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Abstract
The paper presents Leviathan, an LTL satisfia-
bility checking tool based on a novel one-pass, tree-
like tableau system, which is way simpler than ex-
isting solutions. Despite the simplicity of the al-
gorithm, the tool has performance comparable in
speed and memory consumption with other tools on
a number of standard benchmark sets, and, in var-
ious cases, it outperforms the other tableau-based
tools.

1 Introduction
Linear Temporal Logic (LTL) is a modal logic useful to ex-
press properties of systems that evolve over time [Pnueli,
1977]. Prominently, in the field of automatic verification
of computer programs and circuit designs, LTL has become
a de-facto standard language to express desired or forbid-
den properties of safety-critical systems [Clarke et al., 1999].
In this context, the model checking problem is the primary
challenge: to decide whether a system, represented through
the set of its possible computation paths, satisfies or not
a given property expressed by an LTL formula. However,
correctly stating the desired properties as logical formulae
is not a trivial task, and it is important to perform sanity
checks to at least avoid common pitfalls. For this reason,
the satisfiability checking problem is important as well, and
it has recently regained attention, e.g., [Goranko et al., 2010;
Rozier and Vardi, 2010; Vardi et al., 2013]. Interesting appli-
cations of LTL satisfiability checking arise also in the area of
AI. As an example, in automated planning problems, LTL has
long since been used as a modeling language to express tem-
poral goals [Bacchus and Kabanza, 1998], and some authors
have investigated its applicability as a direct solving strategy
[Kress-Gazit et al., 2009; Cialdea Mayer et al., 2007].

The LTL satisfiability problem has been shown to be
PSPACE-complete in [Sistla and Clarke, 1985]. Despite the
high complexity, the problem can be solved sufficiently fast
in practice by a number of different techniques. The first pro-
posed approach was a graph-shaped, two-pass tableau-based
procedure by Wolper [1985], later refined by various authors
(see, e.g., [Kesten et al., 1993; Manna and Pnueli, 1995]). An
alternative tableau system was proposed by Schwendimann

[1998], which differs from previous systems by having a tree-
like shape and requiring only a one-pass construction, thus
being faster than previous proposals [Goranko et al., 2010].

As a matter of fact, LTL satisfiability checking tools based
on different techniques have been recently developed. Tools
that can solve LTL satisfiability by reducing it to model
checking, such as NuSMV [Cimatti et al., 2002], have been
surveyed in [Rozier and Vardi, 2010; Vardi et al., 2013]. The
satisfiability of an LTL formula can also be reduced to the
emptiness of a corresponding B¨uchi automaton, an approach
adopted by the recently developed tool Aalta [Li et al., 2014].
Another important approach to LTL satisfiability is tempo-

ral resolution, which was pioneered by [A. R. Cavalli and L.
Fariñas del Cerro, 1984; Venkatesh, 1985], more recently em-
ployed by Fisher et al. [2001], and which is at the core of the
labeled superposition technique proposed by Suda and Wei-
denbach [2012]. The performance of most of these different
techniques have been carefully compared in [Schuppan and
Darmawan, 2011].

In this paper, we present Leviathan, an LTL satisfiabil-
ity checking and model building tool, whose full source code
is available online under a liberal open source license. It is
based on a one-pass tree-shaped tableau, which is much sim-
pler to state, to understand, to explain, and to implement than
previous LTL tableaux systems, including Schwendimann’s
one. The tableau has been implemented in the C++ language
with speed and memory usage in mind, and extended tests
have been done to compare its performance with other tools
from a broad portfolio of different techniques. The results
show that, despite the greater simplicity of the underlying
tableau system, Leviathan’s performance is often compa-
rable, both regarding speed and memory usage, with existing
tools. Although a naive implementation would have reflected
the algorithm’s simplicity, the question of how to obtain the
most performant implementation resulted to be far from triv-
ial. For this reason, we include a detailed description of the
design choices that underlie our implementation.

The paper is structured as follows. After a short account of
LTL syntax and semantics in Sect. 2, a succinct presentation
of the tableau algorithm is given in Sect. 3. Then, Sect. 4 de-
scribes the implementation of the tool, while Sect. 5 provides
a detailed account of the experimental results. In Sect. 6, we
recap our results and discuss possible improvements.

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

950



2 Linear Temporal Logic
In this section, we provide syntax and semantics of LTL. An
LTL formula is obtained from a set ⌃ of proposition letters
by possibly applying the usual Boolean connectives and the
two temporal operators X (tomorrow) and U (until). Formally,
LTL formulae � are generated by the following syntax:

� := p | ¬�1 | �1 _ �2 | X�1 | �1 U �2,

where �1 and �2 are LTL formulae and p 2 ⌃. Standard de-
rived boolean connectives are also defined, together with logi-
cal constants ? ⌘ p^¬p, for p 2 ⌃, and > ⌘ ¬?. Moreover,
two derived temporal operators F� ⌘ >U � (eventually) and
G� ⌘ ¬F¬� (always) are also defined.

LTL formulae are interpreted over temporal structures. A
temporal structure is a triple M = (S,R, g), where S is a
finite set of states, R ✓ S ⇥ S is a binary relation, and,
for each s 2 S, g(s) ✓ ⌃. R is the transition relation,
which is assumed to be total, and g is a labeling function
that tells us which proposition letters are true at each state.
Given a structure M , we say that an !-sequence of states
hs0, s1, s2, . . .i from S is a full-path if and only if, for all
i � 0, (s

i

, s

i+1) 2 R. If � = hs0, s1, s2, . . .i is a full-
path, then we write �

i

for s
i

and ��i

for the infinite suffix
hs

i

, s

i+1, . . .i (also a full-path). We write M,� |= ' if and
only if the LTL formula ' is true on the full-path � in the
structure M , which is defined by induction on the structural
complexity of the formula:

• M,� |= p iff p 2 g(�0), for p 2 ⌃,
• M,� |= ¬' iff M,� 6|= '

• M,� |= '1 _ '2 iff M,� |= '1 or M,� |= '2

• M,� |= X' iff M,��1 |= '

• M,� |= '1 U '2 iff there is some i � 0 such that
M,��i

|= '2 and for all j, with 0  j < i, it holds
that M,��j

|= '1

We conclude the section with an example of a meaningful
LTL formula that will be useful later:

p ^ G(p $ X¬p) ^ GF q1 ^ GF q2^
G¬(q1 ^ q2) ^ G(q1 ! ¬p) ^ G(q2 ! ¬p)

The G(p $ X¬p) clause forces the truth value of p to alter-
nate at every step, while GF q1 and GF q2 require q1 and q2 to
be true infinitely many times, although they can never be true
at the same time due to G¬(q1 ^ q2). Moreover, G(q1 ! ¬p)
forbids q1 to be true at the same time of p (G(q2 ! ¬p) forces
the same for q2).

3 Description of the tableau system
Here we will succinctly describe the tableau system imple-
mented in our tool. An extended description is available on-
line in [Reynolds, 2016]. W.l.o.g., hereafter we assume the
input formula to be in Negation Normal Form, with the ex-
ception of (sub-)formulae of the form ¬(� U  ), which are
handled explicitly1. The tableau can be thought of as an ex-
tension to the classical tableau for propositional logic with

1NNF of not-until formulae would require the release operator,
which we decided not to support.

the addition of a number of specific rules to handle tempo-
ral operators. As in the propositional analogue, the tableau
for an LTL formula � is a tree where each node is labeled
by a set of subformulae of �, with the root labeled by {�}.
The algorithm proceeds building the tree by applying a set
of rules to the node label which will create one or two chil-
dren nodes, or will decide to close the current branch. In
the former case, the algorithm will recursively proceed on
each children. In the latter case, the resulting leaf will be
marked either as ticked (3), in which case the correspond-
ing branch is called successful, or crossed (7), meaning that
the corresponding branch, called a failed branch, is contra-
dictory. In both cases, the branch is said to be closed. A leaf
that is neither ticked nor crossed identifies an open branch,
i.e., a branch that needs further exploration. The formula is
reported as satisfiable if the corresponding tableau contains at
least a successful branch, which can be used to extract a class
of satisfying models. Otherwise (the completely built tableau
contains no successful branches), the formula is unsatisfiable.
We further define a partial ordering relation between tableau
nodes, where u < v if u is a proper ancestor of v (i.e., v 6= v).

Tableau rules can be partitioned into two sets: static and
non-static rules. Static rules can be applied depending only
on the contents of the current node’s label; non-static rules
need to take into account also predecessor nodes. Both kinds
of rules, however, deal with propositional and/or temporal
reasoning regarding the current state of the model that is be-
ing built. Once all the rules have been applied, and the branch
has not been closed, a last rule called the STEP rule is applied
to make a temporal step through the model, starting to reason
about the next state.

The explanation of the system’s rules will start from the
static rules. The following two static rules can close a branch:
EMPTY If the node’s label is empty, the branch is ticked.
CONTRADICTION If the node’s label contains both a propo-

sitional letter p and its negation ¬p then the branch is
crossed.

To explain the remaining static rules, the following notation
will be used. Let � be a formula, � be a set of formulae, and
� be the current node’s label. A rule of the form � ! �
fires when � 2 � and creates a child node,2 whose label is
� \ {�}[�, i.e., substitutes � for �. A rule of the form �!
� |�0 does the same, but creating two different children using
the two different � and �0 sets. The rules are the following:

CONJUNCTION ↵ ^ � ! {↵,�}
DISJUNCTION ↵ _ � ! {↵} | {�}

UNTIL ↵ U � ! {�} | {↵,X(↵ U �)}
NOT-UNTIL ¬(↵ U �) ! {¬↵,¬�} |

{¬�,X¬(↵ U �)}
FUTURE F↵ ! {↵} | {XF↵}
ALWAYS G↵ ! {↵,XG↵}

Static rules are recursively applied to the children until either
the branch is closed or no more static rules can be applied to
the label. When this is the case the label is called poised. The
order of application of the static rules does not matter, as long

2Rules that add a single child can be equivalently thought of as
changing the node’s label itself.
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as a poised label is reached. Order can impact performance,
though (see Sect. 4). At this point, non-static rules have to
be applied. As the reader may have noticed, the UNTIL and
FUTURE rules generate, in one of the two branches, formulae
of the form X(↵ U �) or XF↵, that re-propose the same for-
mula that triggered the rule, but inside a tomorrow operator.
A formula of one of those kinds is called X-eventuality, and
represents some requirement that has still to be fulfilled by the
partial model built so far by the current branch. Note that the
ALWAYS3 rule behaves in a similar way for a formula G↵, by
adding {↵,XG↵} to the node’s label. However, the rule does
not introduce an eventuality because the requirement has been
already fulfilled, relatively to the partial model built so far,
by adding ↵ to the current state. Eventualities are different in
that the requirement could be postponed indefinitely without
being ever able to fulfill it. The next two rules address these
issues. The LOOP rule ticks a branch when the current branch
is repeating the same actions over again and there are no un-
fulfilled eventualities. The PRUNE rule handles the opposite
case, crossing a branch that is indefinitely pushing forward an
unfulfilled eventuality that will not be satisfied.

LOOP Let v and u be nodes, with u < v and poised labels
�
v

and �
u

, respectively, such that �
u

◆ �
v

. If for each
X-eventuality X(↵U�) or XF� in �

u

there exists a node
w such that u < w  v and � 2 �

w

, then the branch
terminating with v is ticked.

PRUNE Let u, v, w be nodes, with u < v < w and the
same poised label �. W.l.o.g., we can suppose no other
nodes with the same label exist between u and w. If for
each X-eventuality X(↵ U �) or XF� in �, each time �
was fulfilled between v and w (i.e., there exists x, with
v < x  w, such that � 2 �

x

) it was also fulfilled
between u and v (i.e., there exists y, with u < y  v,
such that � 2 �

y

), then the branch terminating in w is
crossed.

The LOOP and PRUNE rules must be tested and potentially
applied in this order, because a node satisfying the LOOP rule
could also satisfy the PRUNE rule, leading to incomplete re-
sults if the order is swapped. The reader might wonder why
the PRUNE rules needs to go through three different nodes
with the same label before crossing the branch, as at first it
would seem sufficient to stop at the first repetition of the same
label. However, there are formulae where this is not the case,
one of them being the example formula from Sect. 2. Intu-
itively, the GF q1 and GF q2 subformulae repeatedly gener-
ate two X-eventualities that cannot be satisfied at the same
time because of the G¬(q1 ^ q2) clause. This means that the
two eventualities are repeatedly requested but alternatively
fulfilled, so the label is repeated but only one of them is satis-
fied between a given pair of nodes with equal labels. A naive
PRUNE rule would cross the branch where instead it would
suffice to wait for another repetition and then tick the branch
with the LOOP rule. Instead, the correct PRUNE rule waits
to see two sequences of steps where the same eventualities,
but not all of them, have been fulfilled between two pairs of

3The same applies to the NOT-UNTIL rule.

¬p ^ X¬p ^ q U p

✏✏
¬p,X¬p ^ q U p

✏✏
¬p,X¬p, q U p

ssggggg
ggggg

gg

++WWWW
WWWWW

WWW

¬p,X¬p, p
7

¬p,X¬p, q,X(q U p)

✏✏
=

¬p, q U p

ssggggg
ggggg

gg

++WWWW
WWWWW

WWW

¬p, p ¬p, q,X(q U p)

✏✏
=7

q U p

ssggggg
ggggg

gg

''OO
OOO

OO

p

✏✏
=

q,X(q U p)

✏✏
=

q U p3

...

Figure 1: Example tableau for ¬p ^ X¬p ^ (q U p)

nodes with the same label, meaning that nothing more can be
fulfilled continuing on this branch.

To complete the picture, we now state the last rule, which
is responsible to advance to the next temporal state:
STEP Let v be a node, with a poised label �, where all the

previous rules have already been applied and cannot be
applied anymore. Then, a child node is added to v with
the label:

� = {↵ | X↵ 2 �}
In other words, the branch steps to the next temporal state by
pushing forward all the tomorrows. This is the point where,
if no tomorrow operators were present in the label, an empty
label can be formed, thus allowing the EMPTY rule to tick
the branch. As an example, a tableau built from the formula
¬p^X¬p^ (q U p) is shown in Fig. 1. In the picture, double
striked edges represent applications of the STEP rule.

The rules explained so far define a complete and correct
satisfiability testing procedure for LTL formulae.
Theorem 1 Let � be an LTL formula. The tableau built from

� contains at least a ticked branch iff � is satisfiable.

In addition, a ticked branch can be used to extract a satisfy-
ing model for the formula, actually more than one as will be
clear later. The satisfying full-path is built from the ticked
branch by extracting all the literals contained in the label of
each node on which a STEP rule has been applied, starting
from the root down to the ticked leaf. Then, if the branch
was ticked by applying the EMPTY rule, the full-path is com-
plete and the remaining infinite suffix does not affect the for-
mula’s satisfaction. This is the case, for instance, with a sim-
ple formula like p ^ X¬p, which is satisfied by any full-path
hs1, s2, . . .i where p holds in s1, and ¬p holds in s2. If instead
the branch was ticked by a LOOP rule, the full-path contin-
ues by infinitely repeating the sequence of states between the
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ticked leaf v and the node u that triggered the LOOP rule. In
this case, we say that the model loops from v to u. Note that
this does not mean that the full-path itself contains a loop, as
the full-path is an infinite linear sequence of states and cannot
loop. It means instead that the labeling of the full-path states
repeat. Note that from a single ticked branch we can extract
a number of different (sometimes infinite) full-paths that sat-
isfy the formula, which differ only in some states where the
value of some proposition letter does not matter. The tableau
system is correct and complete also as a model building tool,
as formally stated by the following theorem, which implies
Theorem 1:
Theorem 2 Let � be a LTL formula. For each ticked branch

in the tableau for �, there is a satisfying model of �. Vice

versa, for each satisfying full-path � of � there is a ticked

branch from which � can be extracted.

As an example, Fig. 2 shows in a compact way the model for
the example formula shown in Sect. 2.

p,¬q1,¬q2
¬p,¬q1,¬q2

p,¬q1,¬q2
¬p,¬q1, q2

p,¬q1,¬q2
¬p, q1,¬q2

Figure 2: Model for the example formula of Sect. 2

As shown in [Sistla and Clarke, 1985, Theorem 4.6], for ev-
ery model of an LTL formula �, there is a ultimately periodic
model that satisfies �, which is in fact found by the above
procedure. The same theorem also shows an exponential up-
per bound on the size of the prefix and periodic part of those
models. The bound is strict, since for example the counters
formulae shown in [Rozier and Vardi, 2010] have models of
exponential size. It can be shown that this is also the up-
per bound on the space required for the search of a success-
ful tableau branch. A single branch having exponential size
means the entire tree is at worst doubly exponential in size,
and this gives us the worst case time complexity. In summary,
the following result can be proved:
Theorem 3 The search for a successful tableau branch has

an exponential and doubly exponential space and time com-

putational complexity, respectively.

Although not theoretically optimal for the problem, which
is PSPACE-complete, note that this result is in line with the
other tree-like tableau systems like Schwendimann’s one.

4 Implementation
The tableau system described in the previous section has been
implemented in a C++ software tool called Leviathan. The
tool has been designed to be as fast and space-efficient as pos-
sible, and portable across a wide number of operating systems
and compilers4. Despite the simplicity of the system’s rules,

4The tool has been continuously tested on the following operat-
ing systems: Windows 7/8/Server 2012, Ubuntu 14.04, CentOS 6.7,
and Mac OS X from 10.9 to 10.11; and the following compilers:
VC++ 2015, G++ 4.8/4.9/5.1, and Clang 3.5/3.6/3.7

finding the most efficient way to implement them was not triv-
ial. The result is an optimized implementation which uses a
remarkably low amount of memory. This section describes
the design choices that underlie Leviathan’s implementa-
tion in view of its speed and low memory consumption re-
quirements.

Each input formula, before being given as input to the main
algorithm, passes through several preprocessing steps which
syntactically simplify the formula while maintaining logical
equivalence. The preprocessing phase is used to desugar de-
rived logical syntax and to turn the formula into Negation
Normal Form, as assumed in Sect. 3, but also to remove or
transform a few kinds of trivial subformulae with common
propositional and temporal equivalences (most of which can
be found in [Giannakopoulou and Lerda, 2002]).

To achieve the promised space efficiency, formulae are rep-
resented in a compact way during the search. In the prepro-
cessing phase, all the subformulae that will be needed for the
expansion of static rules are extracted. The resulting set of
formulae is then ordered in such a way that, for each formula
', if ' is at position i, then formulae ¬' and X', if present,
are at positions i+ 1 and i+ 2, respectively. The ordered set
is not represented explicitly. Instead, a few bitset data struc-
tures are created, one for each syntactic type of formula, such
that the i-th bit in the bitset T is set to 1 if and only if the i-th
formula in our ordering is of type T . To complete the picture,
two vectors, respectively called lhs and rhs, are used to get
the index of the left and right subformulae of each formula.

This compact representation also provides an efficient way
to test the conditions of the tableau rules. As an example,
consider the CONTRADICTION rule, which crosses a branch
if occurrences of both p and ¬p, for some p, are detected in
a node’s label. Such an operation can be efficiently imple-
mented as follows. Let formulae be the bitset correspond-
ing to the current label and neg lits be the bitset that spec-
ifies which subformulae are of type negative literal. Then,
consider the following expression of bitwise operations:

((formulae & neg_lits) << 1) & formulae

The first bitwise and operation intersects the current label
with the set of all the negative literals. The shift moves of one
position all those bits, and in the result of the second bitwise

and there will be a bit set to 1 only if both were set, i.e., only
if both positive and negative literals of the same atom were
present. This exploits the fact that � and ¬� are consecutive
in the order5. Another example is a static rule like CON-
JUNCTION, whose condition can be tested by a bitwise and

operation between the bitsets representing the current node’s
label, the set of formulae in the label that still have to be pro-
cessed, and the set of all the subformulae of conjunction type.

Finally, during the preprocessing step all the subformulae
corresponding to X-eventualities are discovered and saved in
a vector for later uses, together with a lookup table that links
each eventuality to the corresponding index in the bitset rep-
resentation.

5Contradictions due to the occurrences of two formulae of the
forms ↵ U � and ¬(↵ U �) cannot be detected in this way, and thus
they are dealt with separately.
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The algorithm is a tree-shaped tableau system, allowing
completely independent descents through every branch. This
relieves us from the need to maintain in memory the complete
tree, and it allows for a linear and more compact representa-
tion of the tree itself. Since a run of the algorithm resembles
a pre-order depth-first visit in the tree, a stack data structure
is sufficient to maintain the state of the search.

Two different types of frame are interleaved into the stack:
choice and step frames. The former are pushed when a static
rule has been applied and a new branch has been created. Ad-
ditional information is held by the frame to make it possible to
rollback the choice and to descend through the other branch.
The latter are pushed when a transition rule has been applied
and thus a temporal step has been made. These are the frames
corresponding to the nodes which have a poised label in the
tableau and they bring with them information about the sat-
isfied X-eventuality during this temporal step. Note that only
the static rules that create a branch in the tree have a corre-
sponding choice frame in the stack. The others are expanded
in-place in the current frame. The rules are currently applied
in a fixed order. Some early tests have shown that a wrong or-
der can have a huge impact on performance, but an extensive
search for the better order still needs to be done.

Each frame of the stack records the set of formulae be-
longing to the corresponding tableau node, and it keeps track
of those formulae that have been already expanded by static
rules. Both these pieces of information are stored in two bit-
sets similar to those described previously. Moreover, each
frame keeps track of which eventualities have been fulfilled.

Finally, each frame stores three pointers to previous frames
in the stack: to the last step frame, to the last occurrence of
its label, and to its first, earliest occurrence. These pointers
are used to check the PRUNE rule in the following way. As
stated in Sect. 3, the rule would require to check the fulfilled
eventualities between every pair of nodes u, v which share
the same poised label � as the current node w, but this is not
really needed. It is actually sufficient to set v as the last pre-
vious occurrence of � and u as the first, earliest one, which
are exactly the nodes pointed by the aforementioned pointers.
To see that it is sufficient, suppose by contradiction that there
are some other u0, v0 that together with w trigger the PRUNE
rule, while u, v, and w do not. Since u is the earliest occur-
rence of �, and v is the last, u0 and v

0 lie between u and v.
Since u, v, and w do not trigger the rule, there is an eventual-
ity ↵, fulfilled between v and w, which is not already fulfilled
between u and v. But then ↵ has to be also fulfilled between
v

0 and w, because v

0  v < w. Moreover, ↵ will not be ful-
filled between u

0 and v

0, because u  u

0
< v

0  v. This is a
contradiction and thus u, v, and w must also trigger the rule.

A similar argument shows that, to test the LOOP rule,
it suffices to consider nodes v and w, instead of scanning
through the entire branch. Moreover, the rule can be imple-
mented by testing the equality of the labels of v and w, instead
of looking for subsets. It is easy to see that this change can
at worst make the branch loop later, but cannot compromise
completeness. On the other hand, the time required to expand
a branch longer than needed is overcome by the greater effi-
ciency in checking the rule, as only a check against the first
appearance of the label is needed instead of each superset.

5 Experimental results

This section outlines the experimental evaluation of the tool
against a number of already existing satisfiability checkers.
In order to obtain significant data and to reduce chances of
misinterpretation, we relied on StarExec

[Stump et al., 2014],
an online testing and benchmarking infrastructure specifically
designed to measure performance of tools for logic-related
problems like SAT, SMT, CLP, etc. The use of a common in-
frastructure increases the reproducibility of the experimental
results, and minimizes the risk of configuration errors of the
tools that could lead to misleading results.

Complete and detailed surveys of the performance of avail-
able LTL satisfiability checkers appeared in the last few years
[Goranko et al., 2010; Rozier and Vardi, 2010; Schuppan and
Darmawan, 2011; Vardi et al., 2013]. The following anal-
ysis used the reference set of testing formulae available on
StarExec, which came from the survey by Schuppan and Dar-
mawan, including a total of 3723 formulae collected from a
number of different sources. The following tools were avail-
able in StarExec and were included in the comparison: Aalta
[Li et al., 2014], based on Büchi automata, TRP++ [Hustadt
and Konev, 2003] and LS4 [Suda and Weidenbach, 2012],
which are based on temporal resolution, the NuSMV state-
of-the-art symbolic model checker [Cimatti et al., 2002], and
PLTL, another tableau-based tool. NuSMV, configured in
BDD-based symbolic model checking mode, has been cho-
sen among other model checkers, as a single proponent of this
class of tools, mainly because it was the one used in the afore-
mentioned survey by Schuppan and Darmawan. The PLTL
tool implements two different kinds of tableau-based algo-
rithms for LTL satisfiability, a recent graph-shaped tableau
system [Abate et al., 2009], and the tree-like tableau system
by Schwendimann.

A plot of the comparison results can be seen in Fig. 3,
where test formulae are grouped by type and displayed hor-
izontally, and vertical bars of different shades represent the
relative performance of different tools. The top and bottom
plots show time and memory usage, respectively, obtained in
two different runs with 500MB maximum memory limit in
the second case, and a 30 minutes timeout in both (which is
the maximum timeout allowed by StarExec). Experiments are
basically limited to solvers already available in the StarExec
infrastructure, to ensure repeatability and availability of re-
sults. We plan to extend the comparison to other tools, e.g.,
[Bradley, 2012; Hassan et al., 2013].

In summary, the results show that Leviathan’s perfor-
mance is comparable in most cases with other tools, both re-
garding time and memory usage, with both dark and bright
corners. Diving deeper, a case-by-case analysis has to be
done looking at different kinds of test formulae. While data
confirm that LS4, Aalta and NuSMV are likely the best tools
available, our tool is competitive in a number of cases. No-
table examples are the anzu, forobots, and rozier
(excluding counters) datasets, where Leviathan’s run-
ning time is one of the lowest, and the schuppan and
rozier-counter datasets, where the memory usage was
very low. The rozier dataset is also notable for being much
easier for all the tested tableau-based approaches, including
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Figure 3: Benchmark results about time (above) and memory consumption (below)

Leviathan, than for other tools. The alaska dataset is
very difficult for most of the tested tools, and Leviathan
times out on all of it. However, it is a curious fact that, for
the time it has been running before the timeout, its memory
usage in this dataset was very low compared to other tools.

Another interesting point of view is the comparison of
Leviathan with PLTL, as both are tableau-based tools.
Leviathan performs better on the anzu dataset, uses less
memory in the trp and shuppan datasets, and performance
is comparable in other datasets.

6 Conclusions and future work
This paper presents Leviathan, an LTL satisfiability tool
based on a simple yet effective one-pass tree-shaped tableau
system. Despite the simplicity of the algorithm, experimen-
tal tests has shown that a careful implementation can achieve
performance comparable with other tools, both in time and
memory usage.

It is worth to point out that, although the tool has been effi-
ciently implemented with speed and memory usage in mind,
the implementation completely follows the theoretical de-
scription of Sect. 3. It is thus interesting to note that this ap-

proach can achieve good performance without applying any
kind of search heuristics or other improvements, and still per-
form fairly well against existing tools.

Future work will explore the space of possible improve-
ments to the basic algorithm. For example, the tableau con-
struction is an embarrassingly parallel procedure, and a par-
allel implementation may easily explore multiple branches at
the same time, thus exploiting modern multi-core architec-
tures. Some work can be done on the application of heuris-
tics to the search process. Previous work has been done on the
use of unit propagation techniques, borrowed from proposi-
tional SAT solvers, to tableau systems (see [Stenz, 2005]).
Another approach to improve search performance would be
to embed a SAT solver into the search procedure itself, to
deal with formulae with strong propositional components for
which tableau systems are notoriously weak, which would
likely help to deal with some of the more pathological test
cases. Additional care can still be devoted to the implemen-
tation, especially to optimize the preprocessing phase that is
currently a bottleneck for performance for some large formu-
lae. Thanks to the simplicity of the proposed algorithm, we
can expect that all these improvements could be implemented
in a relatively easy way.

955



References
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