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Abstract
Large scale smuggling of illegal goods is a long-
standing problem, with $1.4b and thousands of
agents assigned to protect the borders from such ac-
tivity in the US-Mexico border alone. Illegal smug-
gling activities are usually blocked via inspection
stations or ad-hoc checkpoints/roadblocks. Secu-
rity resources are insufficient to man all stations at
all times; furthermore, smugglers regularly conduct
surveillance activities. This paper makes several
contributions toward the challenging task of opti-
mally interdicting an illegal network flow: i) A new
Stackelberg game model for network flow interdic-
tion; ii) A novel Column and Constraint Generation
approach for computing the optimal defender strat-
egy; iii) Complexity analysis of the column gen-
eration subproblem; iv) Compact convex nonlinear
programs for solving the subproblems; v) Novel
greedy and heuristic approaches for subproblems
with good approximation guarantee. Experimen-
tal evaluation shows that our approach can obtain a
robust enough solution outperforming the existing
methods and heuristic baselines significantly and
scale up to realistic-sized problems.

1 Introduction
Stopping undesirable behavior on a network is a problem per-
taining to many security domains: disruption of enemy sup-
ply chains, infectious disease control, and the interception of
illegal goods such as drugs or weapons. Physical networks
are typically defended via checkpoints: physical roadblocks
or inspection points positioned at various points in the net-
work. In all network interdiction scenarios, the objective of
those defending the network is to minimize the amount of
flow through the network. From a resource optimization per-
spective, this is an extremely challenging task. There are sev-
eral factors interrelating here: first, defender resources are
limited; second, placing a guard at some point on the network
does not guarantee that any smuggler passing through will be
caught - it merely increases the likelihood of a successful cap-
ture; finally, it is natural to assume that smugglers have prior
knowledge of defenders’ positioning via intelligence gather-
ing. The defender is thus placed at a disadvantage: not only

does she have limited capability to stop an attack, her agents’
moves are also monitored; thus, smugglers may successfully
evade checkpoints if these are constantly positioned in a pre-
dictable manner. Indeed, randomized allocation strategies are
imperatively needed [GAO, 2009]. Our work addresses the
following challenge:

Devise a formal methodology for guarding a large,
complex network against undesirable flow, consid-
ering action observability and limited resources.

Our Contributions: In this paper, we introduce a novel
Network Flow Interdiction Game (NFIG) model, where the
defender allocates a fixed number of security resources on
the network, while the adversary commits to a feasible net-
work flow. To compute the optimal defender strategy, we
first provide a standard minimax bilevel formulation and re-
formulate it as a linear program (LP). However, due to the
huge number of constraints and variables caused by expo-
nentially large numbers of defender strategies and network
paths, the LP is hard to solve. To overcome the computational
challenge, we propose a Column and Constraint Generation
(CCG) algorithm, with the following key contributions: i) we
show that the algorithm converges to the Stackelberg equi-
librium with finite iterations; ii) we show the NP-hardness
of the Column Generation subproblem, and provide several
novel algorithms to solve it, including an exact compact con-
vex nonlinear program and a greedy algorithm with constant-
factor approximation guarantee; iii) we provide an exact com-
pact convex nonlinear program for the Constraint Genera-
tion subproblem as well as a fast local search based heuristic
algorithm; iv) extensive experimental evaluation shows that
our CCG framework can scale up to realistic-sized NFIG in-
stances and significantly outperform existing approaches.

Related Work: The network interdiction problem is well
studied [Church et al., 2004]. In this model, we are given
a weighted, directed or undirected graph, and our goal
is minimizing the flow through the graph via deletion of
edges/nodes (other goals — such as maximizing the shortest
path, increasing detection probability — and other interdic-
tion methods — such as decreasing edge capacity — have
been studied as well [Altner et al., 2010; Ball et al., 1989;
Israeli and Wood, 2002; Malik et al., 1989; Wood, 1993;
Guo et al., 2016]. Other works study stochastic network
interdiction where the interdiction action is successful with
some known probability p [Pan et al., 2001; Pan, 2005]. How-
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Figure 1: Topography and Road Systems in the Southern Bor-
der.

ever, none of them consider the randomized resource allo-
cation strategy, i.e., the mixed strategy, due to the impos-
sibility to change the resource allocation frequently, espe-
cially for interdiction actions such as destroying arcs. More-
over, randomized resource allocation is known to be neces-
sary to improve the interdiction efficiency; for example, in the
smuggling domain, checkpoint operation status can actually
change daily [GAO, 2009]. However, randomization does
lead to a drastic increase in problem complexity: while in
the deterministic network interdiction model an adversary’s
strategy has a compact representation (as a network flow), it
is not the case in our setting.

We model NFIG as a Stackelberg security game; security
games try and find the optimal resource allocation to defend
some valuable facility, based on game-theoretic methodolo-
gies [Tambe, 2011; Yin et al., 2014]. However, in standard
security game models, attacker strategies are typically com-
pactly representable (e.g. a distribution over possible tar-
gets) [An et al., 2013; Yin et al., 2015; Gan et al., 2015].
Some recent work proposes network security games [Tsai et
al., 2010; Jain et al., 2011; 2013]; here, the defender allo-
cates security resources on a (transportation) network and the
attacker chooses a reliable path to escape, and both players
have exponentially large strategy spaces; our model differs
from these works in several important ways. Most impor-
tantly, our goal is minimizing the flow through a network,
rather than preventing a single attacker from escaping; thus,
the methodology proposed in existing works cannot be di-
rectly applied to our setting.

Motivating Domain: Our model is quite general, and
can easily apply to various network security domains; to il-
lustrate the underlying issues and motivation for our model
choice, we now briefly present the problem in the context of
stemming the drug flow through the US-Mexico border pa-
trol. Figure 1 shows the major roads in the southern border
area [GAO, 2009]. Drug smuggling in the southern border is
dominated by 4 large well-organized and independent cartels:
Sinaloa, Juarez, Gulf and Los Zetas, each of them controls
the drug trafficking over 1000-mile border and has its own
major area of influence in the United States [Beittel, 2015;
Rosenberg, 2015]. These organizations typically use com-
mercial, private and rental vehicles to smuggle illegal goods
via land points of entry (sources). The goods travel along

different paths on the road network to different destination
cities (sinks) [DOJ, 2010; Rosenberg, 2015]. Traffickers typi-
cally choose multiple transport paths, in order to avoid raising
obvious suspicion by the inspection stations, and to mitigate
losses in case of capture [Steinrauf, 1991].

In 2009, the Border Patrol operated 39 tactical checkpoints
with flexible and daily changeable operation status in the
southern border, which are generally operated at fixed loca-
tions. However, due to the shortage of staff, canines and basic
facilities (i.e. security resources), only few of them are actu-
ally operational [GAO, 2009]. With this limitation for tactical
checkpoints, randomized allocation strategies of limited se-
curity resources are essential; smugglers have the ability to
observe the operational status of checkpoints, and make their
best decision on trafficking activities, such as the amount of
drugs to move through different POEs and paths. Indeed,
a testimony before Congress by the Arizona Attorney Gen-
eral, revealed the sophisticated surveillance and communica-
tion technologies used to monitor security vulnerabilities and
adjust plans to increase the chance of success [Kibble, 2009].

2 Preliminaries
Our proposed NFIG models an attacker and a defender who
take actions on a capacitated graph G = (V, E), with nodes
set V and edges set E, and a capacity vector c, where capacity
c
e

represents the maximum amount of adversary flow passing
through edge e without arousing obvious suspicion by inspec-
tion facilities (permanent checkpoints, sensors, etc). We as-
sume that the graph has a unique source node (POE) s ∈ V
and a unique sink node t ∈ V (drug distribution city in smug-
gling scenario). The unique source/sink assumption is no loss
of generality: a graph with multiple source nodes and sink
nodes can be transformed into a single-source-sink graph by
adding two new nodes s and t as the new unique source and
sink nodes respectively, connecting s to each source node and
t to each sink node with proper capacitated edges. Let P de-
note the set of all s-t paths in G. For a path p ∈ P , we say
node v ∈ p (edge e ∈ p) if p passes through v (e). Let I
denote the set of all inspection stations, such as the tactical
checkpoints in the border patrol scenario, and an inspection
station is operated if the defender assigns a security resource
on it, such as staffs, canines, and inspection facilities. Each
station i ∈ I is characterized by a location, either a node or
an edge in the graph (with a bit abuse of notation, we use
i interchangeable with its location, such that i ∈ V ∪ E),
and a constant parameter τ

i

∈ [0, 1] denoting the proportion
of adversary flow interdicted at i when operated, i.e., inspec-
tion probability. For example, in the border patrol scenario,
the officers at checkpoint i can conduct regular inspections
on passing vehicles and an illegal trafficker will be caught
with some probability τ

i

depending on the officers’ experi-
ence, which can be treated as a constant factor. Let k < |I|
be the number of security resources owned by the defender.

Strategies: A defender pure strategy S = 〈S
i

〉 is an allo-
cation of k security resources to k inspection stations, i.e.,P

i2I

S
i

= k, where S
i

∈ {0, 1} and S
i

= 1 indicates
that the inspection station i is operated. The defender pure
strategy space is denoted by S . A mixed defender strategy
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x = 〈x
S

〉 is a probability distribution over all pure strate-
gies where x

S

denotes the probability that S is played. Let X
denote the defender mixed strategy space.

An attacker strategy is a network flow f with f
p

represent-
ing the amount of adversary flow passing along path p ∈ P .1
In order to avoid raising obvious suspicion, a feasible attacker
strategy must satisfy the capacity constraint on each edge. Let
F denote the set of all feasible attacker strategies, i.e.,

F = {f ≥ 0 :

X
p2P:e2p

f
p

≤ c
e

∀e ∈ E}. (1)

Utility: Since the attacker aims at maximizing his success-
ful drug flow while the defender wants to minimize it, we
assume NFIG a zero-sum game. Given a pure defender strat-
egy S and an attacker feasible flow f , the attacker’s utility
is the sum of successful flows on all paths, i.e., U

a

(S, f) =P
p2P �(S, p)f

p

, where

�(S, p) =
Y

i2I:i2p

(1 − τ
i

)

Si (2)

and �(S, p) represents the proportion of adversary flow on
path p not interdicted by the operated inspection stations
given S. The defender utility is U

d

(S, f) = −U
a

(S, f).
Given a defender mixed strategy x and an attacker feasible

flow f , the attacker’s and defender’s expected utilities are:
U
a

(x, f) =
P

S2S x
S

U
a

(S, f) and U
d

(x, f) = −U
a

(x, f).
Equilibrium: NFIG is a leader-follower game, for which

the widely adopted solution concept is the Stackelberg equi-
librium (SE). Let y(x) denote the best response flow against
defender mixed strategy x. A strategy profile 〈x⇤, f⇤〉 forms
an SE, if: i) f⇤ = y(x⇤

), and ii) U
d

(x

⇤, f⇤) ≥ U
d

(x, y(x))
for all x ∈ X . With the zero-sum assumption, the SE can be
obtained by the following minimax formulation:

min

x2X max

f2F U
a

(x, f). (3)

Since X , F are convex sets, and U
a

(x, f) is a linear function
in x when fixing f and vice versa, according to von Neu-
mann’s minimax theorem [Nlkaido, 1954], we have:

min

x2Xmax

f2F U
a

(x, f)=max

f2Fmin

x2X U
a

(x, f) (4)

A direct consequence of the minmax theorem, critical for our
key solution approach (Section 3.2), is the equivalence of SE
and the Nash equilibrium (NE), where x⇤ is the best response
against f⇤ and f

⇤ is also the best response against x⇤.

3 Solution Approach
In this section, we first provide an LP formulation to compute
the equilibrium based on the standard minimax formulation.
Since this LP has exponentially large number of variables and
constraints, we then propose a novel Column and Constraint
Generation (CCG) to further improve the scalability.

1Note that the compact representation f = hfei is infeasi-
ble in NFIG. Please see Section B of Online Appendix for the
explanation available at: http://www.ntu.edu.sg/home/boan/papers/
IJCAI16 Flowinterdiction Appendix.pdf.

3.1 LP Formulation
We start from the standard minimax formulation for SE:

min

x

max

f

X
S2S,p2P

�(S, p)x
S

f
p

(5a)

s.t.
X

S2S
x
S

= 1 (5b)
X

p2P:e2p

f
p

≤ c
e

∀e ∈ E (5c)

x ≥ 0, f ≥ 0. (5d)

The objective in Eq.(5a) is the attacker’s expected utility
U
a

(x, f). The bilevel minimax program (5) can be reformu-
lated as a linear program by replacing the inner program with
its dual, and the resulting linear program (LP) is as follows:

min

x,u

X
e2E

c
e

u
e

(6a)

s.t.
X

S2S
x
S

= 1 (6b)
X

S2S
x
S

�(S, p) ≤
X

e2p

u
e

∀p ∈ P (6c)

x ≥ 0,u ≥ 0. (6d)

The dual solution with respect to inequality (6c) provides the
equilibrium attacker flow f , defined over all paths in P .

3.2 Column and Constraint Generation
The linear program (6) is challenging to solve due to the expo-
nentially large number of variables and constraints (|S|, |P|).
To address this challenge, we propose a novel algorithm
called Column and Constraint Generation (CCG), and prove
the correctness of the CCG algorithm based on the property
that the SE of SNIG is the same as the NE (Section 2).

The algorithm CCG is sketched in Algorithm 1. Initially, a
small space 〈S 0, P 0〉 is generated with arbitrary candidate de-
fender strategies and s-t paths. Then CCG solves a restricted
version of NFIG with LP (S 0, P 0

), where the defender pure
strategy space is S 0 and the attacker flow is restricted to
paths only in P 0, i.e., Eqs.(6a)–(6d) with 〈S, P〉 replaced by
〈S 0, P 0〉, and obtains primal and dual solutions (x,u, f). This
restricted NFIG can be solved efficiently since the game is
very small. Obviously, the obtained primal solution x and
dual solution f form an SE of the restricted NFIG, but not
necessarily the original NFIG. Therefore, two subproblems
ColG (Column Generation) and ConG (Constraint Genera-
tion) are proposed to generate useful defender pure strategies
and s-t paths into 〈S 0, P 0〉 in order to guide the SE of the re-
stricted NFIG to the one of the original NFIG. Respectively,
ColG generates a defender strategy S ∈ S which is a best re-
sponse against f , and ConG generates an s-t path p ∈ P with
maximal reduced cost which measures the degree of violating
inequality (6c).

The key of the CCG algorithm is that once ColG generates
the pure strategy S already in S 0, the current solution x of re-
stricted NFIG is the defender best response against the adver-
sary flow f in the original NFIG (PROPOSITION 1), and sim-
ilarly, if ConG generates an s-t path p with non-positive re-
duced cost, the current equilibrium flow f of restricted NFIG
is the attacker best response flow against x in the original
NFIG (PROPOSITION 7). Therefore, the NE of the original
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Algorithm 1: CCG Algorithm for NFIG
1 Initialize S 0 by generating arbitrary defender strategies;
2 Initialize P 0 by generating arbitrary s-t paths;
3 repeat
4 (x,u, f) LP (S 0

,P 0
);

5 S  ColG(f);
6 S 0  S 0 [ {S};
7 p ConG(x,u);
8 P 0  P 0 [ {p};
9 until convergence;

10 return (x, f).

NFIG is achieved when ColG generates a pure strategy S
already in S 0 and ConG generates an s-t path p with non-
positive reduced cost. Since the NE is the same as the SE, the
current solution pair (x, f) forms the SE of the original NFIG.

Comparison with Double Oracle: The double oracle
(DO) algorithm, first proposed by McMahan et al. [2003], is a
standard method for solving two-player zero-sum games with
large scale strategy spaces, and is widely adopted by security
game research [Jain et al., 2011; 2013; Vanek et al., 2012;
Wang et al., 2016]. In DO, both players commit to mixed
strategies. Thus, to apply DO to NFIG, the attacker’s strategy
is a probability distribution over all feasible flows, rather than
a single flow. Besides, although the CoreLP of DO can be
obtained from minimax formulation with the same manner
as LP (6), each constraint is associated with a feasible flow
(pure strategy) restricting the attacker’s utility no smaller than
that flow. Thus, a best-response flow is solved in DO’s ora-
cle, which is inefficient due to no compact representation of
flows. As comparison, ConG solves an s-t path instead.

The central challenge and novelty of CCG is how to effi-
ciently generate the pure defender strategies and s-t paths to
add to S 0 and P 0. Thus, we present the corresponding ColG
and ConG algorithms in the following sections.

4 Column Generation (ColG)
This section concerns the ColG subproblem of Algorithm 1,
which can be stated as follows: given an attacker feasible
flow f defined over P 0, generate the defender pure strat-
egy S ∈ S blocking the largest amount of flow, i.e., S =

argmax

S

02S U
d

(S0, f). PROPOSITION 1 shows that once
ColG generates the pure strategy S already in S 0, the cur-
rent equilibrium mixed strategy x of restricted NFIG is the
best response against f of the original NFIG.

Proposition 1. If ColG generates the pure strategy S already
in S 0, the current equilibrium mixed strategy x of restricted
NFIG is the best response against f of the original NFIG.

We conduct thorough analysis of ColG’s computational
complexity, and show that it is NP-hard for general graphs,
while polynomial-time solvable for the tree-like networks.
For the ease of reading, we put proofs of all propositions and
theorems in Section A of Online Appendix1.

Theorem 2. The ColG subproblem is NP-hard.

Algorithm 2: Greedy Algorithm for Column Generation
1 Initialize S0

= ;;
2 while |S0| < k do
3 i

⇤
= arg maxi/2S0:S0[{i}2S Ud(S

0 [ {i}, f);
4 S

0
= S

0 [ {i⇤};
5 return S

0.

Theorem 3. If the network G is tree-like, i.e., G − {t} is a
tree, then there exists a dynamic programming algorithm able
to solve the ColG subproblem in polynomial time.

4.1 Convex Integer Nonlinear Formulation
Disregarding the NP-hardness of ColG subproblem, we pro-
vide a compact integer program, with nonlinear objective
function U

a

(S, f), to solve it exactly. The program is proved
to be convex (PROPOSITION 4) and hence can be solved to
optimality with many commercial solvers, like KNITRO.

min

S

X
p2P0

Y
i2I:i2p

(1 − τ
i

)

Sif
p

(7a)

s.t.
X

i2I

S
i

≤ k (7b)

S ∈ {0, 1}|I|. (7c)

Proposition 4. Given an attacker flow f ∈ F , the objective
function (7a) is convex over decision variable S ∈ [0, 1]|I|.

4.2 Greedy Algorithm
We also propose a polynomial-time greedy algorithm of com-
puting the approximate best response defender pure strategy,
as shown in Algorithm 2 (we slightly abuse notation and let
S represent the set of operated inspection stations). Start-
ing from an empty set S = ∅, we iteratively assign a se-
curity resource on an inspection station i⇤ which brings the
maximal marginal utility U

d

(S ∪ {i}, f) − U
d

(S, f), until all
k resources are assigned. The approximate pure strategy S0

of Algorithm 2 and the approximate mixed strategy x

0 com-
puted by CCG with ColG solved by Algorithm 2 are proved
to achieve competitive ratios (THEOREMS 5 & 6).
Theorem 5. The utility of S0 obtained by Algorithm 2 is
bounded by U

d

(S0, f) − U
d

(∅, f) ≥ (1 − 1
e

)(U
d

(S⇤, f) −
U
d

(∅, f)), where S⇤ is the optimal solution for ColG.

Theorem 6. Let (x⇤, f⇤) be the equilibrium solution of an
NFIG, and let (x0, f 0) be the solution computed by CCG al-
gorithm with ColG subproblem solved by greedy Algorithm 2.
Then U

d

(x

0, f 0)−U
d

(∅, f 0) ≥ (1− 1
e

)(U
d

(x

⇤, f⇤)−U
d

(∅, f 0)).

5 Constraint Generation (ConG)
Given the optimal primal solution (x,u) of LP (S 0, P 0

), the
ConG subproblem generates an s-t path p ∈ P that has max-
imal reduced cost defined as: R(p) =

P
S2S0 x

S

�(S, p) −P
e2p

u
e

, i.e., p = max

p

02P R(p0). Note that R(p) ≤ 0 if
and only if inequality (6c) associated with p is satisfied by
(x,u). We show that if ConG generates an s-t path p such
that R(p) ≤ 0, the current equilibrium flow f of the restricted
NFIG is the best response against x of the original NFIG.
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Algorithm 3: VNS for ConG
1 Generate a random s� t path p;
2 p LocalSearch(p);
3 while no termination condition is met do
4 p

0  randomly pick one from N l
(p);

5 p

0  LocalSearch(p

0
);

6 if R(p

0
) > R(p) then p p

0;
7 if R(p) > 0 then return p

Proposition 7. If the ConG generates an s-t path p with non-
positive maximal reduced cost, the current equilibrium flow
f of the restricted NFIG is the attacker best response pure
strategy against x of the original NFIG.

5.1 Convex Integer Nonlinear Formulation
We first propose a compact convex integer program to
solve the ConG problem exactly. Let binary variable � ∈
{0, 1}|V |+|E| denote an s-t path p, such that for every node
v ∈ V and edge e ∈ E, γ

v

= 1 if v is on path p and γ
e

= 1 if
e is on path p. We say node v ∈ e if edge e is adjacent with
v. The convex formulation is as follows:

max

�

X
S2S0

x
S

Y
i2S

(1 − τ
i

)

�i −
X

e2E

u
e

γ
e

(8a)

s.t.
X

e:s2e

γ
e

= 1,
X

e:t2e

γ
e

= 1 (8b)
X

e:v2e

γ
e

= 2γ
v

∀v ∈ V, v *= s, t (8c)

γ
e

≤ γ
v

, γ
e

≤ γ
v

0 ∀e ∈ E : e = (v, v0
) (8d)

γ
s

= γ
t

= 1 (8e)
� ∈ {0, 1}|V |+|E|. (8f)

The convexity of the objective (8a) can be easily verified in
the same way of proving PROPOSITION 4. Eqs.(8b)–(8e) en-
sure that � denotes a feasible s-t path p in the sense that: i) s
and t are on p (8e); ii) exactly one edge adjacent with s (t) is
on p (8b); iii) if node v, except s and t, is on p, then exactly
two edges adjacent with v are on p (8c); and iv) if node v is
not on p, then no edge adjacent with v is on p (8c).

Notice that the program (8) without constraint (8d) can also
solve the ConG subproblem exactly. The integer programs
are usually solved with the popular branch and bound (B&B)
framework and the efficiency of B&B depends on the qual-
ity of the upper bound obtained by solving the linear relax-
ation of the program (8). Thus, inequality (8d) is proposed
to tighten the upper bound by cutting off some fractional so-
lutions with too high objective values, such an example is �
with: i) γ

e

= 1 for e0 = (s, v0
), e00 = (v00, t); ii) γ

v

= 0.5 for
v0 and v00; iii) γ

v

= 0, γ
e

= 0 for all other nodes and edges.

5.2 Variable Neighborhood Search (VNS)
Although the convex program (8) can solve the ConG sub-
problem exactly, it still cannot scale up to solve large scale
networks. Observe, however, in each iteration of CCG algo-
rithm, we actually need not find the path with maximal re-
duced cost; rather, any path with a large enough (positive)
reduced cost would suffice. Thus, a fast heuristic search for

Algorithm 4: LocalSearch (p)
1 Repeat
2 p

⇤  arg maxp02N l(p) R(p

0
);

3 if R(p

⇤
) > R(p) then p p

⇤;
4 else return p;

generating such paths is satisfactory for most iterations, ex-
cept when the heuristic is unable to find a path with posi-
tive reduced cost. In this case we can call the convex pro-
gram (8). To this end, we propose a heuristic search algo-
rithm (Algorithm 3) based on Variable Neighborhood Search
(VNS) framework [Hansen and Mladenović, 2001].

Two key components of VNS are: i) N l

(p), denoting the set
of neighbor paths of p within distance l; and ii) LocalSearch
(p) to find a local optimum starting from p (Algorithm 4).
We say that path p0 is a neighbor path within distance l of p
if p0 can be obtained by replacing a v0-v00 sub-path of p with
another v0-v00 path of length no larger than l. The LocalSearch
(p) iteratively searches for a neighbor path p⇤ with maximal
reduced cost (Line 2) and updates current incumbent p if p⇤
is a better solution (Line 3), until a local optimum is obtained
whose reduced cost is higher than all its neighbor paths.

After initialized with an arbitrary local optimum (Lines 1–
2), the VNS randomly picks a neighbor path p0 of p and ap-
plies LocalSearch (p0) to find a local optimum (Lines 4–5).
Afterwards, the incumbent p is updated. This loop is repeated
until a termination condition is met: i) current incumbent p
has a positive reduced cost (Line 7); or ii) for c

max

consecu-
tive iterations, the incumbent p is not updated.

6 Experimental Evaluation
We evaluate the performance of our approach through exten-
sive experiments. We use CPLEX (version 12.6) to solve lin-
ear programs and KNITRO (version 9.0.0) to solve nonlinear
programs. All computations were performed on a 64-bit PC
with 16 GB RAM and a quad-core 3.4 GHz processor. All
values are averaged over 40 instances unless otherwise speci-
fied. All random planar graphs are generated by the Waxman
geographical model (WG) suitable for modeling highway net-
works [Waxman, 1988]. In the WG model, |N | nodes (cities)
are placed in a rectangular domain uniformly, and each pair of
nodes at Euclidean distance d is jointed by an edge with prob-
ability p = e��d, where λ is a constant adjusted to achieve
the desirable average degree D. The two nodes with maximal
Euclidean distance are set as the source and sink nodes of
graph G. By default, the instances are parameterized as fol-
lows: the number of inspection stations |I| = +α(|V | + |E|),
and the number of resources k = +β(|V | + |E|),, where α
and β are tunable parameters. All inspection stations are ran-
domly placed on the graph. The edge capacity c

e

is randomly
chosen in [0, 10], and inspection probability τ

i

∼ [0.4, 0.6].
The l and c

max

are set as 4 and |V | respectively in VNS.
We compare the scalability of three versions of our algo-

rithms: i) CCG: Algorithm 1 with ColG and ConG solved by
programs (7) and (8); ii) CCG*: Algorithm 1, where ColG
and ConG are first solved by greedy methods (Algorithms 2
and 3), and then call the programs (7) and (8) when greedy
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(a) D=2.7
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(b) D=2.86
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(c) D=3.0
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(d) Varying ↵ (� = 0.15)
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(e) Varying � (↵ = 0.3)
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(f) D=2.7
-7
-6
-5
-4
-3
-2
-1
0

10 20 30 40 50 60

D
ef

en
de

r U
til

ity
 

Number of Nodes 

CCG* DMU
DMT DMW

(g) D=2.86.
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(h) D=3.0.
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(i) Robustness (20%)
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Figure 2: Runtime: 2(a)–2(c), Defender Utility: 2(f)–2(h), Vary α and β: 2(d)–2(e), Robustness: 2(i), Real Application: 2(j).

methods return a pure strategy S already in S 0 or path p with
R(p) ≤ 0; iii) LP: the linear program (6), with the benchmark
double oracle (DO) where two oracles solve the best response
pure strategies (S, f ) for both players [Jain et al., 2011].

To evaluate the solution quality of our approach, we im-
plement three heuristic strategies as baselines. The quality
of a solution x is measured by U

d

(x, y(x)). The baseline
mixed strategies are: i) DMU with marginal coverage proba-
bility of each inspection station equal to k

|I| ; ii) DMT where
marginal coverage probability of each inspection station is
normalized inspection probability; iii) DMW where marginal
coverage probability of each inspection station is normalized
inspection weight. The inspection weight w

i

of station i is
defined as the maximum amount of flow that i can interdict,
i.e., the production of τ

i

and the maximum amount of flow
passing through that edge or node; Given the marginal cover-
age probabilities, the defender mixed strategies are generated
by the Combo Sampling algorithm [Tsai et al., 2010].

Scalability Analysis. We compare the scalability of our
algorithms on WG graphs with varying degrees: D = 2.86
which is the mean degree of road network [Gastner and New-
man, 2006], and D ∈ {2.7, 3.0}. α = 0.3 and β = 0.15.
The results are depicted in Figures 2(a)–2(c), where DO can-
not scale up to 50 nodes for D = 2.7 and D = 2.86 and 40
nodes for D = 3.0 with runtime cap of 1800 seconds, while
LP cannot scale up to 30 nodes with memory cap of 8GB.
The results show that although our approaches (CCG,CCG*)
involve nonlinear programs (7) and (8), they still outperform
LP and DO significantly due to the compact representation.
Besides, CCG* also outperforms CCG a lot which shows that
the greedy methods (Algorithms 2 and 3) can obtain good
enough solutions. Especially CCG* can scale up to realistic-
sized networks with 60 nodes and over 40 inspection stations
and 20 resources, while the number of tactical checkpoints
operated in the Southern border is 39 in 2009 [GAO, 2009].

Solution Quality Analysis. We also compare the solution
qualities of our algorithms with three baseline strategies on
WG graphs with varying degrees (α = 0.3 and β = 0.15),
demonstrated by Figures 2(f)–2(h). It is clear that CCG*
outperforms these baselines significantly. Besides, the base-
line DMW works best among the three baselines since the
inspection weights well measure the capability of inspection

stations. Note that the numbers of inspection stations and
resources are proportional with the network size, and hence
there exists no monotone relationship between utility and net-
work size.

Varying Values of α and β. Figures 2(d)–2(e) show the
solution qualities of CCG* and three baselines on WG graphs
(|V | = 40, D = 2.86) with varying values of α and β, from
which we can see: i) with fixed β, increasing α improves
the defender utility for more available inspection stations; ii)
with fixed α, increasing β also improves the defender utility
for more available resources. Moreover, CCG* outperforms
these baselines significantly for all tested values of α and β.

Robustness. In reality, the attacker might not have per-
fect observation on the defender strategy. Thus, we compare
the solution qualities of CCG* and baselines on WG graphs
(|V | = 40, D = 2.86, α = 0.3 and β = 0.15) with the
attacker’s estimation x

0 of the defender strategy x randomly
generated by: x0

= x̃/|x̃| where x̃
S

∼ x
S

· [1− δ, 1+ δ]. The
solution quality of x is measured by U

d

(x, f 0) with f

0 being
the attacker best response against x0. The result is depicted
in Figure 2(i) with δ = 20%, and the result shows that our
approach CCG* is robust enough and outperforms baselines
significantly under a high level of observation uncertainty.

Application on Southern Border Network. We also con-
duct experiments on two sectors in Southern Border Patrol:
Laredo and San Diego sectors. Please see Section C of On-
line Appendix1 for details of these sectors. The results are de-
picted in Figure 2(j), showing that our approach significantly
outperforms the baseline methods for the realistic networks.

7 Conclusion
This paper studies the problem of optimally interdicting an
illegal network flow. We introduce a novel Stackelberg game
model called NFIG, and propose a Column and Constraint
Generation (CCG) algorithm to solve it. The computational
complexity of its ColG subproblem is analyzed. Several
novel algorithms are provided to solve the two subproblems
including convex optimization, 1 − 1

e

approximation method
and a heuristic search algorithm. Experimental evaluation
shows that CCG scales up to realistic-sized networks and sig-
nificantly outperforms existing methods and heuristics.
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