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Abstract
Control applications often feature tasks with simi-
lar, but not identical, dynamics. We introduce the
Hidden Parameter Markov Decision Process (HiP-
MDP), a framework that parametrizes a family of
related dynamical systems with a low-dimensional
set of latent factors, and introduce a semiparametric
regression approach for learning its structure from
data. We show that a learned HiP-MDP rapidly
identifies the dynamics of new task instances in
several settings, flexibly adapting to task variation.

Many control applications involve repeated encounters with
domains that have similar, but not identical, dynamics. An
agent that swings bats may encounter several bats with dif-
ferent weights or lengths, while an agent that manipulates
cups may encounter cups with different amounts of liquid.
An agent that drives cars may encounter many different cars,
each with unique handling characteristics.

In all of these scenarios, it makes little sense of the agent
to start afresh when it encounters a new bat, a new cup, or
a new car. Exposure to a variety of related domains should
correspond to faster and more reliable adaptation to a new in-
stance of the same type of domain, via transfer learning. If an
agent has already swung several bats, for example, we would
hope that it could easily learn to swing a new bat. Why? Like
many domains, swinging a bat has a low-dimensional repre-
sentation that affects its dynamics in structured ways. The
agent’s prior experience should allow it to both learn how to
model related instances of a domain—such as via the bat’s
length, which smoothly changes in the bat’s dynamics—and
what specific model parameters (e.g., lengths) are likely.

We introduce the Hidden Parameter Markov Decision Pro-
cess (HiP-MDP) as a formalization of these types of domains,
with two important features. First, we posit that there ex-
ist a bounded number of latent parameters that, if known,
would fully specify the dynamics of each individual task.
Second, we assume that the parameter values remain fixed
for a task’s duration (e.g. the bat’s length will not change
during a swing), and the agent will know when a change has
occurred (e.g. getting a new bat).

The HiP-MDP parameters encode the minimum learning
⇤Both authors are primary authors.

required for the agent to adapt to a new domain instance: they
are a sufficient statistic for that instance’s dynamics. Given
a generative model of how the latent parameters affect do-
main dynamics, an agent could rapidly identify the dynamics
of a particular domain instance by maintaining and updating
its distribution (or belief ) over the latent parameters. Instead
of learning a new policy for each domain instance, it could
synthesize a parametrized control policy [Kober et al., 2012;
da Silva et al., 2012] based on a point estimate of the
parameter values, or plan in the belief space over its pa-
rameters [Poupart et al., 2006; Silver and Veness, 2010;
Ross et al., 2008; Guez et al., 2012; Bai et al., 2013].

We present a method for learning HiP-MDPs from data.
Our generative model uses Indian Buffet Processes [Grif-
fiths and Ghahramani, 2011] to model what latent parame-
ters are relevant for what state space variables and Gaussian
processes [Rasmussen and Williams, 2005] to model the dy-
namics functions. We do not require knowledge of a sys-
tem’s kinematics equations, nor must we specify the num-
ber of latent parameters in advance. Our HiP-MDP model
rapidly identifies dynamics and near-optimal control policies
for novel instances of the acrobot [Sutton and Barto, 1998]
and bicycle [Randlov and Alstrom, 1998] domains.

1 Background
Bayesian Reinforcement Learning The reinforcement
learning (RL) setting consists of a series of interactions be-
tween an agent and an environment. From some state s, the
agent chooses an action a which transitions it to a new state
s0 and provides reward r. Its goal is to maximize its ex-
pected sum of rewards, E[

P
t �

trt], where � 2 [0, 1) is a
discount factor that weighs the relative importance of near-
term and long-term rewards. This series of interactions can
be modeled as a Markov Decision Process (MDP), a 5-tuple
{S,A, T,R, �} where S and A are sets of states s and actions
a, the transition function T (s0|s, a) gives the probability of
the next state being s0 after performing action a in state s,
and the reward function R(s, a) gives the reward r for per-
forming action a in state s. We refer to the transition function
T (s0|s, a) as the dynamics of a system.

The transition function T or the reward function R must
be learned from experience. Bayesian approaches to rein-
forcement learning [Poupart et al., 2006; Ross et al., 2008;
Silver and Veness, 2010] place a prior over the transition
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function T (and sometimes also R), and refine this prior
with experience. Thus, the problem of learning an unknown
MDP is transformed into a problem of planning in a known
partially-observable Markov Decision Process (POMDP).
A POMDP [Kaelbling et al., 1998] consists of a 7-tuple
{Y,A,O, ⌧,⌦, R, �}, where Y,A, and O are sets of states
y, actions a, and observations o; ⌧(y0|y, a) and R(y, a) are
the transition and reward functions; and the observation func-
tion ⌦(o|y0, a) is the probability of receiving an observation
o when taking action a to state y0. Bayesian RL learns an
MDP by planning in a POMDP with states yt = {st, T}: the
fully-observed “world-state” st and the hidden dynamics T .

However, despite recet advances [Silver and Veness, 2010;
Kurniawati et al., 2008; Guez et al., 2012], solving POMDPs
in high-dimensional, continuous state spaces remains chal-
lenging. Our approach simplifies the Bayesian RL challenge
by using instances of related tasks to find a low-dimensional
representation of the transition function T .

Indian Buffet Processes and Gaussian Processes Our
specific instantiation of the HiP-MDP uses two models from
Bayesian nonparametric statistics. The first is the Indian Buf-
fet Process (IBP). The IBP is a prior on 0-1 matrices M(n, k)
with a potentially unbounded number of columns k. To gen-
erate samples from the prior, we first use a Beta process to
assign a probability pk to each column k such that

P
k pk is

bounded. Then, each entry M(n, k) is set to 1 independently
with probability pk. We use the IBP as a prior on which latent
parameters are relevant for predicting each state transition.

The second model we use is the Gaussian Process (GP).
A GP is a prior over continuous functions y = f(x) where
the prior probability of outputs {y

1

, ..., yt} given a set of in-
puts {x

1

, ..., xt} is a multivariate Gaussian N(m,K), where
m(xi) is the mean function of the Gaussian process and the
covariance matrix has elements K(xi, xj) for some positive
definite kernel function K. We will use Gaussian processes
as priors over the basis functions for our transition functions.

2 Hidden Parameter Markov Decision
Processes

We focus on learning the dynamics T and assume that the
reward function r = R(s, a) is fixed across all instances. Let
b denote each instance of a domain. The Hidden Parameter
Markov Decision Process (HiP-MDP) posits that the variation
in the dynamics of different instances can be captured through
a set of hidden parameters ✓b.

A HiP-MDP is described by a tuple:
{S,A,⇥, T, R, �, P

⇥

}, where S and A are the sets of
states s and actions a, and R(s, a) is the reward function.
The dynamics T for each instance b depends on the value of
the hidden parameters ✓b: T (s0|s, ✓b, a). We denote the set
of all possible parameters as ⇥ and let P

⇥

(✓) be the prior
over these parameters. Thus, a HiP-MDP describes a class

of tasks; a particular instance b of that class is obtained by
fixing the parameter vector ✓b 2 ⇥.

As pointed out by Bai et al.

[2013] in a similar setting,
we can consider the HiP-MDP a type of POMDP where the

hidden state is the parameter vector ✓b. However, a HiP-
MDP makes two assumptions that are stronger than those of
a POMDP. First, each instance of a HiP-MDP is an MDP—
conditioned on ✓b, there is no hidden state. Thus, we could
always learn to solve each HiP-MDP instance as its own dis-
tinct MDP. Second, the parameter vector ✓b is fixed for the
duration of the task, and thus the hidden state has no dynam-
ics. This assumption considerably simplifies the procedure
for inferring the hidden parametrization.

In special cases, we may be able to derive analytic expres-
sions for how ✓b affects the dynamics T (s0|s, ✓b, a): for ex-
ample, in a manipulation domain we might be able to derive
an equation for how the cup will respond to a force given
a particular mass of liquid. However, in most situations,
the simplifications required to derive these analytical forms
for the dynamics will be brittle at best. The IBP-GP prior
for the HiP-MDP, presented next, describes a semiparamet-
ric approach for modeling the dynamics that places few as-
sumptions on the form of the transition function T (s0|s, ✓b, a)
while still maintaining computational tractability.

3 The IBP-GP HiP-MDP Model
Let the state s be some d-dimensional vector in Rd. We pro-
pose a transition model T of the form:

(s0d � sd) ⇠
PK

k zkadwkbfkad(s) + ✏

✏ ⇠ N(0,�2

nad),

that is, we model the transition distribution as the difference
between the current and next state. The transition distribution
has two parts (as also illustrated in figure 1): one that is shared
among all instances and one that is specific to the particular
instance b. The functions fkad(s) can be thought of as a ba-
sis from which we will construct the transition function, and
the filter parameters zkad 2 {0, 1} denote whether the kth

latent parameter is relevant for predicting dimension d under
action a—effectively switching fkad on or off. These global
basis functions zkadfkad(s) are multiplied by task-instance-
specific weights wkb (e.g., the effect of torque on velocity
depends on the weight of the bat). The task instance dynam-
ics are therefore obtained by setting wkb, the only elements
of the model that vary across instances.

The generative process for the hidden variables wkb, zkad,
and fkad is given by

zkad ⇠ IBP(↵) for k > 1

fkad ⇠ GP( )
µwk ⇠ N(0,�2

w0
)

wkb ⇠ N(µwk ,�
2

w) for k > 1,

where ↵ and  are the hyper-parameters of the IBP and GP.
We set w

1b, z1ad = 1 to fix the scale of the latent parameters
and have the basis function f

1ad be the mean dynamics.
The IBP-GP prior encodes the assumption that we have an

infinite number of possible basis functions fkad that we could
use to construct the transition functions, while using an IBP
prior on the filter parameters zkad implies that we expect a
few latent factors to be relevant for making most predictions.
That is, given a finite number of instances, we will only need
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Figure 1: The graphical model for the IBP-GP HiP-MDP. The
transitions between states depend on a set of batch-specific
weights wkb and global parameters fkad, zkad.

a finite number of basis functions to construct the dynamics.
Specifically, we cannot have seen more than B different tran-
sition functions in a batch of B instances. Thus, when making
predictions about a specific state dimension d given action a,
only a few of these infinite possible latent parameters will be
relevant—and we only need to infer weights wkb correspond-
ing to situations where zkad is nonzero. Moreover, additional
prediction tasks—such as a new action, or a new dimension
to the state space—can be incorporated in a statistically con-
sistent manner. As a regression model, IBP-GP model is an
infinite version of the Semiparametric Latent Factor Model
[Teh et al., 2005].

4 Inference in the IBP-GP HiP-MDP
We focus on scenarios in which the agent is given a large
amount of batch observational data from several domain in-
stances (perhaps solved as independent MDPs) and tasked
with quickly performing well on new instances. Our batch
inference procedure uses the observational data to fit the fil-
ter parameters zkad and basis functions fkad, which are in-
dependent of any particular instance, and compute a poste-
rior over the weights wkb, which depend on each instance.
These settings of zkad, fkad, and P (wkb) will used to infer
the instance-specific weights wkb efficiently in the online set-
ting when given a new instance.

4.1 Batch Inference
Given a batch of data containing multiple instances, we infer
the filter parameters zkad, the weights wkb, and an approxi-
mation to the basis functions fkad(S⇤

) using a blocked Gibbs
sampler.

Representing and Resampling fkad The posterior over the
weights wkb is Gaussian given the filter settings zkad and
means µwk ; the basis functions fkad can be marginalized out.
Thus, in theory, it is not necessary to instantiate the basis
functions fkad.

However, marginalization over the basis functions fkad re-
quires computing inverses of matrices of size N =

P
b Nb,

where Nb is the number of data collected in instance b. To
avoid this computational cost, we choose to represent each
function fkad by a set of (s⇤, fkad(s⇤)) pairs for states s⇤ in a
set of support points S⇤. Various optimization procedures ex-
ist for choosing the support points [Snelson and Ghahramani,
2005; Teh et al., 2005]; we found that iteratively choosing
support points from existing points to minimize the maximum
reconstruction error within each batch was best for a setting
in which a few large errors can result in poor performance.

Given a set of tuples (s, a, s0, r) from a task instance b,
we first created tuples (s⇤, a,�b(s

⇤
)) for all s⇤ 2 S⇤ and

all actions a, all dimensions d, and all instances b. The tu-
ple (sd⇤, a,�b(sd⇤)) can be predicted based on all other data
available for that action a, dimension d pair using standard
Gaussian process prediction:

E[�(sd⇤)] = Ks⇤Sab(KSabSab + �2

nadI)
�1

�b(Sabd),

where Sab is the collection of tuples (s, a, s0, r) with action
a from instance b, Ks⇤Sab is the vector K(s⇤, s) for every
s 2 Sab, KSabSab is the matrix K(s, s), and �b(Sabd) is the
vector of differences s0d � sd. This procedure was repeated
for every task instance b.

Now, we can proceed to sample new values for the basis
function fkad at the chosen support points S⇤. Given zkad
and wkb, the posterior over the outputs fkad(S⇤

) is Gaussian.
Let fad(S⇤

) be a column vector of concatenated fkad(S
⇤
)

vectors, and let �(S⇤
) be a column vector of concatenated

�b(S
⇤
) vectors. The mean and covariance of fad(S

⇤
) is

given by

cov(fad(S⇤
)) = �2

nad(W
TW + �2

nadK
�1

S⇤S⇤)
�1

E[fad(S
⇤
)] =

1

�2

nad

cov(fad(S⇤
))

�1WT ⇤�(S⇤
)

where

K = Ik ⌦KS⇤S⇤

W = wb(zkad)⌦ I|S⇤|,

where ⌦ is the Kronecker product, KS⇤S⇤ is the matrix
K(s⇤, s⇤) for every s⇤ 2 S⇤, and we write wb(zkad) to be
a B ⇥ k0 matrix of elements wkb such that zkad = 1. We
repeat this process for each action a and each dimension d.

The update equations for zkad and wkb follow directly from
the properties of Gaussian distributions and Indian Buffet
Processes.

Resampling wkb Given zkad and fkad(S
⇤
), the posterior

over wkb is also Gaussian. For each instance b, the mean and
covariance of wb(zkad) (that is, the weights not set to zero)
are given by:

cov(wkb) = �2

n(F
T
b Fb + Ik�1

�2

n

�2

w

)

�1

E[wkb] = cov(wkb)
�1

(

µwk

�2

w

+

1

�2

n

FT
b )

·(�b(S
⇤
)� F

1b(S
⇤
)),

1434



for k > 1, where Fb is matrix with k0 � 1 columns concate-
nating values for fkad for all actions a and all dimensions d
and excluding k = 1, and �b(S

⇤
) is a column vector con-

catenating the differences for all actions a and all dimensions
d.

Resampling zkad To sample zkad for an already-initialized
feature k, we note that the likelihood of the model given z,
w, and f with some zk0ad = 0 is Gaussian with mean and
variance

E[�s⇤] =

X

k 6=k0

zkadwkbfkad(s
⇤
) (1)

cov(�s⇤) = �2

nad. (2)

If zkad = 1, then the likelihood is again Gaussian with the
same mean (here we assume that the GP prior on f is zero-
mean) but with covariance

cov(�s⇤) = wk0wT
k0 ⌦KS⇤S⇤

+ �2

nadI, (3)

where wk0 is a vector of latent parameter values for all in-
stances b. We combine these likelihoods with the prior to
sample zkad.

Initializing a new latent parameter k0—that is, a
k0 for which we do not already have values for the
weights wk0b—involves computing the marginal likelihood
P (�(S⇤

)|zk0ad, wkb, fkad), which is intractable. We approx-
imate the likelihood by sampling Nw sets of new weights
wk0b. Given values for the weights wk0b for each instance
b, we can compute the likelihood with the new basis function
fk0ad marginalized out. We average these likelihoods to es-
timate the marginal likelihood of zk0ad = 1 for the new k0.
(For the zk0ad = 0 case, we can just use the variance from
the prior.) If we do set zk0ad = 1 for the new k0, then we can
sample a set of weights wk0b from our Nw samples based on
their importance weight (marginal likelihood).

Finally, given the values of the weights wkb for a set of
instances b, we can update the posterior over µwk with a stan-
dard conjugate Gaussian update:

var(µwk) = (

1

�2

w0

+

B

�2

w

)

�1

E[µwk ] =

P
b wkb

�2

w

var(µwk)
�1.

We use this posterior over the weight means µwk when we
encounter a new instance b0.

4.2 Online Filtering
Given values for the filter parameters zkad and the basis func-
tions fkad, the posterior on the weights wkb is Gaussian.
Thus, we can write the parametrized belief bt(wkb) at time
t with (hw, Pw), where Pw is the inverse covariance ⌃�1

w and
hw is the information mean µwPw. Then the update given an
experience tuple (s, a, s0, r) is given by

hw(t+ 1) = hw(t) + FT
a ⌃

�1

na�(s)

Pw(t+ 1) = Pw(t) + FT
a ⌃

�1

naFa,

where Fa is a d ⇥ k matrix of basis values fkad(s), ⌃na is
a d ⇥ d noise matrix with �2

nad on the diagonal (note that
therefore the inverse ⌃

�1

na is trivially computed), and �(s) is
a d-dimensional vector of s0d � sd. If updates are performed
only every n time steps, we can simply extend F , ⌃, and �(s)
to be nd⇥ k, nd⇥ nd, and nd respectively.

Computing Fa requires computing the values of the basis
functions at the point s. Since we only have the values com-
puted at pseudo-input points s⇤ 2 S⇤, we use standard GP
prediction to interpolate the value for this new point:

E[fkad(s)] = KsS⇤
(KS⇤S⇤

+ �2

nadI)
�1fkad(S

⇤
),

where KsS⇤ is the vector K(s, s⇤) for every s⇤ 2 S⇤, KS⇤S⇤

is the matrix K(s⇤, s⇤), and fkad(S
⇤
) is the vector fkad(s⇤).

Using only the mean value fkad(s
⇤
) ignores the uncertainty

in the basis function fkad. While incorporating this vari-
ance is mathematically straight-forward—all updates remain
Gaussian—it adds additional computation to the online cal-
culation, and we found that using the means already provided
significant gains in learning in practice.

5 Results
In this section, we describe results on three benchmark prob-
lems: cartpole, acrobot [Sutton and Barto, 1998], and bicycle
[Randlov and Alstrom, 1998]. Cartpole has a relatively sim-
ple policy; we use it to visualize how HiP-MDPs compress
the dynamics across different parameter settings into a latent
space. Acrobot and bicycle are challenging domains when
the agent must rapidly learn a control strategy for a new set
of parameters. All of our tests use an anisotropic squared-
exponential kernel with length and scale parameters approxi-
mated for each action a and state dimension d.

5.1 Cartpole
In the cartpole domain, an agent must apply forces either to
the left or right of a cart to keep a pole balanced on top of it. It
has a four-dimensional state space s = {x, ẋ, ✓, ˙✓} consisting
of the cart’s position x, the cart’s velocity ẋ, the pole’s angle
✓, and the pole’s angular velocity ˙✓. At each time step of
length ⌧ , the system evolves according to:

xt+1

= xt + ⌧ ẋt (4)
ẋt+1

= ẋt + ⌧(v �ml¨✓ cos ✓/M)

✓t+1

= ✓t + ⌧ ˙✓t
˙✓t+1

=

˙✓t + ⌧ ¨✓,

where v =

f+ml ˙✓2
t sin ✓

M , ¨✓ =

(g sin ✓�v cos ✓)
(l( 4

3�m cos ✓2/M)

, f is the ap-
plied force, g is gravity, M is the mass of both the cart and
the pole, and m and l are the mass and length of the pole.

We varied the pole mass m and the pole length l. In each
(m, l) setting, we ran Sarsa [Sutton and Barto, 1998] (using
a 3rd order Fourier basis [Konidaris et al., 2011]) for 5 rep-
etitions of 30 episodes, where each episode was run for 300
steps or until the pole fell down. Data from seven (m, l) set-
tings { (.1,.4) , (.3,.4) , (.15,.45) , (.2,.55) , (.25,.5) , (.3,.4)
, (.3,.6) } were reduced to 750 support points and then the
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Batch + Train Batch Only Train Only IBP-GP HIP-MDP
ẋ 4.8e-06 (1.7e-08) 4.8e-06 (1.7e-08) 9.1e-05 (2.3e-07) 4.7e-06 (1.7e-08)
ẍ 1.1e-07 (1.0e-08) 1.1e-07 (1.1e-08) 7.6e-07 (1.4e-07) 3.3e-08 (2.9e-09)
˙✓ 1.1e-03 (3.2e-06) 1.1e-03 (3.2e-06) 3.4e-02 (1.4e-04) 1.0e-03 (3.2e-06)
¨✓ 1.5e-05 (1.5e-06) 1.5e-05 (1.6e-06) 3.7e-05 (2.8e-06) 2.5e-06 (1.1e-07)
All 2.7e-04 (8.9e-04) 2.7e-04 (8.9e-04) 8.4e-03 (2.8e-02) 2.6e-04 (8.8e-04)

Table 1: Mean-Squared Error on Cartpole (with 95% confidence intervals).

batch inference procedure was repeated 5 times for 250 iter-
ations. We set �w = 4, ↵ = 2, and optimized the Gaussian
process parameters.

Next, 50 training points were selected from each run
of (m, l) settings with m 2 {.1, .15, .2, .25, .3} and l 2
{.4, .45, .5, .55, .6}. The online inference procedure was used
to estimate the weights wkb given the filter parameters zkad
and basis functions fkad from the batch procedure. The qual-
ity of the predictions �(s) on 50 unseen test points are shown
in Table 1, which compares standard regression using differ-
ent combinations of input data to the HiP-MDP model. Stan-
dard regression using only the batch points, and using both
batch and training, is equivalent to treating all of the task in-
stances as a single MDP, while regression using the training
points for each (m, l) setting performs no transfer and results
in the highest error. Our IBP-GP model uses both the batch
data and the training points for each (m, l) setting, modeling
both the commonalities and differences between MDPs in the
task family. It performs similarly to a single batch-trained GP
for predicting the change in outputs x and ✓, since these state
variables do not depend on m or l (see equation 4). It sig-
nificantly outperforms the other settings for outputs ẋ and ˙✓,
whose changes do depend on the parameters of system. Vi-
sualizations interpreting the latent parameters are included in
the appendix.

5.2 Acrobot
Cartpole is simple enough that changing m and l does not
change the optimal policy—if the pole is falling to the left,
the cart should be moved left, and similarly to the right. Ac-
robot, in which the agent must swing up a double pendulum
only through applying a positive, neutral, or negative torque
to the joint between the two poles, is much more challenging.
The state space consists of the angle ✓

1

and angular velocity
˙✓
1

of the first segment (with mass m
1

) and of the second seg-
ment (✓

2

and ˙✓
2

, with mass m
2

). Small changes in mass can
substantially impact the policy.

For batch training, we used mass settings (m
1

,m
2

) set-
tings of { (.7,.7) , (.7,1.3) , (.9,.7) , (.9,1.1) , (1.1,.9) , (1.1,1.3)
, (1.3,.7) , (1.3, 1.3) }, again employing Sarsa (this time with
a 5th order Fourier Basis). 1000 support points were chosen
to minimize the maximum prediction error within each batch.
Next, we inferred the filter parameters zkad and obtained ap-
proximate MAP-estimates for the basis functions fkad.

Table 2 shows mean-squared prediction errors using the
same evaluation procedure as cartpole, with (m

1

,m
2

) set-
tings of m

1

2 {.7, .9, 1.1, 1.3} and m
2

2 {.7, .9, 1.1, 1.3}.
The HiP-MDP predicts better overall, with slightly higher

Batch +
Train

Batch
Only

Train
Only

IBP-GP
HIP-MDP

✓̇1 5.1e-05
(3.1e-06)

5.4e-05
(3.3e-06)

3.8e-04
(3.1e-05)

5.5e-05
(8.3e-06)

✓̇2 1.4e-04
(1.2e-05)

1.5e-04
(1.2e-05)

8.8e-04
(9.6e-05)

1.3e-04
(2.1e-05)

✓̈1 7.0e-04
(4.5e-05)

7.2e-04
(4.8e-05)

1.6e-03
(1.5e-04)

3.6e-04
(4.0e-05)

✓̈2 4.2e-04
(2.5e-05)

4.3e-04
(2.7e-05)

9.1e-04
(1.0e-04)

2.3e-04
(2.1e-05)

All 3.3e-04
(3.8e-05)

3.4e-04
(3.9e-05)

9.4e-04
(8.1e-05)

2.0e-04
(2.1e-05)

Table 2: Mean-squared prediction error on the acrobot state
variables (with 95% confidence intervals).

mean-squared errors on the angle predictions and lower er-
rors on the angular velocity predictions. Predicting angular
velocities is critical to planning in acrobot; inaccurate predic-
tions will make the agent believe it can reach the swing-up
position more quickly than is physically possible.

In acrobat, a policy learned with one mass setting will
generally perform poorly on another. To evaluate our HiP-
MDP approach in a control setting, we ran 30 trials in each
of the 16 settings above, filtered the weight parameters wk

during an episode, and updated the policy at the end of
each episode. As finding the full Bayesian RL solution is
PSPACE-complete [Fern and Tadepalli, 2010] and offline ap-
proximation techniques are an active area of research [Bai et

al., 2013], we performed planning using Sarsa with dynam-
ics based on the mean weight parameters wk. We first ob-
tained an initial value function using the prior mean weights,
and then interleaved model-based planning and reinforcement
learning, using 5 episodes of planning for each of interaction.

Results on acrobot are shown in Figure 2. We compare
performance (averaged over weight settings) to planning us-
ing the true model, and to planning using an average model
(learned using all the batch data at once) to obtain an ini-
tial value function. Both the average and HiP-MDP model
reach performance near, but not quite as high as, using the
true model. However, the HiP-MDP model is already near
that performance by the 2nd episode. Using the learned bases
from the batches, as well as learning the weights from the first
episode, lets it quickly “snap” very near to the true dynamics.
Our HiP-MDP model reaches near-optimal performance in 5
episodes, compared to 15 for the average model.
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Figure 2: Acrobot performance. The HiP-MDP quickly ap-
proaches near-optimal performance.

5.3 Bicycle
The bicycle domain [Randlov and Alstrom, 1998] re-
quires the agent to keep a bicycle traveling at a constant
speed upright for as long as possible within a bounded
60x60m area. The agent has three torque actions on the
handlebars—{�2N, 0, 2N}—and three mass-displacement
actions—{�2cm, 0, 2cm}—for a total of nine possible ac-
tions. To simulate imperfect balance, a random displacement
between [�2cm, 2cm] is added to the agent’s displacement
action. The dynamics of the bicycle depend on several pa-
rameters, and here we vary the bicycle’s height and mass,
physical parameters to which a real-life bicycle-riding agent
should be robust.

Our batch training data consisted of two trials of 10
episodes for the bicycle height ranging from 0.74 to 1.24 me-
ters in increments of 0.15 and weight ranging from 10 to 20
kilograms in increments of 5. These batch data were used
to infer the filter parameters zkad and approximate MAP-
estimates for the basis functions fkad for the HiP-MDP.

At test time, we ran 25 trials for each setting of the two
task parameters. For each trial, we first used the mean model
parameter values to compute an initial value function; we
then mixed learning and planning—one episode of planning
for each 10 episodes of real data, up to 200 episodes of
real data—while filtering the weight parameters wk. Both
learning and planning was performed using Sarsa(�) with
↵ = 0.05 and � = 0.95, an epsilon-greedy exploration policy
with ✏ = 0.05, and reward discount � = .99, using tile cod-
ing with the boundaries used in the original paper [Randlov
and Alstrom, 1998] and then continued with Sarsa. The av-
erage model computed a single set of bicycle dynamics from
all of the batch data. We applied 1500 episodes of Sarsa on
this model to learn a value function to initialize the learner
in a new setting. Figure 3 compare the HiP-MDP and av-
eraged approaches to learning each bicycle parameter con-
figuration from scratch, averaged over all height and mass
configurations. Both approaches show positive transfer, but
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Figure 3: Bicycle performance. The HiP-MDP quickly ap-
proaches near-optimal performance.

the HiP-MDP has a much faster learning trajectory, reach-
ing near-optimal performance nearly 150 episodes before the
average-initialized approach. The slow rate of the learner that
starts from scratch demonstrates the overall difficulty of the
bicycle problem.

6 Discussion and Related Work
Bai et al.

[2013] use a very similar hidden-parameter set-
ting treated as a POMDP to perform Bayesian planning;
they assume the model is given, whereas our task is to
learn it. The HiP-MDP is similar to other POMDPs with
fixed hidden states, for example, POMDPs used for slot-
filling dialogs [Williams and Young, 2005]. The key dif-
ference, however, is that the objective of the HiP-MDP is
not simply to gather information (e.g., simply learn the tran-
sition function T ); it is to perform well on the task (e.g.,
drive a new car). Transfer learning—the goal of the HiP-
MDP—has received much attention in reinforcement learn-
ing. Most directly related in spirit to our approach are
Hidden-Goal MDPs [Fern and Tadepalli, 2010], hidden-type
MDPs and bandits [Azar et al., 2013; Brunskill and Li, 2013;
Mahmud et al., 2014; Rosman et al., 2016] and hierarchical
model-based transfer [Wilson et al., 2012a]. In these settings
the agent must determine its current MDP from a discrete
set of MDPs. However, note that in the discrete setting the
agent switches between distinct MDPs (or, in the case of Wil-
son et al.

[2012a], a finite set of distributions over discrete
MDPs), rather than learning how a continuous parametriza-
tion modifies the dynamics of the entire family. Represen-
tation transfer approaches [Ferguson and Mahadevan, 2006;
Taylor and Stone, 2007; Ferrante et al., 2008] typically focus
on learning a set of basis functions sufficient for represen-
tating any value function defined in a specific state space, or
on transfer between two different representations of the same
task. By contrast, the HiP-MDP focuses on modeling the di-
mensions of variation of a family of related tasks.

A recent series of papers [Ammar et al., 2014; Bou Am-
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mar et al., 2015b; 2015a] transfer learned policy parameters
across families of related tasks using policy gradient meth-
ods. These papers synthesize new policies as linear com-
binations of policy components from previously solved in-
stances. They are complementary to our approach, which fo-
cuses on parametrizing the environmental model rather than
the policy. However, the supervised nature of transition mod-
els means that our approach is not limited to policy gradients;
we can also infer the number of parameters in the environ-
mental model from data.

The IBP-GP prior itself relates to a body of work on
multiple-output Gaussian processes (e.g. [Álvarez and
Lawrence, 2011; Teh et al., 2005; Wilson et al., 2012b]),
though most of these are focused on learning a convolu-
tion kernel to model several related outputs on a single task,
rather than parameterizing several related tasks. Gaussian
process latent variable models [Lawrence, 2004] have been
used for dimensionality reduction in dynamical systems. As
with other multi-output GP models, however, GP-LVMs find
a time-varying, low-dimensional representation for a single
system, while we characterize each instance in a set of sys-
tems by a stationary, low-dimensional vector. The focus of
these efforts has also been on modeling rather than control.

The extensive work on scaling inference in these Gaussian
process models [Álvarez and Lawrence, 2011; Titsias, 2009;
Damianou et al., 2011] provides avenues for relaxing the ap-
proximations made in this work (while adding new ones). In
settings where one may not have an initial batch of data from
several instances, a fully Bayesian treatment of the filter pa-
rameters zkad and the basis functions fkad might allow the
agent to more accurately navigate its exploration-exploitation
trade-offs. Exploring which uncertainties are important to
model—and which are not—is an important question for fu-
ture work. Other extensions within this particular model in-
clude applying clustering or more sophisticated hierarchical
methods to group together basis functions fkad and thus share
statistical strength. For example, one might expect that “op-
posing actions,” such as in cartpole, could share similar basis
functions.

Another interesting direction is allowing for some time-
varying dynamics within the problem, but in structured ways
that still make inference relatively easy. For example, we may
place priors on the weights wk that allow them to shift—but
slowly. Or we may believe that abrupt changes are possible
but unlikely—such as an agent moving from one kind of sur-
face to another. Finally, it would be interesting to explore
the limit of what kind of transfer is possible: given data from
two differing domains, will we just learn two sets of basis
functions with non-overlapping filter parameters zkad? What
kind of modeling hierarchies might allow for more sharing
between only somewhat-related tasks?

7 Conclusion
Machine learning approaches for control generally expect re-
peated experiences in the same domain. However, in practice
agents are more likely to experience repeated domains that
vary in limited and specific ways. In this setting, traditional
planning approaches that rely on exact models may fail due to

the large inter-instance variation. By contrast, reinforcement
learning approaches, which often assume that the dynamics
of a new instance are unknown, may fail to leverage informa-
tion across related instances.

The HiP-MDP model explicitly captures this inter-instance
variation, providing a compromise between these two stan-
dard paradigms for control. It should prove useful when the
family of domains has a parametrization that is small rela-
tive to its model and where objectives remain similar across
domains. Many applications—such as handling similar ob-
jects, driving similar cars, even managing similar network
flows—fit this scenario, where batch observational data from
related tasks are easy to obtain in advance. In such cases, be-
ing able to generalize dynamics from only a few interactions
with a new operating regime (using data from many prior in-
teractions with similar systems) is a key step in building con-
trollers that exhibit robust and reliable decision-making while
gracefully adapting to new situations.

Acknowledgments
This research was supported in part by DARPA under agree-
ment number D15AP00104, and by the National Institutes of
Health under award number R01MH109177. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright nota-
tion thereon. The content is solely the responsibility of the
authors and does not necessarily represent the official views
of the National Institutes of Health or DARPA.

A Visualizing Latent Features for Cartpole
In all 5 of the MCMC runs, a total of 4 latent parameters
were inferred. The output dimensions x and ✓ consistently
only used the first (baseline) feature—that is, our IBP-GP’s
predictions were in fact the same as using a single GP. This
observation is consistent with the cartpole dynamics and the
observed prediction errors in figure 4. The second feature was
used by both ẋ and ˙✓ and was positively correlated with both
the pole mass m and the pole length l (figures 6, 5, and 5).
In the cartpole dynamics equations, both ẋ and ˙✓ have many
ml terms. The third consistently discovered feature was used
only by ẋ and was positively correlated with the pole mass m
and not correlated with the pole length l; the equations for ẋ
have several terms that depend only on m. The fourth feature
(used only to predict ẋ) had the highest variability; it gener-
ally has higher values for more extreme length settings, sug-
gesting that it might be a correction for more complex non-
linear effects.
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