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Abstract

A disjunctive logic program under the answer set
semantics can be equivalently translated to a nor-
mal logic program by the shifting transformation,
if the program is head-cycle-free. In this paper,
we provide an answer-set-preserving rewriting of
a general disjunctive program to a normal program
by first applying the unfolding transformation on
atoms that prevent the program from being head-
cycle-free, then shifting the resulting program. Dif-
ferent from other transformations that eliminate
disjunctions in answer set programming, the new
rewriting is efficient for “almost” head-cycle-free
programs, i.e., programs that have only a few atoms
that prevent them to be head-cycle-free. Based on
the new rewriting, we provide an anytime algo-
rithm to compute answer sets of a disjunctive pro-
gram by calling solvers for normal logic programs.
The experiment shows that the algorithm is efficient
for some disjunctive programs. We also extend the
rewriting to non-ground answer set programs on fi-
nite structures.

1 Introduction
Disjunctive logic programs extend normal logic programs by
permitting disjunctions to appear in rule heads, which in-
creases the expressive power of logic programs under the an-
swer set semantics [Baral, 2003] and brings computational
penalty as well. In particular, deciding whether a disjunctive
program has an answer set is ⌃P

2 -complete [Eiter and Got-
tlob, 1995] while deciding whether a normal program has
an answer set is NP-complete. In practice, significant per-
formance difference can be observed after adding disjunctive
rules into normal programs, even if only a very small number
of disjunctive rules are involved. Meanwhile, it is arguable
that many real-life problems can be characterized by pro-
grams consisting of a large number of normal rules and a few
disjunctive rules. Hence, an interesting question is whether
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such a disjunctive program can be efficiently rewritten to an
equivalent normal program under the answer set semantics.

Ben-Eliyahu and Dechter [1994] identified a class of dis-
junctive programs, called “Head-Cycle-Free” (HCF), and
showed that each HCF program can be converted into an
equivalent normal program in polynomial time by shifting
head atoms into the body. The class of HCF programs is fur-
ther generalised to that of Head-Elementary-loop-Free (HEF)
programs [Gebser et al., 2011], which can be transformed
into normal programs in polynomial time by shifting too. One
could identify another proper super class of HEF programs
that are polynomial time convertible to normal programs but
it would be getting harder to check if a given disjunctive pro-
gram is in such a class [Ji et al., 2015].

On the other hand, it is well known that a disjunctive pro-
gram can be equivalently transformed into a negative dis-
junctive program by a set of program transformations in-
cluding the unfolding transformation [Brass and Dix, 1997;
Eiter and Wang, 2008]. Since shifting preserves the answer
set semantics for negative disjunctive programs, each disjunc-
tive program can be equivalently transformed into a normal
program [Zhou, 2014]. Given that the unfolding transforma-
tion is exponential in the worst case, an exponential blow-
up may occur in the unfolding-based rewriting. One source
for this blow-up is from that unfolding can be applied on
all atoms in the given disjunctive program. However, it has
not been explored how the efficiency of unfolding can be im-
proved in the context of disjunctive answer set programming.
Especially, it is unclear if the unfolding transformation can be
applied on only some atoms that are necessary.

A natural idea is to apply unfolding on atoms of the pro-
gram one by one until the resulting program is HCF. However,
unfolding may introduce new head-cycles and increase the
set of atoms to be unfolded. Hence, generally speaking, one
may need to unfold at all the atoms to achieve an HCF pro-
gram, which indeed results in a negative program as in [Zhou,
2014]. In this paper, we show that we can restrict unfolding
to “culprit” atoms, i.e., atoms that prevent the initial program
to be HCF, and ignore new atoms that prevent the resulting
program to be HCF. We prove that the result of our restricted
unfolding, although not necessarily HCF, can be equivalently
transformed to a normal program via shifting.
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This result is of both theoretical and practical interests—it
not only shows that the complexity penalty is closely tied to
these “culprit” atoms, but also suggests the practicality of our
rewriting approach on disjunctive programs that are “almost”
HCF, i.e., with only a small number of “culprit” atoms. We
make the following contributions:

• We provide an answer-set-preserving rewriting from a
disjunctive program to a normal program by only un-
folding at “culprit” atoms and shifting the resulting pro-
gram, which is efficient for “almost” HCF programs.

• If ⇧0 is a normal program rewritten from a disjunctive
program ⇧ by restricted unfolding and shifting, we show
that the computation of answer sets for ⇧0 can be im-
proved. In particular, although the rewriting may intro-
duce new loops to ⇧0, we only need to consider loops
constructed from loops of ⇧ for computing answer sets
of ⇧0. This result suggests that although our rewriting
to a normal logic program may lead to an exponential
blow-up, there is not necessarily a blow-up in loop for-
mulas.

• As another application of the rewriting, we present an
anytime algorithm to compute answer sets of a disjunc-
tive program ⇧ by calling solvers for normal logic pro-
grams. In each iteration, the algorithm outputs the an-
swer sets of the shifted program ⇧0 obtained from ⇧ by
unfolding at a set A of atoms. The algorithm will output
more answer sets of ⇧ when a larger A is applied.

• At last, we extend the rewriting to non-ground answer
set programs on finite structures. As a result, we are able
to compute answer sets of some first-order disjunctive
logic programs by a solver for first-order normal pro-
grams such as [Asuncion et al., 2012].

2 Preliminaries
2.1 Disjunctive Logic Programs
We consider fully finite logic programs based on a proposi-
tional language L until Section 7. A (disjunctive) logic pro-
gram (DLP) is a finite set of (disjunctive) rules of the form

a1 _ · · · _ a
k

 a
k+1, . . . , am, not a

m+1, . . . , not a
n

. (1)

where n � m � k � 1 and a1, . . . , an are atoms. If k = 1, it
is a normal rule; if k = m, it is a negative rule; if m = n, it is
a positive rule. A normal logic program (NLP) is a finite set
of normal rules and a negative logic program (resp. positive
logic program) is a finite set of negative (resp. positive) rules.

We will also write a rule r of form (1) as

head(r) body(r).

where head(r) is a1 _ · · · _ a
k

, body(r) = body+(r) ^
body�(r), body+(r) is a

k+1 ^ · · · ^ a
m

, and body�(r)
is ¬a

m+1 ^ · · · ^ ¬a
n

, and we identify head(r), body+(r),
body�(r) with their corresponding sets of atoms, and body(r)
the set { a

k+1, . . . , am,¬a
m+1, . . . ,¬an }. Given a DLP ⇧,

we use Atoms(⇧) to denote the set of atoms occurring in ⇧.
We use tr(r) to denote the propositional formula body(r) �
head(r) and tr(⇧) =

V
r2⇧ tr(r).

A set S of atoms satisfies a rule r if S [ {¬p | p /2 S} |=
tr(r) in the sense of propositional logic. S satisfies a pro-
gram ⇧ if S satisfies every rule in ⇧.

The answer sets of a DLP are defined in [Gelfond and
Lifschitz, 1991]. Given a DLP ⇧ and a set S of atoms, the
Gelfond-Lifschitz reduct of ⇧ on S, written ⇧S , is obtained
from ⇧ by deleting:

1. each rule that has a formula not p in its body with p 2 S,
2. all formulas of the form not p in the bodies of the re-

maining rules.
A set S of atoms is an answer set of ⇧ if S is a minimal set
satisfying ⇧S . We use AS(⇧) to denote the set of answer sets
of ⇧.

2.2 Loops and Loop Formulas
Lee and Lifschitz [2003] extended the notions of loops and
loop formulas [Lin and Zhao, 2004] to DLPs. For a DLP ⇧,
the positive dependency graph of ⇧, written G⇧, is the di-
rected graph whose vertices are atoms in ⇧, and there is an
arc from p to q if there is a rule r 2 ⇧ such that p 2 head(r)
and q 2 body+(r). A set L of atoms is a loop of ⇧ if the
L-induced subgraph of G⇧ is strongly connected. Note that,
every singleton whose atom occurs in ⇧ is also a loop of ⇧.
We use Loop(⇧) to denote the set of loops of ⇧.

Given a DLP ⇧ and a loop L of ⇧, a rule r 2 ⇧ is an
external support of L under ⇧ if head(r) \ L 6= ; and
L \ body+(r) = ;. Let R�(L,⇧) be the set of external sup-
port rules of L under ⇧. The (conjunctive) loop formula of L
under ⇧, written LF (L,⇧), is the following implication:

^

p2L

p �
_

r2R

�(L,⇧)

0

@body(r) ^
^

q2head(r)\L

¬q

1

A .

Theorem 1 (Theorem 1 in [Lee and Lifschitz, 2003])
For a DLP ⇧ and a set S of atoms, S is an an-
swer set of ⇧ iff S [ {¬p | p /2 S} is a model of
tr(⇧) ^

V
L2Loop(⇧) LF (L,⇧).

2.3 Unfolding and Shifting
We first review the unfolding transformation [Gergatsoulis,
1997; Brass and Dix, 1997].
Definition 1 (Elementary unfolding) Let r1, r2 be two
rules and there is an atom a 2 head(r1) \ body+(r2).
The rule obtained by elementary unfolding r2 using r1 at
a, denoted by unfold(r1, r2, a), is the rule r such that
head(r) = (head(r1) \ {a}) [ head(r2) and body(r) =
body(r1) [ (body(r2) \ {a}).
Definition 2 (Unfolding rules at an atom) Let ⇧ be a DLP
and a an atom in ⇧. The set of rules obtained by unfold-
ing rules at a in ⇧, denoted by unfold⇧(a), is the set
{unfold(r1, r2, a) | r1, r2 2 ⇧ and a 2 head(r1) \
body+(r2)}.

Let ⇧ be a DLP and a 2 Atoms(⇧). We denote

remove(⇧, a) = ⇧ \ {r | r 2 ⇧ and a 2 body+(r)}
[ unfold⇧(a).
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Example 1 Consider the logic program ⇧1:

a _ b c. d b. e a, d. c e. c .

a b. b a.

unfold⇧1(a) is the set of rules:

b _ e c, d. e b, d. b c. b b.

remove(⇧1, a) = ⇧1\{e a, d. b a.}[unfold⇧1(a).
From Theorem 13 in [Gergatsoulis, 1997], we have the fol-

lowing theorem.
Theorem 2 Let ⇧ be a DLP and a an atom in ⇧. Then
AS(⇧) = AS(remove(⇧, a)).

Given a DLP ⇧, E ✓ Atoms(⇧), and a 2 E, we can
inductively define remove(⇧, E) as follows:

• remove(⇧, {a}) = remove(⇧, a),
• remove(⇧, E) =
remove(remove(⇧, E \ {a}), {a}).

Corollary 3 Let ⇧ be a DLP and E ✓ Atoms(⇧). Then
AS(⇧) = AS(remove(⇧, E)).

Gelfond et al. [1991] provided a mapping from a DLP to
an NLP by “shifting” head atoms into the bodies. We denote
sh(⇧) to be the NLP obtained from a DLP ⇧ by substituting
every rule of form (1) with the k rules

a
i

 not a1, . . . , not a
i�1, not a

i+1, . . . , not a
k

,

a
k+1, . . . , am, not a

m+1, . . . , not a
n

. (1  i  k)

It is known that every answer set of sh(⇧) is also an an-
swer set of ⇧, but the converse is not true in general. Ben-
Eliyahu and Dechter [1994] identified a class of DLP, called
“Head-Cycle-Free” (HCF), and showed that the converse is
true if ⇧ is an HCF program. In particular, a DLP ⇧ is called
HCF, if |head(r) \ L|  1 for every rule r of ⇧ and every
loop L of ⇧, and the answer sets of an HCF program ⇧ coin-
cide with the answer sets of the NLP sh(⇧).

Given a DLP ⇧, remove(⇧, Atoms(⇧)) is equivalent
to a negative program [Brass and Dix, 1997], which is
HCF. Then AS(⇧) = AS(remove(⇧, Atoms(⇧))) =
AS(sh(remove(⇧, Atoms(⇧)))). Based on this result,
Zhou [2014] provided a syntactic transformation from a DLP
to an NLP by first applying the unfolding transformation on
all the atoms, then shifting the resulting program to the NLP.

3 Eliminating Disjunctions by Restricted
Unfolding

In this section, we show that a disjunctive program can be
equivalently translated to a normal program by first apply-
ing the unfolding transformation only on “culprit” atoms, i.e.,
atoms that prevent the program from being HCF.

For a DLP ⇧, we denote

HC(⇧) = {a | there exist r 2 ⇧ and L 2 Loop(⇧)

such that |head(r) \ L| > 1 and a 2 head(r) \ L}.
Intuitively, HC(⇧) specifies the set of atoms that prevent ⇧
to be HCF.

Now we provide the lemmas that draw a sketch of the proof
for our main result.

Lemma 1 Let ⇧ be a DLP and E ✓ Atoms(⇧). Then
^

a2E

LF ({a},⇧) � (tr(⇧) ⌘ tr(remove(⇧, E))) .

Lemma 2 Let ⇧ be a DLP, E ✓ Atoms(⇧), and
L 2 Loop(remove(⇧, E)). If L \ HC(⇧) = ; then
LF (L,remove(⇧, E)) ⌘ LF (L,sh(remove(⇧, E))).

As discussed in Introduction, unfolding may introduce new
head-cycles and hence increase the set of atoms in HC.
Example 1 (Continued) {b, c, e} is not a loop of ⇧1,
while it is a loop of the program remove(⇧1, {a}), then
HC(remove(⇧1, {a})) = {b, e} while HC(⇧1) = {a, b}.

For some DLP ⇧ and E ✓ Atoms(⇧), exponen-
tially many loops can be introduced by unfolding and
HC(remove(⇧, E)) can be greatly larger than HC(⇧).
Example 2 Consider the logic program ⇧2:

a _ b c. e a, d. a b. b a.

a1 _ · · · _ a
n

 b. d a
i

. (1  i  n)

where n � 1. Note that Loop(⇧2) =
S

p2Atoms(⇧2)
{{p}} [

{{a, b}}, HC(⇧2) = {a, b}. remove(⇧2, a) = (⇧2 \ {e 
a, d. b  a.}) [ {b _ e  c, d. b  c. e  b, d.}.
For any nonempty set S ✓ {a1, . . . , an}, S [ {b, d} is a
loop of remove(⇧2, a). Then |Loop(remove(⇧2, a))| =
4+n+2n, |Loop(⇧2)| = 6+n, and HC(remove(⇧2, a)) =
{b, d, a1, . . . , an}.

Lemma 3 Let ⇧ be a DLP and E ✓ Atoms(⇧). Then for
each L 2 Loop(remove(⇧, E)), either L \ E = ; or L =
{a} for some a 2 E.

From Theorem 1 and above lemmas, we get our main result.
Theorem 4 For any DLP ⇧,

AS(⇧) = AS(sh(remove(⇧, HC(⇧)))).

Then we can equivalently rewrite a DLP ⇧ to the NLP
sh(remove(⇧, HC(⇧))).

Now we discuss some optimizations for the new rewriting.
Given a DLP ⇧ with n different atoms and m different

rules, (the number of rules) |remove(⇧, a)| for an atom a is
m+m2 in the worst case, |remove(⇧, HC(⇧))| is O(m2n),
and |sh(remove(⇧, HC(⇧)))| is O(n · m2n). As proved
in [Eiter et al., 2004], any answer-set-preserving rewriting
of a DLP to an NLP must lead in general to an exponential
blow-up, providing the polynomial hierarchy does not col-
lapse. However, when ⇧ is “almost” HCF, the rewriting could
be efficient. In particular, if |HC(⇧)| = k for a constant k,
then |sh(remove(⇧, HC(⇧)))| is O(n·m2k), which is poly-
nomial for the size of ⇧, i.e., n and m.

We can further reduce the number of unfolded atoms by
considering only special loops.

Firstly, HC(⇧) can be replaced by one of its subsets in the
rewriting. For a DLP ⇧, we denote

HC⇤(⇧) = {a | there exist r 2 ⇧ and L 2 Loop(⇧)

such that |head(r) \ L| > 1, r 2 R�(L,⇧),
and a 2 head(r) \ L}.
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Clearly, HC⇤(⇧) ✓ HC(⇧). From Theorem 1, if HC⇤(⇧) =
;, then AS(⇧) = AS(sh(⇧)), even when ⇧ is not HCF. So
the class of HCF programs can be extended to HCF⇤ pro-
grams with HC⇤(⇧) = ;, for which shifting is answer-set-
preserving. We have the following corollary of Theorem 4.

Corollary 5 For any DLP ⇧,

AS(⇧) = AS(sh(remove(⇧, HC⇤(⇧)))).

Secondly, based on the notions of elementary loops and
proper loops, HC⇤(⇧) can be further reduced to some of its
subsets in the rewriting.

Gebser et al. [2011] showed that not all loops are neces-
sary for identifying the answer sets among the models of a
DLP. They introduced the subclass elementary loops of loops,
and refined Theorem 1 by considering elementary loops only.
Later, Ji et al. [2015] introduced the subclass proper loops
of elementary loops and refined Theorem 1 by considering a
special form of loop formulas for proper loops only. As recog-
nizing elementary loops and proper loops for DLPs are coNP-
complete, Ji et al. [2015] introduced weak elementary loops
and weak proper loops which can be identified in polynomial
time.

Based on these notions, we can further refine HC⇤(⇧) in
the rewriting. For a DLP ⇧, we denote

HEL(⇧) = {a | there exist r 2 ⇧ and an elementary
loop L of ⇧ such that |head(r) \ L| > 1,

r 2 R�(L,⇧), and a 2 head(r) \ L}.

HPL(⇧), HWEL(⇧), and HWPL(⇧) denote the sets spec-
ified by the definition of HEL(⇧) by replacing “elemen-
tary loop” with “proper loop”, “weak elementary loop”, and
“weak proper loop”, respectively. Then we have the following
corollary of Theorem 4.

Corollary 6 For any DLP ⇧,

AS(⇧) = AS(sh(remove(⇧, HEL(⇧))))

= AS(sh(remove(⇧, HPL(⇧))))

= AS(sh(remove(⇧, HWEL(⇧))))

= AS(sh(remove(⇧, HWPL(⇧)))).

4 Reducing Loop Formulas for Computing
Answer Sets of Rewritten Programs

From Theorem 1, answer sets can be identified from mod-
els of the program that satisfy loop formulas of all loops. In
this section, we show that we only need to consider a sub-
set of loops of an unfolded program, i.e., remove(⇧, E)
for a DLP ⇧ and E ✓ Atoms(⇧), for obtaining answer
sets. This result could be beneficial for SAT-based answer
set programming solvers, such as ASSAT [Lin and Zhao,
2004], cmodels [Giunchiglia et al., 2006], and clasp [Gebser
et al., 2007], for computing answer sets of remove(⇧, E)
and sh(remove(⇧, E)).

We first provide a lemma to specify relations of loops and
loop formulas between a DLP ⇧ and the unfolded program
remove(⇧, a) for an atom a.

Lemma 4 Let ⇧ be a DLP and a an atom in ⇧. Then the
following statements hold:

• {L | L 2 Loop(⇧), a /2 L} ✓ Loop(remove(⇧, a)).
• {L \ {a} | L 2 Loop(⇧)} \ ; ✓ Loop(remove(⇧, a)).
• For any set L ✓ Atoms(⇧), if a 2 L then LF (L,⇧) ⌘
LF (L,remove(⇧, a)).

• For any set L ✓ Atoms(⇧), if a /2 L then
– tr(⇧) � (LF (L,remove(⇧, a)) � LF (L,⇧)),

and
– (LF (L [ {a},⇧) ^ LF (L,⇧)) �

LF (L,remove(⇧, a)).

Given a DLP ⇧ and E ✓ Atoms(⇧), we denote

Loop⇤(⇧, E) =
[

a2E

{{a}} [ {L | L \ E = ; and there

exists S ✓ E such that L [ S 2 Loop(⇧)}.
From Lemma 4, Loop⇤(⇧, E) ✓ Loop(remove(⇧, E)).

remove(⇧, E) may have loops that are not in Loop⇤(⇧, E).
For some DLPs, the size of Loop(remove(⇧, E)) can be
exponentially larger than the size of Loop⇤(⇧, E).
Example 2 (Continued) Loop⇤(⇧2, {a}) = Loop(⇧2) \
{{a, b}} and |Loop(remove(⇧2, a)) \ Loop⇤(⇧2, {a})| =
2n � 1.

The following theorem shows that, we only need to con-
sider loops in Loop⇤(⇧, E) for identifying answer sets
among the models of tr(remove(⇧, E)).
Theorem 7 Let ⇧ be a DLP and E ✓ Atoms(⇧). Then S 2
AS(remove(⇧, E)) iff S [ {¬p | p /2 S} is a model of

tr(⇧) ^
^

L2Loop

⇤(⇧,E)

LF (L,remove(⇧, E)).

Recalling Theorem 1, we can improve the computation
of answer sets for remove(⇧, E) on SAT-based answer set
programming solvers by only considering loop formulas for
loops in a subset of Loop(remove(⇧, E)).
Corollary 8 Let ⇧ be a DLP and E ✓ Atoms(⇧). Then S 2
AS(sh(remove(⇧, E))) iff S [ {¬p | p /2 S} is a model of

tr(⇧) ^
^

L2Loop

⇤(⇧,E)

LF (L,sh(remove(⇧, E))).

Theorem 7 and Corollary 8 show that although our trans-
formation to NLP may result in an exponential blow-up, there
is not necessarily a blow-up in loop formulas for the compu-
tation. In particular, |Loop⇤(⇧, E)|  |Loop(⇧)| for any set
E ✓ Atoms(⇧), then the number of loops that need to be
considered for computing answer sets of remove(⇧, E) or
sh(remove(⇧, E)) is not larger than that of ⇧.

5 Approximating a DLP by Restricted
Unfolding

In this section, we consider another application of the new
rewriting for approximating a DLP ⇧ by an NLP. First, we
specify the notion of approximation.
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Definition 3 (Sound Approximation) A DLP ⇧⇤ is a
(sound) approximation of a DLP ⇧, if AS(⇧⇤) ✓ AS(⇧).

The intuition behind the definition is that, when it is hard to
compute answer sets of a DLP ⇧, we would like to construct
an approximation ⇧⇤ of ⇧ so that ⇧⇤ can compute some an-
swer sets of ⇧ easier. The approximation is sound in the sense
that every computed answer set is an answer set of ⇧.
Definition 4 (Closed Sequence of Sound Approximations) A se-
quence of DLPs h⇧1, . . . ,⇧ni is a closed sequence of (sound)
approximations of a DLP ⇧, if AS(⇧i) ✓ AS(⇧i+1) for each
1  i  n� 1, and AS(⇧n) = AS(⇧).

Intuitively, given a closed sequence of sound approxima-
tions of a DLP ⇧, we can construct an anytime algorithm by
computing answer sets of ⇧

i

’s one by one, which is expected
to find better solutions the more time it keeps running. Even-
tually, the algorithm would return all answer sets of ⇧.

In the following, we specify a closed sequence of sound
approximations of a DLP by restricted unfolding and shifting.
Lemma 5 For any DLP ⇧ and a 2 Atoms(⇧),
AS(remove(sh(⇧), a)) ✓ AS(sh(remove(⇧, a))).

Theorem 9 Let ⇧ be a DLP and E1 ✓ E2 ✓ HC(⇧). Then

AS(sh(⇧)) ✓ AS(sh(remove(⇧, E1)))

✓ AS(sh(remove(⇧, E2))) ✓ AS(⇧).

From Theorem 9, we can construct a closed sequence of
sound approximations of a DLP.
Corollary 10 Let ⇧ be a DLP, HC(⇧) = {a1, . . . , an}.
Then

hsh(⇧),sh(remove(⇧, {a1})),
sh(remove(⇧, {a1, a2})), . . . ,

sh(remove(⇧, {a1, . . . , an}))i

is a closed sequence of sound approximations of ⇧.

Example 1 (Continued) AS(sh(⇧1)) = ; and AS(⇧1) =
AS(remove(⇧1, a)) = AS(sh(remove(⇧1, a))) =
{{a, b, c, d, e}}.

Now we provide an anytime algorithm (Algorithm 1) to
compute answer sets of a DLP by using NLP solvers.

Algorithm 1: Computing answer sets of a DLP ⇧

1 H := HC(⇧);
2 as := AS(sh(⇧));
3 output as; // current computed answer sets of ⇧
4 for each a 2 H do
5 ⇧ := remove(⇧, a);
6 as := AS(sh(⇧));
7 output as;

8 return as;

Theorem 11 For any DLP ⇧, Algorithm 1 outputs a subset
of AS(⇧) at each step and returns AS(⇧) at last.

We can apply the approaches discussed in previous sec-
tions to optimize Algorithm 1 as well. In particular, we can
replace HC(⇧) by HC⇤(⇧) or HWEL(⇧) in the algorithm.
We can also use the approach proposed in Section 4 to im-
prove the computation of answer sets for sh(⇧).

Algorithm 1 provides an approach to compute an answer
set of a DLP by calling NLP solvers. Janhunen et al. [2006]
also provided such an approach. In their approach, a DLP ⇧ is
first rewritten to an NLP Gen(⇧) to produce candidate mod-
els S, then another NLP Test(⇧, S) is constructed to check
whether S is an answer set of ⇧. The rewriting proposed
in [Janhunen et al., 2006] is different from our rewriting in the
sense that AS(⇧) ✓ AS(Gen(⇧)), i.e., Gen(⇧) is not a sound
approximation of ⇧, while we provide a closed sequence of
sound approximations.

6 Some Experiments
We have implemented a program1 for rewriting a DLP P
to an NLP Pn, where Pn is a simplified program from
sh(remove(P,HC(P ))) by removing redundancies like
rules r with head(r) \ body+(r) 6= ; or body+(r) \
body�(r) 6= ;. By Theorem 4, AS(P ) = AS(Pn). If the
size of the NLP Pn is similar to the size of the DLP P , it will
be more efficient to compute answer sets of Pn using NLP
solvers than to compute answer sets of P using DLP solvers.

To corroborate this observation, we tested our program on
some benchmarks constructed from Niemelä’s [1999] encod-
ing H of the Hamiltonian Circuit (HC) problem. Specifically,
we constructed programs of the form Q = Q0[H[G where
H is Niemelä’s encoding for the HC problem, G is the en-
coding of the graph for a given HC instance, and the program
Q0 is given as the following:

a _ b reached(1). a b. b a.

where reached(1) is an atom in H and a, b are new atoms not
appearing in H .

Our program will rewrite such a disjunctive program Q into
a normal program Qn = Qn

0 [ H [ G. It can be seen that
Qn = sh(remove(Q,HC(Q))). Here Qn

0 is the program:

b reached(1), not a. a reached(1), not b.
a reached(1). b reached(1).

In Table 1, we compare the running times of computing an
answer set of Q and Qn using solvers clasp and cmodels2. In
the table, rand m k(t) stands for a class of randomly gener-
ated t graphs with m vertexes and k arcs. The numbers under
“Q” refer to the average running times for computing an an-
swer set of corresponding programs Q, using corresponding
DLP solvers, i.e., clasp3 (version 3.1.4) and cmodels4 (ver-
sion 3.8.5), and those under “Qn” refer to the average running

1Our implementation is available on the web
http://ss.sysu.edu.cn/%7ewh/dlp2nlp.html.

2Our experiments were done on an Intel(R) Core(TM) i7-2600
3.40GHz CPU and 32GB RAM. The reported times are in CPU sec-
onds as reported by Linux “/usr/bin/time” command.

3The modern versions of clasp have built-in support for DLPs.
http://www.cs.uni-potsdam.de/clasp/

4http://www.cs.utexas.edu/users/tag/cmodels/
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times for computing an answer set of corresponding programs
Qn, using corresponding NLP solvers, i.e., clasp and cmod-
els. As can be seen, for these programs, computing an answer
set of Qn by NLP solvers is more efficient.

Table 1: Comparing Q and Qn

Graphs Q Q

n

clasp cmodels clasp cmodels
rand 200 1800(5) 1.47 4.25 1.14 3.12
rand 250 2200(5) 43.91 1080.47(3) 6.67 508.17(1)
rand 300 2700(5) 616.76 1081.37(3) 332.80 1080.77(3)
rand 350 3000(5) 1102.61(3) 1800(5) 1080.56(3) 1800(5)
* When a solver could not compute an answer set of a program in 1800 seconds,

we count the running time as 1800 seconds. We also report the number of such
programs in the parentheses.

We also tested some benchmarks that were frequently used
to evaluate performance of DLP solvers [Denecker et al.,
2009; Gebser et al., 2013]. However, for most non-HCF
DLPs P in these benchmarks, the size of Pn is much larger
than the size of P and as a result, our method failed to show
advantage over direct use of DLP solvers.

7 Eliminating Disjunctions for First-order
Programs on Finite Structures

In this section, we extend the new rewriting to non-ground
programs with first-order answer set semantics on finite struc-
tures. We first review some basic notions.

In the following, we consider the first-order disjunctive
logic programs [Ferraris et al., 2011], with similar syntactic
forms as DLP programs. A distinction is made between pred-
icates occurring only in rule bodies and the reminder pred-
icates. A predicate P in a first-order DLP ⇧ is intensional
(or IDB) if P occurs in head(r) for some r 2 ⇧, and ex-
tensional (or EDB) otherwise. We use P(⇧), PIDB(⇧), and
PEDB(⇧) to denote sets of predicates, intensional predicates,
extensional predicates occurring in ⇧ respectively. As with
[Lee and Meng, 2008], we assume w.l.o.g. that ⇧ is in nor-
mal form without object constants occurring in rule heads.

We use first-order (ground) substitution, unifier, most gen-
eral unifier (mgu) defined in the standard way. In contrast to
grounded DLP, the answer sets of a first-order DLP is defined
using first-order structures. In particular, a finite structure M
is a tuple (D, cM1 , . . . , cM

m

, PM
1 , . . . , PM

n

), where D is a fi-
nite set called the domain of M, cM

i

2 A (the interpretation
of constant c

i

) (1  i  m), and PM
j

(the interpretation of a
k-ary predicate symbol P

j

) (1  j  n) a k-ary relation on
D. We refer the readers to [Asuncion et al., 2012] for the def-
inition of answer sets of first-order DLP on finite structures.

The answer set semantics of a first-order DLP on finite
structures can be captured by first-order loop formulas [Chen
et al., 2006; Lee and Meng, 2008] as well.

For a first-order DLP ⇧, the positive dependency graph of
⇧, written G⇧, is the infinite graph (V,E), where V is the set
of atoms constructed from PIDB(⇧), (a, b) 2 E if there is a
rule r 2 ⇧ and a substitution ✓ such that P (~t)✓ = a for some
P (~t) 2 head(r) and Q(~t0)✓ = b for some Q(~t0) 2 body+(r).
A finite nonempty subset L of V is called a (first-order) loop

of ⇧ if the subgraph of G⇧ induced by L is strongly con-
nected. Specially, for each atom a 2 V , {a} is a loop of ⇧.
We use Loop(⇧) to denote the set of loops of ⇧.

Given a loop L of a DLP ⇧ in normal form, we first rename
variables in ⇧ so that no variables of ⇧ occur in L. Then the
(first-order) external support formula of L for ⇧, denoted by
ES(L,⇧), is the following disjunction

_

✓,r: r2⇧,
head(r)✓\L 6=;

9~y
 
body(r)✓^

^

P (~t)2body

+(r)✓, P (~t0)2L

(~t 6= ~t0)

^ ¬
⇣ _

P (~t)2head(r)✓

�
P (~t) ^

^

P (~t0)2L

(~t 6= ~t0)
�⌘
!
.

The (first-order) loop formula of L in ⇧, denoted by
LF (L,⇧), is the universal closure of

V
a2L

a � ES(L,⇧).
We use LF (⇧) to denote the set of all loop formulas in ⇧.
Theorem 12 (Proposition 4 in [Lee and Meng, 2008]) Let
⇧ be a DLP and M a finite structure. M is an answer set of
⇧ if and only if M is a model of {tr(⇧)} [ LF (⇧).

Given a first-order DLP ⇧, the shifting result sh(⇧) is de-
fined in the same way as in the propositional case. Every an-
swer set of sh(⇧) is also an answer set of ⇧, but the converse
is not true in general. Similarly, a first-order DLP ⇧ is called
“Head-Cycle-Free” (HCF), if there is no loop L, rule r in ⇧,
and substitution ✓ such that |L \ head(r)✓| > 1.

Based on the progression semantics of answer sets [Zhou
and Zhang, 2011], Zhou [2015] provided the following
proposition.
Proposition 1 Let P be an HCF first-order DLP. Then,
AS(sh(⇧)) = AS(⇧).

Definition 5 (Elementary unfolding in first-order case)
Given two rules r1 and r2 (with suitable variable renam-
ing), there are atoms a 2 head(r1) and b 2 body+(r2)
such that a and b are unifiable with an mgu ✓. The rule
obtained by elementary unfolding r2 at b using r1 at
a, denoted by unfold(r1, r2, a, b), is the rule r such
that head(r) = ((head(r1) \ {a}) [ head(r2))✓ and
body(r) = (body(r1) [ (body(r2) \ {b}))✓.

Let ⇧ be a DLP, r a rule in ⇧, and b an atom in body+(r).
We denote Uset(⇧, r, b) to be the set of rules constructed by
the following procedure:
S0 := {(r0, a0) | r0 2 ⇧, there is an atom a0 2 head(r0)

such that a0 and b are unifiable };
i := 0;
while S

i

6= ;
S
i+1 := ;;

R
i+1 := ;;

for each (r0, a0) 2 S
i

if a0 and b are unifiable
r00 := unfold(r0, r, a0, b);
R

i+1 = R
i+1 [ {r00};
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✓ := the mgu that a0 and b are unfiable with;
S
i+1 := S

i+1[
{(r00, a⇤✓) | (r0, a⇤) 2 S

i

, a⇤ 6= a0};
i := i+ 1;

Uset(⇧, r, b) := R1 [R2 [ · · · [R
i

.
[Gergatsoulis, 1997] showed that the procedure would al-
ways terminate. We denote remove(⇧, r, b) = (⇧ \ {r}) [
Uset(⇧, r, b). From Theorem 13 in [Gergatsoulis, 1997], we
have the following proposition.
Proposition 2 Let P be a DLP, r a rule in ⇧, and b an atom
in body+(r). Then AS(⇧) = AS(remove(⇧, r, b)).

Let ⇧ be a DLP and a an atom in head(r) for some r 2 ⇧.
We denote remove(⇧, a) to be a set of rules constructed by
the following procedure:
R := ⇧;
while there is a rule r 2 R and b 2 body+(r) such that a

and b are unifiable
R := remove(R, r, b);

remove(⇧, a) := R.
Note that, by choosing different rules and corresponding
atoms in the procedure, remove(⇧, a) would return differ-
ent programs. However, they are equivalent in the sense of
having the same sets of answer sets.

The above procedure may not terminate for some DLPs
due to the unfolding process. Zhou [2015] identified a class
of first-order DLPs called choice-bounded and showed that
the process of applying the unfolding transformation when it
is possible would always terminate for choice-bounded DLPs.
Then for a choice-bounded DLP ⇧, the above procedure ter-
minates and remove(⇧, a) always exists.
Theorem 13 Let ⇧ be a DLP, a an atom in head(r) for
some r 2 ⇧, and remove(⇧, a) exists. Then AS(⇧) =
AS(remove(⇧, a)).

Given a DLP ⇧, we denote head(⇧) = {a | a 2
head(r) for some r 2 ⇧}. Let ⇧ be a DLP and a set A ✓
head(⇧). We denote remove(⇧, A) to be a set of rules con-
structed by the following procedure:
R := ⇧;
for each a 2 A

R := remove(R, a);
remove(⇧, A) := R.

Corollary 14 Let P be a DLP, A ✓ head(⇧), and
remove(⇧, A) exists. Then AS(⇧) = AS(remove(⇧, A)).

Now we extend our rewriting to first-order DLPs.
For a DLP ⇧, we denote

HC(⇧) = {a | a 2 head(⇧), there exists r 2 ⇧,
a loop L of ⇧, and a substitution ✓ such that
|L \ head(r)✓| > 1, a 2 head(r) and a✓ 2 L}.

We provide the following lemma to draw a sketch of the
proof for the main result.

Lemma 6 Let ⇧ be a DLP, A ✓ head(⇧), and
remove(⇧, A) exists. Then the following statements hold:

• A finite structure M satisfies LF(⇧) and tr(⇧) if
and only if M satisfies LF(remove(⇧, A)) and
tr(remove(⇧, A)), where LF(⇧) = {LF ({a0},⇧) |
a0 = a✓ for some a 2 A and substitution ✓}.

• For each L 2 Loop(remove(⇧, A)), if there
does not exist a substitution ✓ such that L \
HC(⇧)✓ 6= ;, then LF (L,remove(⇧, A)) ⌘
LF (L,sh(remove(⇧, A))).

• for each L 2 Loop(remove(⇧, A)), either there does
not exist a substitution ✓ with L \ A✓ 6= ; or L = {a}
for some a0 2 A and substitution � with a0� = a.

Theorem 15 Let ⇧ be a DLP and remove(⇧, HC(⇧)) ex-
ists. Then AS(⇧) = AS(sh(remove(⇧, HC(⇧)))).
Asuncion et al. [2012] provided a solver of first-order NLPs
by translating them to first-order sentences on finite struc-
tures. From Theorem 15, we can use the solver to compute
answer sets of some first-order DLPs.

8 Conclusion
In this paper, we provide a new answer-set-preserving rewrit-
ing of a DLP to an NLP by first apply the unfolding trans-
formation on “culprit” atoms, i.e., atoms that prevent the pro-
gram from being HCF, then shift the resulting program. This
result shows that the complexity penalty for extending NLPs
by including disjunctive rules is closely tied to these “culprit”
atoms. Hence, different from other transformations for elim-
inating disjunctions in literature, our rewriting is efficient for
“almost” HCF programs, i.e., DLPs that have only a few “cul-
prit” atoms. Later, we show that the computation of answer
sets for a rewritten program can be improved by reducing the
number of loops that need to be considered and the size of
these loops is not larger than that of the original program.
This result shows that although our transformation to NLP
may result in an exponential blow-up, there is not necessar-
ily a blow-up in loop formulas for the computation. Based on
the new writing, we provide an anytime algorithm to com-
pute answer sets of a DLP by calling NLP solvers. At last, we
extend the rewriting to non-ground answer set programs on
finite structures.
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Truszczyński. The second answer set programming
competition. In Proceedgins of the 10th International
Converence on Logic Programming and Nonmonotonic
Reasoning (LPNMR-09), pages 637–654. Springer, 2009.

[Eiter and Gottlob, 1995] Thomas Eiter and Georg Gottlob.
On the computational cost of disjunctive logic program-
ming: Propositional case. Annals of Mathematics and Ar-
tificial Intelligence, 15(3-4):289–323, 1995.

[Eiter and Wang, 2008] Thomas Eiter and Kewen Wang. Se-
mantic forgetting in answer set programming. Artificial
Intelligence, 172(14):1644–1672, 2008.

[Eiter et al., 2004] Thomas Eiter, Michael Fink, Hans Tom-
pits, and Stefan Woltran. On eliminating disjunctions in
stable logic programming. In Principles of the 9th Interna-
tional Conference on Knowledge Representation and Rea-
soning (KR-04), pages 447–457, 2004.

[Ferraris et al., 2011] Paolo Ferraris, Joohyung Lee, and
Vladimir Lifschitz. Stable models and circumscription.
Artificial Intelligence, 175(1):236–263, 2011.

[Gebser et al., 2007] M. Gebser, B. Kaufmann, A. Neumann,
and T. Schaub. Conflict-driven answer set solving. In Pro-
ceedings of the 20th International Joint Conference on Ar-
tificial Intelligence (IJCAI-07), pages 386–392, 2007.

[Gebser et al., 2011] Martin Gebser, Joohyung Lee, and
Yuliya Lierler. On elementary loops of logic programs.
Theory and Practice of Logic Programming, 11(06):953–
988, 2011.

[Gebser et al., 2013] Martin Gebser, Benjamin Kaufmann,
and Torsten Schaub. Advanced conflict-driven disjunctive
answer set solving. In Proceedings of the 23rd Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-
13), pages 912–918. AAAI Press, 2013.

[Gelfond and Lifschitz, 1991] Michael Gelfond and
Vladimir Lifschitz. Classical negation in logic pro-
grams and disjunctive databases. New generation
computing, 9(3-4):365–385, 1991.

[Gelfond et al., 1991] Michael Gelfond, Vladimir Lifschitz,
Halina Przymusinska, and Miroslaw Truszczynski. Dis-
junctive defaults. In Proceedings of the 2nd International
Conference on Principles of Knowledge Representation
and Reasoning (KR-91), pages 230–237, 1991.

[Gergatsoulis, 1997] Manolis Gergatsoulis. Unfold/fold
transformations for disjunctive logic programs. Informa-
tion processing letters, 62(1):23–29, 1997.

[Giunchiglia et al., 2006] Enrico Giunchiglia, Yuliya Lierler,
and Marco Maratea. Answer set programming based on
propositional satisfiability. Journal of Automated Reason-
ing, 36(4):345–377, 2006.

[Janhunen et al., 2006] Tomi Janhunen, Ilkka Niemelä, Diet-
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