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Abstract
The Mondrian process (MP) produces hierarchical
partitions on a product space as a kd-tree, which
can be served as a flexible yet parsimonious parti-
tion prior for relational modeling. Due to the re-
cursive generation of partitions and varying dimen-
sionality of the partition state space, the inference
procedure for the MP relational modeling is ex-
tremely difficult. The prevalent inference method
reversible-jump MCMC for this problem requires a
number of unnecessary retrospective steps to tran-
sit from one partition state to a very similar one and
it is prone to fall into a local optimum. In this pa-
per, we attempt to circumvent these drawbacks by
proposing an alternative method for inferring the
MP partition structure. Based on the observation
that similar cutting rate measures on the partition
space lead to similar partition layouts, we propose
to impose a nonhomogeneous cutting rate measure
on the partition space to control the layouts of the
generated partitions – the original MCMC sam-
pling problem is thus transformed into a Bayesian
global optimization problem. The empirical tests
demonstrate that Bayesian optimization is able to
find better partition structures than MCMC sam-
pling with the same number of partition structure
proposals.

1 Introduction
Stochastic block models [Holland et al., 1983] have drawn in-
creasing research interests in recent years [Kemp et al., 2006;
Porteous et al., 2008; Airoldi et al., 2009; Li et al., 2009;
Nakano et al., 2014; Fan et al., 2016] with applications in link
prediction, community discovery, recommender systems, etc.
In many scenarios, it is unlikely to know the number of blocks
in advance, therefore Bayesian nonparametric models are de-
veloped in favour of its flexibility in parameter settings. The
infinite relational model (IRM) [Kemp et al., 2006], which
imposes a Chinese restaurant process (CRP) on each dimen-
sion of the relational data, has demonstrated its practical-
ity for discovering the underlying structure of relational data
in regular-grid patterns. The multifurcation Gibbs fragmen-
tation tree (MGFT) [Schmidt et al., 2013] is introduced to

model the data with multi-scale structures. A more flexi-
ble and parsimonious Bayesian nonparametric block model
is the Mondrian process (MP) [Roy and Teh, 2009] relational
model, which extends the regular-grid partitions to hierarchi-
cal partitions as a kd-tree. The random function priors [Lloyd
et al., 2012] further extends the block-style piecewise inten-
sity measure into a continuous intensity measure.

Among these partition structures, we are particularly in-
terested in the relational modeling based on the hierarchical
partition structure generated by the MP [Roy and Teh, 2009].
Compared to [Kemp et al., 2006; Lloyd et al., 2012] which
have efficient inference methods, the MP partition structure
is extremely difficult to infer because the partition structure
is recursively generated and the partition state space varies
during the inference procedure. The reported inference meth-
ods for inferring MP partition structures are all based on the
Metropolis-Hastings (MH) sampling family, either using the
MH algorithm with various types of proposals (e.g., rota-
tion and scaling) [Roy and Teh, 2009] or the reversible-jump
MCMC (RJMCMC) [Green, 1995] for varying dimensional-
ity of the partition space [Wang et al., 2011]. However, for the
MH approach there is no clear rule to design proposals; while
for the RJMCMC approach, there exist the following draw-
backs: (1) It requires a number of unnecessary retrospective
steps to transit from one partition state to a very similar parti-
tion state (see an example in Figure 2); (2) the sampling pro-
cedure is prone to fall into a local optimum. These drawbacks
seriously diminish the practicality of the MP.

Based on the observation that similar cutting rate measures
on the partition space lead to similar partition layouts, we
propose to impose a nonhomogeneous cutting rate measure
on the partition space to control the layouts of the generated
partitions. To this end, we design a piecewise constant non-
homogeneous rate measure imposed on the partition space,
from which we can sample cuts using a very simple strategy.
Moreover, the nonhomogeneous rate measure can be repre-
sented as a vector in the continuous space so that it can be
directly optimized through gradient methods. In this way,
we transform the original MCMC sampling problem into a
Bayesian global optimization problem. We test the proposed
inference method for the MP relational model and find that it
is able to find better partition structures than RJMCMC sam-
pling with the same number of partition structure proposals.

The remainder of the paper is organized as follows: We
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introduce some preliminaries regarding the MP in Section 2.
The proposed Bayesian optimization method for inferring MP
partition structures is presented in Section 3. In Section 4,
we will demonstrate the empirical test results of the MP rela-
tional modeling. The paper is concluded in Section 5.

2 Preliminaries
2.1 Stochastic Partitions on Exchangeable Graphs
Many real-world relational data can be represented as graphs
(2-arrays). A 2-array R is called separately exchangeable
if its joint distribution is invariant to random permutations
of rows and columns: (R

i,j

)

d

= (R

⇡(i)⇡′(j)), where ⇡ and
⇡

0 denote two independent random permutations over rows
and columns of R, respectively. The stochastic partition pro-
cess on a graph makes use of such exchangeability by re-
ordering rows and columns of R such that the interaction in-
tensity within the blocks of a partition structure is homoge-
neous under a certain distribution. The distribution of an ex-
changeable graph can be characterized by a random function
⇥ : [0, 1]

2 !→ [0, 1], which is also called “graphon” [Lovász,
2012]. By mapping the row and column indices (⇠

i

, ⌘

j

)

onto [0, 1]

2, the observation R

i,j

can be generated by some
atomic distribution p

R

(e.g., Bernoulli distribution for link
prediction): R

i,j

|⇠
i

, ⌘

j

,⇥ ∼ p

R

(R

i,j

|⇥(⇠
i

, ⌘

j

)), which is the
Aldous-Hoover theorem [Aldous, 1981].

There are a large body of work on Bayesian nonparamet-
ric graphons [Orbanz and Roy, 2015], most of which are
closely relevant to graph partitions if the underlying graphon
is a piecewise constant function. The simplest Bayesian non-
parametric graphon is IRM [Kemp et al., 2006], which is
constructed by imposing a Chinese restaurant process (CRP)
on each side of R, and the resulting graphon is a piece-
wise constant function with regular grids. Recently, an ar-
bitrarily flexible graphon is proposed which adopts a Gaus-
sian process [Rasmussen, 2006]) as a random graph func-
tion prior [Lloyd et al., 2012]. There are also some other
Bayesian nonparametric graphons, which sit between the
simplicity [Kemp et al., 2006] and the flexibility [Lloyd et
al., 2012]. These graphons are constructed in a hierarchi-
cal way [Schmidt et al., 2013; Roy and Teh, 2009]; they are
not only flexible for modeling complex interactions but also
parsimonious for modeling homogeneous parts in R. Some
example graphons are illustrated in Figure 1.

2.2 The Mondrian Process Relational Model
Among the above Bayesian nonparametric graphons, the
MP [Roy and Teh, 2009] is a typical hierarchical partition
process on exchangeable graphs. An MP starts the partition
process on the initial block (the unit square [0, 1]

2) with the
given budget �. A trivial cut is first proposed to split the unit
square into two blocks, at a cost E. The proposed cut is ac-
cepted if � > E and is rejected otherwise. If accepted, the
partition process further steps into the sub-blocks with the
rest budget �− E. The cutting point of each proposal is uni-
formly sampled from the semi-perimeter of the current block
[a,A] × [b, B] and the cost E is exponentially distributed
E ∼ Exp(A − a + B − b). The MP proceeds in such a

(a) (b) (c) (d)

Figure 1: Example graphons learned by (a) IRM [Kemp et
al., 2006], (b) MGFTP [Schmidt et al., 2013], (c) MP [Roy
and Teh, 2009], and (d) Random function prior [Lloyd et al.,
2012]. Different colors denote different intensities of interac-
tions (e.g. links).

hierarchical way until the budget is exhausted. The resulting
hierarchical partition structure forms a kd-tree on [0, 1]

2.
If the intensity measure in each leaf block of an MP parti-

tion structure is homogeneous, the resulting graphon is piece-
wise constant. Suppose the intensity in each leaf block fol-
lows a beta distribution for relational modeling, the genera-
tive process of the MP relational model is as follows:

M ∼ MP(�, [0, 1]2), ✓

k

∼ Beta(↵0,�0)

⇠

i

∼ Uniform(0, 1), ⌘

j

∼ Uniform(0, 1)

R

i,j

|M, ⇠

i

, ⌘

j

, ✓1:K ∼ Bernoulli(✓~(⇠i,⌘j))

(1)

where M denotes an MP partition structure, ✓
k

denotes the
intensity in the kth block in M, (⇠

i

, ⌘

j

) are the indexing vari-
ables (locations) of the ith row and the jth column on [0, 1]

2,
and ✓~(⇠i,⌘j) maps (⇠

i

, ⌘

j

) to a leaf block index in M.

2.3 State-of-the-Art Inference Methods
For regular-grid stochastic partition processes such as
IRM [Kemp et al., 2006], the inference is straightforward
based on Gibbs sampling after integrating out the parame-
ters of the intensity measure on the partitions. For continuous
random graph functions such as [Lloyd et al., 2012], with
intensity parameters drawn from a Gaussian process, the in-
ference is also tractable due to the existence of Gaussianity in
joint, marginal and conditional distributions in the GP [Ras-
mussen, 2006]. Although the efficient inference problems
for IRM and continuous random graph functions have been
well addressed, the posterior inference for the MP relational
model [Roy and Teh, 2009] is extremely difficult. The gener-
ative process of the MP partitions follows a recursive manner,
which may require multiple transition steps from one parti-
tion state to another similar one; furthermore, the dimension-
ality of the partition space varies during the inference proce-
dure.

A prevalent method for such dimensionality-varying infer-
ence problem is reversible-jump MCMC (RJMCMC) [Green,
1995]. In [Wang et al., 2011], in each partition sampling it-
eration, a leaf block is selected randomly and a proposal for
adding or removing a cut is drawn from a uniform distribu-
tion. Then the RJMCMC acceptance ratio is calculated to
decide whether the proposed partition structure change is ac-
cepted. The above sampling procedure for inferring the MP
relational model is inefficient for the following reasons:

1. A transition from one suboptimal partition state to an-
other very similar partition state may require multiple
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(a) (b) (d)(c) (g) (h)(f)(e)

Figure 2: The motivation example: A long jump chain from
one partition state to another similar partition state (a-h) by
using RJMCMC. In the proposed Bayesian optimization ap-
proach, it is possible to directly jump from (a) to (h).

retrospective operations, causing unnecessary high com-
putational cost (see Figure 2).

2. The recursive sampling procedure of RJMCMC is prone
to converge to local optima, because it is very difficult
for the sampler to jump out from a local optimum in a
hierarchical state space (compared to a flat state space).

The above limitations diminish the practicality of the MP re-
lational model in real-world applications. It is worth design-
ing an alternative inference method to circumvent them.

3 Bayesian Optimization of Partition Layouts
We attempt to circumvent the limitations aforementioned in
Section 2.3 by proposing an alternative method for inferring
the hierarchical partition structure for an exchangeable graph.
Inspired by the observation that similar cutting rate measures
on the partition space lead to similar partition layouts (see
examples in Figure 3), we propose to impose a nonhomoge-
neous rate measure on the partition space to control the lay-
outs of the generated hierarchical partitions. By represent-
ing the nonhomogeneous rate measure with a continuously-
valued vector, we thus make the inference problem feasible
for Bayesian optimization. In this way, the original MCMC
sampling problem is transformed into an optimization prob-
lem in the continuous space of cutting rate measures.

We adopt Bayesian optimization to search the optimal non-
homogeneous rate measure  ⇤, based on which a partition
structure S⇤ is generated in the same way as [Roy and Teh,
2009]. In particular, we view a nonhomogeneous rate mea-
sure  

t

and the corresponding likelihood `
t

of the graph data
fitted in the partition structure S

t

generated based on  
t

as
the input pair ( 

t

, `

t

) of the Bayesian black-box optimizer
(where subscript t denotes the index of the data pairs in the
Bayesian optimization). Since the underlying nonhomoge-
neous rates are continuous values, we can employ a Gaussian
process as the surrogate to explore the searching space.

3.1 Nonhomogeneous Cutting Rate Measure
In the MP, the cutting rate is uniform on [0, 1]

2 (in the 2-
dimensional case) and the resulting cuts form a homogeneous
Poisson process along each dimension parameterized by the
budget �. The expected number of cuts along each side of a
rectangle [a,A]×[b, B] is �(A−a) and �(B−b), respectively
and the expected number of partitions in [a,A] × [b, B] is
(�(A − a) + 1)(�(B − b) + 1). This property shows that the
density of cuts (or partitions) is uniform on [0, 1]

2.
To manipulate the layouts of partitions, we impose a non-

homogeneous rate measure on the partition space, such that
the expected number of partitions will be large (or small) in
the areas with higher (or lower) cutting rates. A measurable

!"# !$# !%# !&# !'# !(# !)#

!""#!$ !""

!## !##

!"" !%& !%&

!'"

Figure 3: Illustration of the cut sampling strategy based on
a rate matrix, where (b-c), (d-e), and (f-g) are three partition
structures sampled based on a 3 × 3 rate matrix in (a). Cuts
can be uniformly sampled on the “distorted” partition spaces
in (b,d,f), and the sampled cuts are mapped back to the orig-
inal partition spaces in (c,e,g). The layouts of the partition
structures are controlled by the rate matrix and the three re-
sulting partition structures are very similar.

function1
 : [0, 1]

2 !→ R+ can be defined on the unit square
and the probability density function of cutting points along
the horizontal and vertical axes are

p(y) =

∫ 1

0

¯

 (x, y)dx, p(x) =

∫ 1

0

¯

 (x, y)dy (2)

where ¯

 (x, y) =  (x, y)/

∫ 1
0

∫ 1
0  (x, y)dxdy. The two

functions characterize the intensity rates of a nonhomoge-
neous Poisson process of cutting positions along the horizon-
tal and vertical axes, respectively. Thus, the expected number
of cuts along each side of a rectangle [a,A]× [b, B] becomes
�

∫
A

a

∫ 1
0

¯

 (x, y)dxdy and �
∫
B

b

∫ 1
0

¯

 (x, y)dxdy.
Based on the above observation, we can generate a desir-

able partition layouts through controlling the rate measure
function ¯

 . Although any measurable positive function can
be used as the nonhomogeneous rate measure after normal-
ization, we request the nonhomogeneous rate measure  to
satisfy two properties: (1) It is easy to draw samples from the
rate measure function; and (2) The rate measure function is
itself simple and can be optimized.

Piecewise Constant Rate Measure We propose to adopt
a piecewise constant function defined on [0, 1]

2 as the non-
homogeneous rate measure. We further let “pieces” of the
function be equal-size cells on [0, 1]

2 such that we can discard
the location information and simply represent the function by
a set of constants. For example, if we divide [0, 1]

2 into 3 ×
3 cells and assign each cell a constant as the cutting rate in
that cell, the function is thus characterized by a 3 × 3 matrix
(or a 9-D vector). In Figure 3(a), the unit square is divided
into 3 × 3 equal cells, to which are assigned different cutting
rates. In the following, we refer to this piecewise constant
rate measure as a K × L “rate matrix”  , where K and L

denote the numbers of equal intervals along the vertical and
horizontal axes, respectively.

Cut Sampling Strategy on  Given the piecewise con-
stant rate measure  , the probability density functions (2)

1It is worth noting that the rate measure function ψ and the rate
measure matrix Ψ defined in this section are conceptually different
from the graphons briefed in Section 2.1. The former is the rate
measure to generate cuts of a partition structure; while the latter is
the rate measure to generate links given a partition structure.
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of cutting points along the axes also become piecewise con-
stant. One can sample cuts from different intervals of the axes
with different rates; however, there is another simple sam-
pling strategy thanks to such regular-grid piecewise constant
measure: Instead of changing cutting rates in different cells,
we can still use uniform sampling to achieve the same goal
by changing the proportion of each cell on [0, 1]

2 in terms
of their associated cutting rates [Wang et al., 2015]. In par-
ticular, we increase (or decrease) the proportion of a cell with
higher (or lower) cutting rate on [0, 1]

2 such that a cut is more
likely to fall into the cells with higher rates. After sampling
the entire partition structure on the “distorted” partition space,
the sampled cuts are mapped back to the original partition
space.

Given a K ×L rate matrix  ,  
k,l

denotes the cutting rate
in cell (k, l). On the original partition space X , the interval
of a cell is 1/K along the vertical axis and 1/L along the
horizontal axis. Then the interval of the “distorted” partition
space given  can be computed by

�

row

k

=

∑
l

 

k,l∑
k,l

 

k,l

, �

col

l

=

∑
k

 

k,l∑
k,l

 

k,l

(3)

The “distorted” partition space ˜X can be constructed based
on {�row

k

}K
k=1 and {�col

l

}L
l=1 (see Figure 3(b,d,f) where the

intervals of cells are adjusted according to the cutting rates).
The uniformly sampled cuts on ˜X are mapped back to X by

y =

k

0 − 1

K

+

ỹ −
∑

k

′�1
k=1 �

row

k

K�

k

′
(4)

x =

l

0 − 1

L

+

x̃ −
∑

l

′�1
l=1 �

col

l

L�

l

′
(5)

where (x, y) and (x̃, ỹ) denote an endpoint of a cut on X and
˜X , respectively; k0 and l

0 denote the interval indices of the
endpoint on the vertical and horizontal axes, respectively.

3.2 Property of the Cutting Rate Matrix
The number of cells in the cutting rate matrix (determined by
K and L) can be set as the hyper-parameter. In the following,
we first analyze some properties of the cutting rate matrix and
then discuss how to set the hyper-parameter.
Property 3.1. The expected number of blocks in an Mondrian
process given the same budget � is irrelevant to the hyper-
parameter (number of cells) of the cutting rate matrix.

The cutting rate matrix only distorts the original partition
space, while the generative process of cuts on the “distorted”
partition space is not affected. Thus, the expected number of
blocks will be unchanged given the same budget �.
Property 3.2. Given a fixed number of intervals in one di-
mension of the cutting rate matrix, increasing the number of
intervals in the other dimension will decrease the diversity of
the marginal rates in this dimension.

Suppose we have two cutting rate matrices  ∈ RK⇥L

+

and  0 ∈ RK

′⇥L

+ , K > K

0. In our setting, the elements in
the cutting rate matrix is drawn from a uniform distribution:
 

k,l

i.i.d∼ Uniform(0, 1). Based on Hoeffding’s inequality,

the marginal rate
∑

K

k=1 k,l

of the lth interval on the hori-
zontal axis for  is bounded by Pr(|

PK
k=1  k,l

K

− µ| ≥ ⌧) ≤
exp(−2K⌧

2
), where µ = 0.5 is the expectation of  

k,l

. The
conclusion is straightforward: Given the same tolerance ⌧
and condition K > K

0, the tail bound for the marginal rate
is tighter for  since exp(−2K⌧

2
) < exp(−2K

0
⌧

2
), which

further implies that the values of marginal rates along the hor-
izontal axis of  are less diverse.

Property 3.3. Increasing the numbers of intervals in both
dimensions of the cutting rate matrix at the same ratio will
first increase and then decrease the diversity of the marginal
rates in both dimensions.

Let  ∈ RK⇥L

+ and L = ⇢K, ⇢ > 0. Based on Prop-
erty 3.2, the number of outliers (i.e., the marginal rates out-
side of (0.5 − ⌧, 0.5 + ⌧)) in the horizontal dimension of  
is upper bounded by L exp(−2K⌧

2
) = ⇢K exp(−2K⌧

2
).

Since the function f(K) = ⇢K exp(−2K⌧

2
) is concave

in terms of K (first increases and then decreases for K =

1, 2, . . .), its maximum can be derived by solving df(K)
dK

=

⇢ exp(−2⌧

2
K)(1 − 2⌧

2
K) = 0. Then we can obtain K =

round( 1
2⌧2 ) that maximizes the upper bound.

Property 3.2 suggests that the diversity of the marginal
rates in one dimension can potentially be diminished as the
number of intervals in the other dimension increases. Prop-
erty 3.3 suggests that, to some extend, we are able to manipu-
late the distortion power of the imposed cutting rate measure
 on the partition space by tuning the hyper-parameter of
the number of cells. In practice, we tune these parameters to
achieve the moderate distortion power.

3.3 Cutting Rate Matrix Optimization
Given the imposed nonhomogeneous cutting rate matrix  ,
a partition structure S is first generated based on  and then
a local Gibbs sampler can be employed to sample the index-
ing variables ⇠

i

and ⌘
j

for all rows and columns in R. Let
` = L(R|{⇠

i

}, {⌘
j

},S) be the data likelihood based on  ;
then the pair ( , `) can be used as the input and the reward
for Bayesian optimization. The aim of optimizing the under-
lying partition structure S is to find the maximizer  ⇤ that
maximizes the reward ` in a sequential manner (see the illus-
tration in Figure 4).

By transforming the MCMC based inference for the MP
relational model into an online optimization problem, the
following issues need to be considered: (1) The mapping
f :  !→ ` is unknown; (2) the evaluation of ` given  is
still expensive, so we cannot exhaustively search the space of
 ; (3) there exists randomness to generate S based on , thus
` is a noisy observation given  . To address these issues, we
employ a Bayesian black-box optimizer, without needing to
know the explicit form of f :  !→ `, to explore the searching
space. On one hand, the Bayesian black-box optimizer tends
to try  that returns higher reward ` with higher probability
(exploitation); on the other hand, it still continuously explores
unknown space to avoid local optima (exploration).

The empirical reward `
t

of each S
t

, which is drawn from
a given  

t

at the tth iteration, can be obtained by a local
Gibbs sampler. We feed a number of pairs { 

t

, `

t

} into the
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Ψ

ℓ

Figure 4: Bayesian optimization of the cutting rate matrix  
to maximize the likelihood ` as reward.

proposed Bayesian optimization algorithm. It is worth noting
that the uncertainty of S

t

generated based on  
t

can be prop-
agated to the uncertainty `

t

given f( 

t

). This uncertainty is
modeled as the Gaussian noise as

`

t

= f( 

t

) + Normal(0,�2
`

) (6)

We assume that the similarity over the cutting rate ma-
trix  

t

determines the similarity over the layout of S
t

, and
eventually controls the similarity over the expected reward
`

t

. Based on this assumption, the Gaussian process is se-
lected as the surrogate to model f given the covariance ma-
trix over  

t

. The kernel of the GP is constructed by cal-
culating the covariance between  

t

and  
t

′ , which is de-
termined by the metric distance over the cutting rate ma-
trix: cov( 

t

, 

t

′
) = exp(− 1

2 || 
t

−  

t

′ ||22). As the pre-
dictive mean and variance are tractable for the GP, a va-
riety of exploitation-exploration strategies for Bayesian op-
timization can be adopted. Two strategies are adopted in
this paper: The first strategy UCB [Srinivas et al., 2010;
Auer, 2003] keeps evaluating  

t

that returns the maximum
upper confidence bound. The second strategy (EI) [Mockus
et al., 1978] selects  

t

that returns the maximum expected
improvement (please refer to [Srinivas et al., 2010] for the
details). As we essentially choose the optimal partition rather
than sampling over multiple partitions, the proposed strategy
is different from the MCMC based approach to partition in-
ference (but the generative process of the MP is unchanged).

3.4 The Proposed Algorithm

The proposed algorithm for inferring the MP relational model
(whose generative process is described in Section 2.2) in the
Bayesian optimization manner is summarized in Algorithm 1.
In this algorithm, the outer loop2 is to search the optimal
partition structure S⇤ based on the proposed Bayesian opti-
mization method while the inner loop employs a local Gibbs
sampler for sampling the indexing variables {⇠

i

} and {⌘
j

} to
obtain the data likelihood `

t

.
Given a cutting rate matrix  

t

in the tth iteration, an exact
structure S

t

is generated. The predictive distribution of {⇠
i

}
and {⌘

j

} can be obtained by integrating out the block inten-
sity parameters {✓

k

}. The conditional posterior of assigning

2It is worth noting that the outer loop is for inferring the partition
structure S while the inner loop is for fitting the relational data R
given S. The inner loop is same and necessary for all the compared
methods considered in Section 4. The empirical test focuses on the
comparison of partition structure inference methods (corresponding
to the outer loop in Algorithm 1).

Algorithm 1 Bayesian Optimization for the MP Relational
Model

Input: R and {�,↵0,�0} Output: S⇤
, `

⇤

Initialize { 
t

, `

t

}T
t=1;

for t = T + 1 : T

0 do
Select  

t

using acquisition function (UCB or EI);
Generate S

t

based on  
t

;
for s = 1 : iter do

Sample the indexing variables {⇠
i

} and {⌘
j

} accord-
ing to Eq. (7) using Gibbs sampling;

end for
Evaluate `

t

based on R,S
t

, {⇠
i

}, {⌘
j

};
Add ( 

t

, `

t

) into the sequence of observation pairs for
Bayesian optimization;

end for
Return `⇤ = max

t

(`

t

) and the corresponding S⇤.

the ith row to the nth vertical interval on S
t

gives

p(⇠

i

′ ∈ �

row

n

|R,S
t

, {⇠
i

}¬i

′
, {⌘

j

}) ∝

�

row

n

∏

m2Sn

(
Nn,m

i,+ + Nn,m

i,�
Nn,m

i,+

)B(Nn,m

i,+ + ↵0,Nn,m

i,� + �0)

B(↵0,�0)

(7)

where �row
n

denotes the nth vertical interval of cuts and S
n

denotes the set of blocks in S
t

which have interactions with
�

row

n

; Nn,m

i,+/� denotes the number of 1 or 0 entries in the ith
row of R if it is assigned to the mth block which is crossed
by the nth vertical interval; and B(↵0,�0) denotes the beta
function. The posterior inference for the column indexing
variables {⌘

j

} is similar to Eq. (7).

4 Experiments
We empirically evaluate the performance of the proposed
method and the baseline method for learning the MP rela-
tional model on real-world data sets. In particular, we adopt
the GPUCB and EI strategies described in Algorithm 1 for the
proposed Bayesian optimization approach and the reversible-
jump MCMC (RJMCMC) as the baseline. Because of a hi-
erarchical construction of the MP, commonly used inference
methods cannot be directly applied. To the best of our knowl-
edge, RJMCMC [Wang et al., 2011] is the only reported and
implementable method for the MP. Since our evaluation fo-
cuses on the comparison of inference methods for the MP, the
proposed method is not compared to other block models or
graphons introduced in Section 2.1.

To make fair comparisons, we set the same number of outer
iterations, where each outer iteration corresponds to a parti-
tion structure change proposal for RJMCMC-MP or a gener-
ated partition structure for GPUCB-MP and EI-MP. Within
each outer iteration (i.e., each change of the partition struc-
ture), 30 iterations (including 20 iterations for burn-in) of
Gibbs sampling are conducted for sampling the indexing vari-
ables based on the present partition structure. We run 5 indi-
vidual experiments for all the compared methods (RJMCMC-
MP, GPUCB-MP, and EI-MP) on each of the data sets.
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HighSchool NIPS234 Protein230 Epinions200 Slashdot200 Wikivote200
RJMCMC-MP (Log-likelihood) -1927 -5588.1 -5892 -14649 -16715 -14177
RJMCMC-MP (Perplexity) 1.2686 1.1074 1.1178 1.4423 1.5187 1.4254
GPUCB-MP (Log-likelihood) -1928 -5586.7 -5796 -14697 -16221 -14046
GPUCB-MP (Perplexity) 1.2687 1.1074 1.1158 1.4440 1.5001 1.4207
EI-MP(Log-likelihood) -1925 -5756 -5881 -13994 -16332 -14133
EI-MP(Perplexity) 1.2683 1.1149 1.1134 1.4189 1.5043 1.4238

Table 1: Performance comparison of RJMCMC-MP, GPUCB-MP and EI-MP for relational modeling.

We adopt the logarithm of likelihood (Log-likelihood) and
the Perplexity as the evaluation metric to measure the perfor-
mance. A higher log-likelihood or a lower perplexity indi-
cates a better fitness of the data in the inferred graphon. We
use the same budget � = 2 for all the compared methods in
all the experiments. For the hyper-parameters of the block
intensity, we set ↵0 = 1 and �0 = 1. The cutting rate matrix
 for the initialization step in GPUCB-MP and EI-MP are
randomly generated by  

k,l

∼ Uniform(0, 1). Based on its
properties discussed in Section 3.2, we set the dimensionality
of the cutting rate matrix as 3 × 3 to achieve a moderate dis-
tortion power (see Property 3.2 and 3.3). For RJMCMC-MP,
400 outer iterations (accepted structure change proposals) are
conducted; while for GPUCB-MP and EI-MP, 100 outer iter-
ations are conducted for initialization and 300 outer iterations
are conducted for prediction.

4.1 Data Sets
We adopt six real-world relational data sets, including 3 di-
rected graphs and 3 undirected graphs, for testing.

Undirected Graphs: The HighSchool (HS) data set con-
sists of 90 students with 269 edges. The NIPS234 (N234)
co-author network is generated from the NIPS 1–17 confer-
ences [Globerson et al., 2007] by selecting the top 234 au-
thors in terms of the number of their publications. There
are 598 edges in this data set. The Protein230 (P230) net-
work [Butland et al., 2005] describes the relationships among
230 proteins with 595 interactions. The above three data sets
have been extensively used for link prediction [Hoff, 2008;
Miller et al., 2009; Lloyd et al., 2012].

Directed Graphs: The adopted three preprocessed data
sets Epinions200 (E200), Slashdot200 (S200) and Wikiv-
ote200 (W200) are from [Leskovec and Krevl, 2014]3. The
Epinions data set represents who-trust-whom relationships in
the social network of the Epinions website. Slashdot is a
news website that features new stories on science and tech-
nology, which are submitted and rated by its genuine users.
The Wikivote data set is the who-votes-on-whom network on
the Wikipedia. We adopt a subset of each data set by select-
ing the top 200 users (the same selection rule as [Globerson et
al., 2007]4) in terms of the number of their connected users.

4.2 Results
The comparison results are reported in Table 1. First
of all, we can find that the proposed Bayesian optimiza-
tion based methods, GPUCB-MP and EI-MP, outperform

3http://snap.stanford.edu/data
4http://chechiklab.biu.ac.il/gal/data.html

(a) HS (b) N234 (c) P230 (d) E200 (e) S200 (f) W200

Figure 5: Block structure visualization on the six data sets
(a–f): The 1st row are the original relational data; the 2nd
row are the block structures uncovered by RJMCMC-MP; the
3rd row are the block structures uncovered by GPUCB-MP;
and the 4th row are the block structures uncovered by EI-MP.
The three compared methods use the same number of outer
iterations.

the baseline RJMCMC-MP on all the six data sets. In
particular, GPUCB-MP achieves a clear performance gain
on Protein230, Slashdot200, and Wikivote200, compared
to RJMCMC-MP; while the performance of EI-MP is re-
markably better than RJMCMC-MP on Epinions200. The
performance of all the three methods are comparable on
HighSchool, although EI-MP performs slightly better than
RJMCMC-MP. These observations from the results suggest
that, under the same computational complexity, the proposed
Bayesian optimization based methods can uncover a better
partition structure than the RJMCMC based method in most
cases.

The best inferred partition structures by each method
among 5 runs in terms of log-likelihood/perplexity are vi-
sualized in Figure 5. On NIPS234, Protein230, Epin-
ions200, Slashdot200 and Wikivote200, the block structures
uncovered by GPUCB-MP and EI-MP are significantly in-
terpretable than those uncovered by RJMCMC-MP. The only
exception is HighSchool, the block structures uncovered by
all the three methods are similar.
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5 Conclusion
We propose an alternative method for inferring the MP par-
tition structure by imposing a nonhomogeneous cutting rate
measure on the partition space to manipulate the layouts of
the generated partitions. By representing the nonhomoge-
neous cutting rate measure as a simple cutting rate matrix
in the continuous space, we can thus transform the original
MCMC sampling problem into a Bayesian optimization prob-
lem. The experimental results demonstrate that the problem
conversion from MCMC sampling to Bayesian optimization
helps to explore the partition structure state space more effec-
tively in inferring the Mondrian process relational model. The
idea of the proposed Bayesain optimization strategy can also
be applied to other complex graphons such as the rectangu-
lar tiling process (RTP) [Nakano et al., 2014] by optimizing
the growth probabilities in different blocks to manipulate the
expected sizes of rectangles.

Acknowledgments
The authors would like to thank the anonymous reviewers for
their valuable comments.

References
[Airoldi et al., 2009] Edoardo M. Airoldi, David M. Blei,

Stephen E. Fienberg, and Eric P. Xing. Mixed member-
ship stochastic blockmodels. In NIPS, pages 33–40, 2009.

[Aldous, 1981] David J. Aldous. Representations for par-
tially exchangeable arrays of random variables. Journal
of Multivariate Analysis, 11(4):581–598, 1981.

[Auer, 2003] Peter Auer. Using confidence bounds for
exploitation-exploration trade-offs. The Journal of Ma-
chine Learning Research, 3:397–422, 2003.

[Butland et al., 2005] Gareth Butland, José Manuel
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