌘
s

Q, if
AS(P [R,D, t) = AS(Q [R,D, t) for all LARS
programs R with time references in T ;

(iii) uniform equivalent (for D at t), denoted by P ⌘
u

Q, if
AS(P [F,D, t) = AS(Q [F,D, t) for sets F of @-
atoms with time references in T ;

(iv) data equivalent (for D at t), denoted by P ⌘
d

Q, if
AS(P,D [S, t) = AS(Q,D [S, t) for all data
streams S with timeline T .

Intuitively, (i)-(iii) can be seen as extensions of corresponding
notions in ASP [Lifschitz et al., 2001; Eiter et al., 2007b]
to the LARS setting. In particular, these notions emerge if
the programs P and Q are ordinary logic programs (without
windows and temporal operators) and we consider a void data
stream D = ([0, 0], �) at time point 0. On the other hand, data
equivalence is well-known in the database area and plays an
important role in stream reasoning, as the possibility to drop
data is crucial to gain performance. The addition of all rules
resp. facts accounts for the nonmonotonic nature of answer
streams, as replacing ordinary equivalent programs P and Q
in the context of other rules R might change answer streams.

We now characterize strong and uniform equivalence by
means of bi-models. To this end, from now we tacitly re-
strict to bi-structures M = hS,W,Bi such that SL ✓ SR.
By bi(P), we denote the set of all respective bi-models of
a program P (where D and t are implicit).

0 01 12 23 34 4

a
•

a
•

a
•

a
•

b
•

b
•

0 01 12 23 34 4

a
•

a
•

a
•

a
•

b
•

b
•

a
•

a, c
•

Figure 2: Tuple-based windows of size 3 at t = 4.

Theorem 3 (Strong Equivalence) Let D = (T, �) be a data
stream, t 2 T , and let P and Q be LARSbi programs. Then,
P ⌘

s

Q (for D at t) iff bi(P) = bi(Q) (for D at t).
Furthermore, we also characterize uniform equivalence in
terms of bi-entailment. Let MLR = h(SL, SR),W,Bi and
MRR = h(SR, SR),W,Bi.
Theorem 4 (Uniform Equivalence) P ⌘

u

Q iff
(i) for each MRR, MRR 2 bi(P) iff MRR 2 bi(Q), and

(ii) for each MLR, where SL ⇢ SR, MLR 2 bi(P) (resp.
MLR 2 bi(Q)) iff M 2 bi(Q) (resp. M 2 bi(P)) for
some M = h(S, SR),W,Bi s.t. SL ✓ S ⇢ SR.

The proofs of Theorems 3 and 4 are abstracted from those
for answer set programs (cf. [Lifschitz et al., 2001], resp.
[Eiter and Fink, 2003]) and exploit the following key proper-
ties: (1) the reduct of the union of two programs is the union
of their reducts (2) the reduct of a set of atoms F is F it-
self, (3) an atom evaluates to true iff it is in the interpretation
stream, and (4) a structure entails the union of two programs
iff it entails each program separately.

In a similar way, also relativised uniform equivalence
[Woltran, 2004], denoted by P ⌘A

u

Q, can be characterized,
i.e., the condition that AS(P [F,D, t) = AS(Q [F,D, t)
for all facts F ✓ A, where A is a set of @-atoms. No-
tably, data equivalence amounts to a special case of rela-
tivized uniform equivalence: Consider for D = (T, �) the set
A = {@

t

a | a 2 AE and t 2 T}. Then,
P ⌘

d

Q iff P ⌘A

u

Q.

Recall that plain LARS allows only intensional atoms and
@-atoms with intensional atoms in rule heads. However, this
is not the case for all LARSbi programs, which also allow
window operators in rule heads.

LARS Here-&-There and Monotone Windows
In Definition 7, the semantics of the window operator � was
defined in Bi-LARS by straight branching into separate eval-
uation of the left and the right stream. Consider the following
alternative � semantics.
Definition 11 (Recursive �) We define the following alter-
native � semantics for Bi-LARS. Let w 2 {L,R}.

M, t,w � �w↵ iff M0, t,w � ↵ ,

where M0 = h(S0
L, S

0
R),W,Bi and S0

w = w(Sw, t).
This recursive variant may in general break the connection
between left and right, i.e., the relation SL ✓ SR.
Example 4 Consider streams SL = ([0, 4], �L) and SR =
([0, 4], �R) as depicted in Figure 2, where SL ⇢ SR. Apply-
ing a tuple-based window operator with size 3 at t = 4 returns
S0
L = ([1, 4], {1 7! {a}, 3 7! {b}, 4 7! {a}}) as substream

of SL, and S0
R = ([3, 4], {3 7! {b}, 4 7! {a, c}} for SR. We

observe that S0
L 6✓ S0

R, i.e. the substream relation breaks. ⌅

932

In Example 4, the window is nonmonotonic in the sense that
by increasing the input stream, atoms may disappear from
the output. When excluding such nonmonotonic windows, the
recursive version for � semantics may be equally used.
Definition 12 We call a window function w monotone, if for
every streams S1 = (T1, �1) and S2 = (T2, �2) it holds that

S1 ✓ S2 implies w(S1, t) ✓ w(S2, t) for all t 2 T1,

i.e., w preserves substreams. If T1 =T2, this extends to time-
lines, i.e., w(S

i

, t)= (T 0
i

, �0
i

) implies T 0
1 =T 0

2 for all t 2 T1.

Likewise, we call a window operator �w monotone if the un-
derlying window function w is monotone. E.g., time-based
window operators just filter data and thus have this property.
Proposition 3 For plain LARS with monotone windows, the
window semantics of Def. 7 and Def. 11 coincide.

Using Def. 11 for a variant of Bi-LARS on monotone win-
dows can be seen as an extension of Here-and-There [Heyt-
ing, 1930] underlying Equilibrium Logic [Pearce, 2006].
Definition 13 (HT-entailment) HT-entailment is defined
as variant of Bi-LARS entailment (Def. 7), using instead
Def. 11 for the � semantics and ¬↵ := ↵! ? for negation.

Based on HT-entailment, we obtain a conservative extension
of Pearce’s Equilibrium Logic for LARS with monotone win-
dows, which treats nested implications intuitionistically, and
thus different from FLP-based semantics. Under limited nest-
ing of negation, the two semantics actually coincide; e.g., for
the following class of formulas/programs:
Definition 14 (FHT, LARSHT) By FHT we denote the
class of LARS formulas where (i) each � is monotone,
(ii) each subformula ↵! � expresses negation (i.e., ¬↵, as
� = ?), and (iii) no negation occurs within the scope of 3 or
another negation. By LARSHT we denote the class of LARS
programs where all formulas ↵,�

i

in rules (1) are in FHT.

Note that nested negation must be excluded, as e.g. the rule
a ¬¬a has the equilibrium models (;, ;) and ({a}, {a}).
Only the first one amounts to an FLP-answer set.

With an inductive argument, one can show that the cen-
tral property of Prop. 2 carries over to formulas in FHT un-
der HT-entailment. This allows one to establish the charac-
terization in Theorem 1 for this setting. Thus, for LARSHT

programs, FLP-based answers streams and HT-equilibrium
models coincide, and the equivalence notions can equally be
characterized by HT-entailment.
Theorem 5 (LARS Here-and-There) Theorems 1-4 also
hold for LARSHT programs under HT-entailment.

Note that LARSHT includes plain LARS programs with
monotone windows.

Computational Complexity
As regards the complexity of equivalence checking, different
scenarios emerge. We focus here on deciding P ⌘

e

Q for an
equivalence notion e, where the data stream D, the programs
P , Q and a (query) time point t are given.

More general is to request equivalence at multiple or each
time point t over D, and/or to consider evolutions of the data

stream D. For a small (polynomial) horizon around t, i.e., an
interval [t0, t1] such that t0 t t1 and |t1� t0| is polynomi-
ally bounded, this essentially reduces to polynomially many
such questions. This is in line with the view that stream rea-
soning may lose information, i.e., query results over the full
history and the reduced data may be different.
Setup. We adopt the assumptions in [Beck et al., 2015b],
in particular that relevant atoms are confined to A, the back-
ground B and the window functions W are fixed and can be
polynomially evaluated. Then, both model checking and sat-
isfiability testing for arbitrary LARS formulas is PSPACE-
complete [Beck et al., 2015b], as answer stream checking and
deciding answer stream existence. However, we note:

Lemma 2 (cf. [Beck et al., 2015b]) For LARS formulas ↵
without nested windows, deciding M, t � ↵ is polynomial
and deciding satisfiability of ↵ wrt. a timeline T and time
point t is NP-complete. The same holds for window nesting
depth bounded by a constant k.

In practice, bounded nesting of windows will apply; thus we
adopt this assumption. As an easy consequence, we get:

Corollary 1 Given a bi-structure M, a time point t, and a
(window-bounded) LARS formula ↵, deciding M, t � ↵ is
feasible in polynomial time.

Besides plain LARS, we study here the following fragment.
Stratified LARS programs extend the usual notion of strat-
ified logic programs by allowing constraints and building the
dependency graph as follows. Formulas of the form @

t

0a and
�↵ are the nodes, where a 2 A, t0 is a time point, and �↵
occurs only in a rule body as �

i

. Relative to D and t, atoms a
are identified with @

t

a, and edges are added in the graph as
usual, where also an (negation-style) edge from �↵ to every
@

t

0a is added such that the value of �↵ at t depends on the
one of a at t0. As this depends on the semantics of the window
operator, for a simple syntactic criterion we assume here that
this is only the atom a in ↵; e.g. time-based windows satisfy
this property. Stratified LARS programs are stream-stratified
LARS programs in [Beck et al., 2015a] and can be evaluated
bottom up using an iterative fixed-point computation to obtain
an answer stream (which exists if no constraint is violated).
Complexity results. Our results are compactly summarized
in Table 1. Besides the program classes, we distinguish be-
tween only monotonic and possible nonmonotonic windows.

As it appears, the complexities of the various problems
ranges from P to ⇧p

2. In most of the cases, the upper bound
is an immediate or easy consequence of Lemma 2 and the
characterizations of answer streams and equivalences from
above. In particular, deciding strong equivalence is always in
coNP, while deciding answer stream existence resp. refuting
uniform or data equivalence can be done in nondeterministic
polynomial time using an NP oracle to verify a guess for an
answer stream resp. counterexample to equivalence.

For stratified programs, the fixed-point computation of the
unique answer stream is feasible in polynomial time; this ex-
plains the P-entries. Fixed-point computation is also feasible
on the reduct PM,t of a plain LARS program with monotone
windows to check minimality of M , as here negative literals

933

AS(P,D, t) 6=; / P ⌘
o

Q
P ⌘

e

Q, e= s / u / d mon � nonmon �
plain LARS NP / coNP ⌃p

2 / ⇧p

2
coNP/ coNP / coNP coNP/ ⇧p

2 / ⇧p

2

stratified P / P P / P
coNP / coNP / coNP coNP / coNP / coNP

Table 1: Complexity of consistency and equivalence checking
for D at t (entries denote completeness results)

can be dropped in PM,t. This explains why answer stream
existence / ordinary equivalence is in NP/ coNP.

As for the lower bounds, deciding P ⌘
u

Q is reducible to
deciding P ⌘

d

Q. Indeed, given ordinary logic programs P
and Q on A, let A

d

be a copy of A and let P
d

= P [R
d

and
Q

d

= Q [R
d

, where R
d

= {a a
d

| a 2 A}. Then, P and
Q are uniformly equivalent (wrt. A) iff P

d

and Q
d

are data
equivalent wrt. A

d

. This can be extended to LARS programs
(where window operators possibly must be adapted), using
rules @

t

a @
t

a
d

for the time points t. Thus, for the hard-
ness results, it is remains to consider uniform equivalence.

Many of the lower bounds are then inherited from the
complexity of the respective notions for ordinary logic pro-
grams [Eiter et al., 2007b]. In particular, plain LARS pro-
grams subsume normal logic programs, for which deciding
answer stream existence is NP-complete, while deciding uni-
form resp. strong equivalence is coNP-complete (even for
acyclic, i.e., recursion-free programs [Eiter et al., 2007a]).

What remains are the ⌃p

2-hardness of answer stream ex-
istence and ⇧p

2-hardness of ordinary equivalence and uni-
form equivalence, respectively, for plain LARS programs
with nonmonotonic windows. These results are shown by re-
ductions of evaluating QBFs of the form 9X8Y E(X,Y),
resp. 8X9Y E(X,Y). Actually, the proofs establish them for
plain programs without negation (i.e., for Horn programs);
they hinge on techniques in [Eiter and Gottlob, 1995] and
[Eiter and Fink, 2003] for the respective problems on ordinary
disjunctive logic programs, but must compensate the lack of
negation and of disjunction. We can emulate negation using
nonmonotonic windows by the following construction.
Example 5 To emulate ¬a for an atom a, we create a
window operator �¬a

with an associated window function
w¬a

(S, t) that removes d
a

from �(t), if a 2 �(t), where d
a

is a fresh atom, and otherwise leaves S unchanged. If d
a

is a
fact in a program P and thus true in every model M of P at t,
we have M, t � �¬a

@
t

d
a

iff M, t � ¬a. ⌅

Similarly we can define window operators �� that check
whether a model M satisfies at t a polynomial-time prop-
erty �; e.g. whether a truth assignment given in �(t) satisfies
a Boolean formula. We use this to evaluate E(X,Y) using
window atoms. However, for space reasons, we must omit
details.

Notably, the property � may also be deciding M, t � �'
where the window nesting in �' is bounded (cf. Lemma 2);
the latter can be used to compile complex formulas inside
window operators away, and shows that plain LARS with
nonmonotonic windows is quite powerful.

Related Work and Conclusion
Lifschitz et al. [2001] introduced strong equivalence of logic
programs under ASP semantics and showed that it coincides
with equivalence in Here-and-There logic. Inspired by this,
Eiter et al. [2007b] characterized uniform and relativized no-
tions of equivalence in ASP in terms of HT-interpretations
(H,T). We generalize this to the LARS framework with bi-
structures (SL, SR) containing pairs of streams.

As regards optimization in stream reasoning, to our knowl-
edge not much foundational work exists. Typically, the inter-
est is concentrated on dealing with evolving data, and to de-
velop incremental evaluation techniques, e.g., [Motik et al.,
2015; Ren and Pan, 2011; Gebser et al., 2011; Barbieri et al.,
2010a; Beck et al., 2015a]. In the context of data processing,
[Arasu et al., 2006] studied query equivalence for the Contin-
uous Query Language (CQL), but at a very elementary level.
As in essence CQL can be captured by LARS programs [Beck
et al., 2015b], results on LARS equivalence may be fruitfully
applied in this context as well.

Naturally, stream reasoning relates to temporal reasoning;
in [Cabalar and Vega, 2007], nonmonotonic Linear Tempo-
ral Equilibrium Logic (TEL) was presented as an extension
of Pearce’s Equilibrium Logic [2006] to linear time logic
(LTL), defining temporal stable models over infinite struc-
tures. Notably, strong equivalence for TEL theories amounts
to equivalence in the underlying Temporal Here-and-There
logic [Aguado et al., 2008; Cabalar and Diéguez, 2014].
However, TEL differs from LARS in several respects. LARS
aims primarily at finite (single-path) structures, and the no-
tion of window, which requires to go beyond the HT setting,
has no counterpart in TEL. Furthermore, the temporal opera-
tors in LARS are more geared to access of data in windows
in practice. Also the complexity of TEL, extensively studied
in [Bozzelli and Pearce, 2015], and LARS is different: model
checking for (unbounded) LARS formulas resp. programs is
PSPACE-complete, while for LTL underlying TEL it is poly-
nomial in our finite path setting (in fact, efficiently paralleliz-
able [Kuhtz and Finkbeiner, 2009]).
Outlook. In future work, our studies can be extended in sev-
eral directions. Apart from other notions of equivalence, ad-
ditional program classes are of practical relevance. In partic-
ular, by confining to widely used time-based and tuple-based
window operators one might exploit more specific properties
than by the distinction of monotone vs. nonmonotone ones.
Related to this is identifying maximal (relative to some cri-
teria) fragments where Here-and-There semantics coincides
with Bi-LARS, which is tailored for FLP. Furthermore, one
might introduce window operators to the more expressive
temporal equilibrium logic. Apart from potential extensions
of Bi-LARS to capture according semantics, combining non-
monotonic temporal reasoning with features to drop data is
an intriguing issue. Moreover, besides semantic also syntac-
tic criteria for program equivalence are practically important.
In particular, finding normal forms in relation to prominent
window operators will directly support the optimization of
programs for reasoning over streaming data.
Acknowledgments. We thank Andreas Humenberger for his
assistance in the early phase of this work.

934

References
[Aguado et al., 2008] Felicidad Aguado, Pedro Cabalar,

Gilberto Pérez, and Concepción Vidal. Strongly equiva-
lent temporal logic programs. In JELIA, 2008.

[Arasu et al., 2006] Arvind Arasu, Shivnath Babu, and Jen-
nifer Widom. The CQL continuous query language:
semantic foundations and query execution. VLDB J.,
15(2):121–142, 2006.

[Barbieri et al., 2010a] Davide Francesco Barbieri, Daniele
Braga, Stefano Ceri, Emanuele Della Valle, and Michael
Grossniklaus. Incremental reasoning on streams and rich
background knowledge. In ESWC 2010, pages 1–15, 2010.

[Barbieri et al., 2010b] Davide Francesco Barbieri, Daniele
Braga, Stefano Ceri, Emanuele Della Valle, and Michael
Grossniklaus. Querying RDF streams with C-SPARQL.
SIGMOD Record, 39(1):20–26, 2010.

[Beck et al., 2015a] Harald Beck, Minh Dao-Tran, and
Thomas Eiter. Answer update for rule-based stream rea-
soning. In IJCAI, 2015.

[Beck et al., 2015b] Harald Beck, Minh Dao-Tran, Thomas
Eiter, and Michael Fink. LARS: A logic-based framework
for analyzing reasoning over streams. In AAAI, 2015.

[Bozzelli and Pearce, 2015] Laura Bozzelli and David
Pearce. On the complexity of temporal equilibrium
logic. In 30th Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2015, Kyoto, Japan, July 6-10,
2015, pages 645–656. IEEE, 2015.

[Brewka et al., 2011] Gerd Brewka, Thomas Eiter, and
Miroslaw Truszczyński. Answer set programming at a
glance. Communications of the ACM, 54(12):92–103,
2011.

[Cabalar and Diéguez, 2014] Pedro Cabalar and Martı́n
Diéguez. Strong equivalence of non-monotonic temporal
theories. In KR, 2014.

[Cabalar and Vega, 2007] Pedro Cabalar and Gilberto Pérez
Vega. Temporal equilibrium logic: A first approach.
In Computer Aided Systems Theory - EUROCAST 2007,
pages 241–248, 2007.

[Do et al., 2011] Thang M. Do, Seng Wai Loke, and Fei Liu.
Answer set programming for stream reasoning. In AI,
pages 104–109, 2011.

[Eiter and Fink, 2003] Thomas Eiter and Michael Fink. Uni-
form equivalence of logic programs under the stable model
semantics. In ICLP, 2003.

[Eiter and Gottlob, 1995] T. Eiter and G. Gottlob. On the
Computational Cost of Disjunctive Logic Programming:
Propositional Case. Annals of Mathematics and Artificial
Intelligence, 15(3/4):289–323, 1995.

[Eiter et al., 2007a] T. Eiter, M. Fink, H. Tompits, and
S. Woltran. Complexity results for checking equivalence
of stratified logic programs. In IJCAI, 2007.

[Eiter et al., 2007b] Thomas Eiter, Michael Fink, and Stefan
Woltran. Semantical characterizations and complexity of

equivalences in answer set programming. ACM Transac-
tions on Computational Logic, 8(3), July 2007.

[Faber et al., 2004] Wolfgang Faber, Nicola Leone, and Ger-
ald Pfeifer. Recursive aggregates in disjunctive logic pro-
grams: Semantics and complexity. In JELIA, 2004.

[Gebser et al., 2011] Martin Gebser, Orkunt Sabuncu, and
Torsten Schaub. An incremental answer set programming
based system for finite model computation. AI Commun.,
24(2):195–212, 2011.

[Gebser et al., 2012] Martin Gebser, Torsten Grote, Roland
Kaminski, Philipp Obermeier, Orkunt Sabuncu, and
Torsten Schaub. Stream reasoning with answer set pro-
gramming. Preliminary report. In KR, 2012.

[Gelfond and Lifschitz, 1991] M. Gelfond and V. Lifschitz.
Classical negation in logic programs and disjunctive
databases. New Generation Computing, 9:365–385, 1991.

[Heyting, 1930] Arend Heyting. Die formalen Regeln der
intuitionistischen Logik. In Sitzungsberichte der preußis-
chen Akademie der Wissenschaften. phys.-math. Klasse,
pages 42–65, 57–71, 158–169, 1930.

[Kuhtz and Finkbeiner, 2009] Lars Kuhtz and Bernd
Finkbeiner. LTL path checking is efficiently paralleliz-
able. In ICALP, 2009.

[Lifschitz et al., 2001] Vladimir Lifschitz, David Pearce,
and Agustı́n Valverde. Strongly equivalent logic programs.
ACM Trans. Comput. Log., 2(4):526–541, 2001.

[Motik et al., 2015] Boris Motik, Yavor Nenov, Robert Piro,
and Ian Horrocks. Incremental Update of Datalog Mate-
rialisation: The Backward/Forward Algorithm. In AAAI,
2015.

[Pearce, 2006] David Pearce. Equilibrium logic. Annals
of Mathematics and Artificial Intelligence, 47(1-2):3–41,
2006.

[Ren and Pan, 2011] Yuan Ren and Jeff Z. Pan. Optimising
ontology stream reasoning with truth maintenance system.
In CIKM, pages 831–836, 2011.

[Turner, 2001] Hudson Turner. Strong equivalence for logic
programs and default theories (made easy). In LPNMR,
2001.

[Woltran, 2004] Stefan Woltran. Characterizations for rela-
tivized notions of equivalence in answer set programming.
In JELIA, 2004.

935

