
Parse Tree Fragmentation of
Ungrammatical Sentences

Homa B. Hashemi, Rebecca Hwa
Intelligent Systems Program, Computer Science Department

University of Pittsburgh
hashemi@cs.pitt.edu, hwa@cs.pitt.edu

Abstract
Ungrammatical sentences present challenges for
statistical parsers because the well-formed trees
they produce may not be appropriate for these sen-
tences. We introduce a framework for reviewing
the parses of ungrammatical sentences and extract-
ing the coherent parts whose syntactic analyses
make sense. We call this task parse tree fragmen-
tation. In this paper, we propose a training method-
ology for fragmenting parse trees without using a
task-specific annotated corpus. We also propose
some fragmentation strategies and compare their
performance on an extrinsic task – fluency judg-
ments in two domains: English-as-a-Second Lan-
guage (ESL) and machine translation (MT). Exper-
imental results show that the proposed fragmenta-
tion strategies are competitive with existing meth-
ods for making fluency judgments; they also sug-
gest that the overall framework is a promising way
to handle syntactically unusual sentences.

1 Introduction
Syntactic parse trees are integral to many Natural Language
Processing (NLP) applications. While state-of-the-art statisti-
cal parsers perform well on standard (newswire) benchmarks,
their analyses for sentences from different domains are less
reliable [Gildea, 2001; McClosky et al., 2010; Foster, 2010;
Petrov et al., 2010; Foster et al., 2011]. Ungrammatical1 sen-
tences (or even awkward sentences that are technically gram-
matical) can be seen as special kinds of out-of-domain sen-
tences; in some cases, it is not even clear whether a complete
parse should be given to the sentence. A statistical parser
trained on a standard treebank, however, often produces full,
syntactically well-formed trees that are not appropriate for the
sentences.

Rather than throwing out parses with low-confidence
scores entirely or transforming the problematic sentences first
(which may not always be possible), we believe that a valu-
able middle ground is to identify well-formed syntactic struc-
tures of those parts of the sentences that do make sense. The

1In this context, a sentence is considered ungrammatical if all its
words are valid in the language, but it contains grammatical or usage
errors [Foster, 2007].

resulting reliable structures may still provide some useful in-
formation for down-stream NLP applications such as infor-
mation extraction (IE), machine translation (MT), and auto-
matic evaluation of text (e.g., generated by MT or summariza-
tion systems or human second language learners); the omis-
sion of the problematic structures also helps to prevent mod-
els that learn from syntactic structures from degrading due to
incorrect syntactic analysis.

One approach for obtaining these partially completed
structures is to use shallow parsing [Abney, 1991; Sha and
Pereira, 2003; Sun et al., 2008] to identify recognizable
low-level constituents, but this excludes higher-level com-
plex structures. Instead, we propose to review the full parse
tree generated by a state-of-the-art parser and identify the
parts of it that are plausible interpretations for the phrases
they cover. We call these isolated parts of the parse tree
fragments, and the process of breaking up the tree, parse
tree fragmentation. Our approach differs from systems that
produce partial parses (e.g., the Connexor parser) because
we are not using a deterministic grammar building bottom
up; we are re-interpreting the parse tree post-hoc. Our task
also differs from disfluency detection in spoken utterances,
which focuses on removing extra fillers and repeated phrases
[Honnibal and Johnson, 2014; Rasooli and Tetreault, 2013;
Ferguson et al., 2015]; ungrammatical sentences written by
non-native speakers or generated by machines have a wider
range of error types, such as missing phrases and incorrect
phrasal ordering.

In this paper, we present a framework for extracting parse
tree fragments from problematic sentences. We develop a
methodology for creating gold standard data for training and
evaluating parse tree fragmentation methods. We propose two
fragmentation algorithms and compare them in an empirical
study. Finally, we perform an extrinsic evaluation to deter-
mine the potential utility of tree fragmentation to a down-
stream application. In particular, we choose the task of sen-
tential fluency judgment, in which a system automatically
predicts how “natural” a sentence might sound to a native-
speaker human. We consider two domains: MT outputs
and the writings of English-as-a-Second Language (ESL) stu-
dents.

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

2796

S

VP

S

NP

PRP

him

NP

DT

any

VBZ

opposes

NP

PP

NP

NN

vote

DT

the

IN

of

NP

NNS

members

DT

The

(a) Stanford parse tree

?

NP

NNS

members

DT

The

?

PP

NP

NN

vote

DT

the

IN

of

S

VP

?VBZ

opposes

NP

? ?

DT

any

?

PRP

him

(b) Coherent fragments

Figure 1: (a) An ungrammatical sentence gets a well-formed but inappropriate parse tree. (b) A set of coherent tree fragments
that might be extracted from the full parse tree.

2 A Framework for Parse Tree
Fragmentation

The goal of parse tree fragmentation is to take a sentence
and its tree as input and extract from the tree a set of par-
tial trees that are well-formed and appropriate for the phrases
they cover. Before we explore methods for doing so, we need
to address some more fundamental problems: What kind of
partial trees are considered to be well-formed and appropri-
ate? How do we obtain enough examples of appropriate ways
to fragment the trees? How should this task be evaluated?

2.1 Ideal Fragmentation
One factor that dictates how fragmentation should be done is
how the fragments will be used in a downstream application.
For example, a one-off slight grammar error (e.g., number
agreement) probably will not greatly alter a parser output. For
the purpose of information extraction, this type of slight mis-
matches should probably be ignored; for the purpose of train-
ing future syntax-based computational models, on the other
hand, more aggressive fragmentation may be necessary to fil-
ter out unwanted syntactic relationships.

Even assuming a particular downstream application choice
(sentential fluency judgment in our case), the ideal fragmen-
tation may not be obvious, especially when the errors inter-
act with each other. Consider the following output from a
machine translation system that contains three problem areas
(underlined):
The members of the vote opposes any him.

Figure 1a shows the Stanford parser’s output for this sen-
tence. The first problem is the subject noun phrase even
though the embedded NP and PP subtrees are well-formed.
The second problem is a number disagreement between the
subject and the verb. The third problem is an unusual bigram
that causes the parser to group any and him into a sentential
clause to serve as the object of the main verb.

Which fragments should be salvaged from this parse tree?
Someone who thinks the sentence says: The members of the
voting body oppose any proposal by him might produce the
fragment set shown in Figure 1b. On the other hand, if they
think it says: No parliament members voted against him, they
might have opted to not keep the PP intact.

This example illustrates that fragmentation decisions are
influenced by the amount of information we glean from the

sentence. With only a sentence and an automatically gener-
ated tree for it, we may mentally error-correct the sentence in
different ways. If we are also given an acceptable paraphrase
for the sentence, the fragmentation task becomes more cir-
cumscribed because we now know the intended meaning. An
example data source of this type is an MT evaluation cor-
pus, which consists of machine-translated sentences and their
corresponding human-translated references. Furthermore, if
we not only have access to a closely worded paraphrase but
also an explanation for each change, the fragmentation deci-
sions are purely deterministic (e.g., whenever a phrase is rec-
ommended for deletion, the tree over it is fragmented). An
example data source of this type is an ESL learner’s corpus,
which consists of student sentences and their detailed correc-
tions.

2.2 Developing a Fragmentation Corpus
Because the definition of an ideal fragmentation depends on
multiple factors (e.g., the intended use and the context in
which the original sentences were generated), this task is not
well-suited for a large-scale human annotation project. In-
stead, we propose to develop our fragmentation corpus by
leveraging existing data sources previously mentioned (an
ESL learner’s corpus and an MT evaluation corpus).

Pseudo Gold Fragmentation (PGold) An ESL learner’s
corpus in which every sentence has been hand corrected by
an English teacher is ideal for our purpose. We identified
sentences that are marked as containing word-level mistakes:
unnecessary, missing or replacing word errors. Given the po-
sitions and error types, a fluent sentence can be reconstructed
and reliably parsed. The parse tree of the fluent sentence can
then be iteratively fragmented according to the error types
that occur in the original sentence (see Figure 2). The re-
sulting sets of fragments approximate an explicitly manually
created fragmentation corpus; however, since a parser may
make mistakes even on a fluent sentence, we call these frag-
ments pseudo gold.

REference Fragmentation (REF) Even if we do not have
detailed information about why certain parts of a sentence are
problematic, we can construct an almost-as-good fragmenta-
tion if we have access to a fluent paraphrase of the original.
We call this a reference sentence, borrowing the terminology

2797

l1 l2 l1

l3

?

l2

? ?

(a) Unnecessary word (l3) error

l1 l2

l3

l1 l2

? ?

(b) Missing word (l3) error

l1 l2

l3

l1

l4

?

l2

? ?

(c) Replacing word (l3) error

Figure 2: Creating pseudo gold fragments. The left-hand side
are parse trees of fluent sentences and the right-hand side are
their transformation after applying errors.

from the MT community, where it is used to refer to human
translations against which MT systems are evaluated. In a
language tutoring scenario, the reference would be a teacher’s
revision of a student’s original attempt.

We parse both the original and reference sentences with
the same parser. We then find the alignments between two
trees by computing their minimum tree edit distance [Pawlik
and Augsten, 2011]. Based on the tree alignment, we assign
every node of the original tree as either a part of an existing
fragment or the start of a new fragment. If the node in a parse
tree is aligned, it will be assigned to a fragment along with its
aligned parent, children or siblings. If the node is not aligned,
it will be considered as a split point between fragments.

While both PGold and REF made use of additional infor-
mation to create reliable tree fragments, they serve different
purposes. PGold tree fragments represent the most linguisti-
cally plausible interpretation of the original sentence because
we can construct the intended well-formed sentence and ob-
tain the fragments from its corresponding well-formed tree.
In contrast, an automatic alignment between an original sen-
tence and a reference sentence may not be as linguistically
plausible (e.g., an error could be fixed via a substitution or
via an insertion plus a deletion). Therefore, the REF tree
fragments are formed from the automatically parsed tree of
the original sentence, and they represent an upperbound on
what a real fragmentation algorithm could achieve.

2.3 Evaluative Metrics
One way to evaluate an automatic fragmentation method is
to compare its resulting fragments against the gold standard
fragments, adapting the usual tree-to-tree precision and recall
metrics for set-to-set. First, each fragment of the candidate set
is mapped to a fragment of the gold standard set with which
it has a maximum number of shared edges. (If there are two
candidate fragments but only one gold fragment, both can-
didates would be mapped to the same gold fragment.) Sec-
ond, precision and recall (and F-score) are calculated as the
number of shared edges between all the mapped fragments

Figure 3: Word N -gram features for the dotted edge. Rectan-
gles are words. Word bigrams associated to the dotted edge
are shadowed.

divided by the total number of edges in the candidate and
the gold fragment sets respectively. In our work, the PGold
set serves as the gold standard. Another way of evaluating
whether the fragmentation decisions make sense is to per-
form an extrinsic evaluation. If fragmentation were helpful,
a downstream application should perform better with it than
without it.

3 Fragmentation Methods
We propose two automatic methods of fragmentation. In one,
we assume the availability of a gold standard training corpus.
In the second, we only make use of widely-available NLP
resources, such as treebanks.

3.1 Classification-based Parse Tree Fragmentation
(CLF)

To automatically extract reliable parse tree fragments from
an ungrammatical sentence, a system needs to discriminate
between the right and wrong contexts for some parent-child
syntactic relationships. We formulate this as a binary classi-
fication problem: for each edge in the tree indicates whether
the edge should be kept or cut. Using parse trees that were
fragmented by the REF method as examples, we train a Gra-
dient Boosting Classifier [Friedman, 2001] that learns to frag-
ment trees in a similar manner as REF. The trained classifier
can then make predictions on the branches of unseen parse
trees.

Because the number of kept edges is far greater than the cut
ones, when constructing the training set, we randomly sam-
ple equal numbers of the kept and cut edges. The following
features are extracted from each parent-child edge of a parse
tree:

• Labels of the parent, child and grandparent nodes.
• Depth and height of the parent and child.
• Word bigrams and trigrams corresponding to the edge

(as shown in Figure 3). We use both raw counts and
pointwise mutual information of the N -grams. To com-
pute the N -gram counts, we use Agence France Press
English Service (AFE) section of English Gigaword
[Graff et al., 2003].

• Binary features that determine whether the edge is in a
context free grammar rule that appeared more than some
threshold in the Penn Treebank. We used these 12 val-
ues: {100, 500, 1000, 3000, 5000, 8000, 10000, 15000,
20000, 40000, 70000, 90000}.

2798

3.2 Treebank-Based Parse Tree Fragmentation
(TBF)

For domains that do not have parallel corpora, we would need
to back off to widely available resources, such as treebanks.
The Treebank-Based Fragmentation method (TBF) decides
whether to keep or cut an edge in a parse tree by checking to
see whether it belongs to a “common” CFG rule in the Penn
Treebank; a CFG rule is considered “common” if its treebank
frequency is above a set threshold value (empirically chosen
using development data). If the rule is not common but has a
common right-hand side, the right-hand side will be kept as a
fragment. Otherwise, TBF finds a pattern within the rule with
the highest frequency; if it is common, it is kept as a fragment.
For example, the rule NP ! NP PP , VP is not common, nor
is its entire right-hand side. Therefore, TBF finds the most
frequent pattern within the rule, which is NP ! NP PP. Be-
cause this pattern is common, it is kept as a fragment, while
other children (the comma and VP) are separated into two
other fragments.

4 Experimental Setup
4.1 Data
The experiments are conducted over two datasets that con-
tain ungrammatical sentences: writings of English as a sec-
ond language learners and machine translation outputs. We
choose datasets for which the corresponding correct sen-
tences are available (or easily reconstructed).

English as a Second Language corpus (ESL) The First
Certificate in English (FCE) dataset [Yannakoudakis et al.,
2011] is a learner’s corpus that contains ungrammatical sen-
tences and their corresponding error corrections. Given the
location and type of the errors, a corrected version of each
ungrammatical ESL sentence can be reconstructed. For ex-
ample, in a sentence “He talk with a friend” the teacher would
annotate that “talk” should be replaced by “talks” because it
has the wrong number agreement. In most cases, knowing
the errors and their corrections makes it possible for us to
determine the appropriate fragments. However, some cor-
rections are more complicated, involving phrase-to-phrase
replacement due to multiple problems. For example, sup-
pose a teacher recommended replacing “have a talk” with
“talked”. This edit involves both a semantic shift as well as
a tense change. On a more micro-level, should the corrected
verb “talked” be aligned with the original noun “talk” (be-
cause they are more semantically similar) or the original verb
“have” (because they are more syntactically similar)? In this
study, we filter out these phrasal replacements, leaving them
for future work. From this corpus, we create two datasets for
the experiments. First, we randomly select 5000 sentences
with at least one error; this dataset is for training the CLF
fragmentation method as well as for the intrinsic evaluation
of different fragmentation methods. Then, we create a sec-
ond, non-overlapping dataset for the extrinsic evaluation. It
consists of 7000 sentences and is representative of the cor-
pus’s error distribution; there are 2895 sentences with no er-
ror; 2103 with one error; 1092 with two errors; and 910 with
3+ errors.

Machine Translation corpus (MT) The LIG corpus [Potet
et al., 2012] contains 10,881 French-English machine trans-
lation outputs and their human post-editions. Unlike the ESL
corpus, in the MT corpus, we only have access to the human-
edited sentence. We cannot create PGold fragmentation for
the MT data because we are not certain about positions or
types of the errors. We can only build REF fragments for
MT by comparing the parse tree of the bad sentence with that
of the good sentence, making splitting point decisions on the
parse tree of the bad sentence.

In our experiments on the MT corpus, we use the HTER
(Human-targeted Translation Edit Rate) score [Snover et al.,
2006]2 as the fluency score of MT outputs. HTER is defined
as the minimal rate of edits needed to change the machine
translation to its manually post-edited version that ranges be-
tween 0 and 1 (0 when no word is edited and 1 when all words
are edited). We use TER (default settings)3 to compute HTER
on the LIG corpus. We then build a dataset of 4000 sentences
with HTER score more than 0.1 for training CLF and intrinsic
evaluation, and a dataset of 6000 sentences with real distribu-
tion of HTER scores for extrinsic evaluation. The distribution
of sentences in the second dataset is as follows: The HTER
score of 2109 sentences are within [0, 0.1); 1099 sentences
within [0.1, 0.2); 1195 sentences within [0.2, 0.3); 784 sen-
tences within [0.3, 0.4); and 813 sentences have scores more
than 0.4.

4.2 Experimental Tools and Methods

The Stanford parser version 3.2.0 [Klein and Manning,
2003] is used to generate parses for all sentences. In a
post-processing step, the non-terminal symbols and terminal
words of the tree are normalized; similarly, we have also lem-
matized all the words. This increases the number of node
alignments for the REF and CLF methods and the number
of hits for the TBF methods4. We remove all fragments that
do not have any terminals, thus all fragments are lexicalized.
In addition, in each fragment, if head of a constituent is not
among its children, its children will form new fragments.

For all binary classification or regression tasks (which will
be discussed in Section 5.2), we run a 10-fold cross val-
idation with the standard Gradient Boosting Classifier or
Regressor [Friedman, 2001] in the scikit-learn toolkit [Pe-
dregosa et al., 2011].5 We tune Gradient Boosting param-
eters with a 3-fold cross validation on the training data:
learning rate over the range {0.0001 . . . 100} by mul-
tiples of 10 and max depth over the range {1 . . . 5}.

2This score is also used in Workshop on Statistical Machine
Translation (WMT) for the sentence-level quality estimation task.

3http://www.cs.umd.edu/˜snover/tercom/
4Normalization may allow some low-level grammar errors to

pass through. Because our goal is to produce large, interpretable
fragments with an eye toward a fluency judgment, normalization
helps more than hurts. However, if the application were grammar
error correction, alternative preprocessing may be necessary.

5We have also tried SVMs with LibLinear toolkit [Fan et al.,
2008], but gradient boosting learners obtained the best results.

2799

method avg. # of
fragments

avg. size of
fragments F-score

PGold 6 10.9 -
REF 5.7 13.2 0.86
CLF 7.1 9.3 0.74
TBF 8.9 7.8 0.72
No cut 1 55.8 0.65

Table 1: Similarity of fragmentation methods with PGold
fragments over ESL dataset. The No cut method serves as
a floor baseline and does not break any tree.

5 Evaluation
To measure how well the proposed CLF fragmentation
method performs, we have conducted both an intrinsic eval-
uation and an extrinsic one. For the intrinsic evaluations, we
first validate CLF using standard classification measures; we
then compare its tree fragments against those produced by
other fragmentation methods. For an extrinsic evaluation, we
use the fragments for a specific NLP task: sentence-level flu-
ency judgment.

5.1 Intrinsic Evaluation
Evaluation of CLF Performance CLF runs a binary pre-
diction model over parse tree edges, deciding whether to keep
an edge or cut it. The ground-truth labels come from the REF
fragments. We performed a 10-fold cross validation for the
two domains: ESL and MT. Note that while the CLF train-
ing data is balanced, the test data is not; thus, a baseline of
never cutting any edge would result in a high classification
accuracy (84% on ESL and 66% on MT). To take the skewed
class distribution into account, we evaluate classifiers with
the AUC measure (the area under the receiver operating char-
acteristic curve) [Hanley and McNeil, 1982]. AUC estimates
how probable it is that a classifier might give a higher rank to
a randomly cut-edge compared to a randomly not-cut-edge.
In our experiments, the AUC of CLF on ESL and MT is 0.69
and 0.66 respectively whereas the AUC of the baseline (cut-
ting no edge) is 0.5 for both. The AUC scores suggest that
CLF is making reasonable decisions, opting to cut an edge
when it is certain.

Evaluation of Tree Fragmentation Methods In this ex-
periment, we evaluate the fragmentation methods by how
well their resulting tree fragments match the PGold tree frag-
ments, which are extracted from the ESL learner’s corpus. To
perform the comparison, we use an adapted version of the
usual precision and recall metrics (described in Section 2.3).
Table 1 summarizes the comparison of different fragmenta-
tion methods in terms of their average number of fragments,
average fragment size, and F-score against PGold fragments.
We see that while REF fragments are the most similar to
PGold, they are far from identical. This highlights the differ-
ences that arise from fragmenting a well-formed tree (PGold)
and fragmenting the tree of the problematic sentence (REF).

5.2 Extrinsic Evaluation: Fluency Judgment
The previous intrinsic evaluation only tells us how closely
an automatic tree fragmentation method might approach the

PGold fragments. Since even the PGold fragments are au-
tomatically created, we evaluate the potential uses of tree
fragments in an external application: sentence-level fluency
judgment. An automatic fluency judge can be used to decide
whether an MT output needs to be post-processed by a pro-
fessional translator; it can also be used to help grading student
writings.

There have been several previous work on sentence-level
fluency judgment. Researchers have found that language
model metrics alone are not sufficient, and various syntax-
based features have been proposed to be incorporated into
the fluency metric [Mutton et al., 2007; Post, 2011; Post and
Bergsma, 2013]. However, in order for these features to work
well, they ought to be extracted from appropriate parse trees.
Given that statistical parsers have difficulties with ungram-
matical sentences, mis-interpreted parse trees may degrade
the predictive power of the features. We hypothesize that
through parse tree fragmentation, major syntactic problems
can be identified; thus, tree fragments should be useful for
judging sentence fluency.

There are many different ways to set up a fluency judgment
task. For example, the desired granularity of the judgment
may differ depending on the application. We report two con-
ditions: an easy binary classification and a regression formu-
lation. For the binary classification task, we train a classifier
to distinguish between sentences that have virtually no error
and those that have many errors. Thus, an ESL sentence is
labeled 0 if it has no errors, and it is labeled 1 if it has three
or more errors; an MT output is labeled 0 if its HTER score
is less than 0.1, and it is labeled 1 if its HTER score is greater
than 0.4. Although the setup is a little artificial, this study tells
us how well each method performs on the extreme cases. In
contrast, the regression task is more challenging because the
systems have to make finer distinctions of fluency. For the
ESL dataset, the system has to predict the number of errors in
each sentence (0, 1, 2, or 3+); for the MT dataset, the HTER
score (a real number between 0 and 1). The reported metric
for this study is Pearson’s r correlation coefficient between
the predicted and expected values.6

Our feature set: We extract four simple features from the
output of each fragmentation method for each sentence: 1)
Number of fragments, 2) Average size of fragments, 3) Min-
imum size of fragments, and 4) Maximum size of fragments.

Contrastive feature sets: We compare the proposed frag-
mentation approach against several contrastive baselines. In
addition to typical language model features, we especially fo-
cused on previous work that rely on parse information:

• Sentence length (l).

• Language Modeling (LM). An N -gram precision for
1 N 5 is computed as a fraction of N -grams ap-
pearing in the reference text (we used the Agence France

6We have also evaluated the regression task with root mean
square error (RMSE) and Kendall’s ⌧ . Since the general trend of
the results was similar to Pearson’s r, we only report Pearson’s r.

2800

ESL MT
feature set Acc.(%) AUC r Acc.(%) AUC r

Chance 76.1 0.5 72.2 0.5
length (l) 77.3 0.75 0.304 72 0.5 0.018
LM 76.7 0.73 0.279 74.4 0.71 0.307
LM + l 80.6 0.84 0.417 74.2 0.71 0.306
C&J 76.3 0.74 0.318 68.3 0.6 0.136
TSG 77.3 0.74 0.285 69.8 0.59 0.105
PGold 100 1 0.928 - - -
REF 99.8 1 0.84 94.4 0.99 0.782
CLF 79.9 0.81 0.377 73 0.66 0.205
TBF 77.2 0.74 0.298 71.8 0.51 0.04
TBF + LM 81.1 0.84 0.45 74 0.71 0.304
CLF + LM 82.2 0.86 0.462 74.7 0.73 0.324

Table 2: Fluency judgment results over two datasets containing ungrammatical sentences using binary classification and regres-
sion. Accuracy and AUC measures are reported for binary classification, and Pearson’s r is reported for regression.

Press English Service (AFE) section of the English Gi-
gaword Corpus [Graff et al., 2003].

• C&J features (C&J). This set of features is based on the
complete set of parse tree reranking features of [Char-
niak and Johnson, 2005]7 from Stanford parser’s output.

• TSG features (TSG). This set of features is based on
the tree substitution grammar derivation counts [Post,
2011].8

Table 2 summarizes a comparison of different fluency
judgment feature sets. The first block reports the baselines.
For the ESL domain, the length of a sentence is a good in-
dicator of the fluency of a sentence; longer sentences tend to
have more errors than shorter sentences, but sentence length
is not as strongly correlated with HTER score in the MT do-
main.

The second block of feature sets in the table shows that
the four features extracted from parse tree fragments are cor-
related with the fluency quality of sentences. While it is
expected that features based on PGold and REF fragments
should correlate strongly with fluency, CLF features also cor-
relates with fluency better than C&J and TSG features in both
domains. Moreover, they have different model sizes: the CLF
feature set consists of 4 simple extracted features from the
CLF tree fragments, C&J has more than 60k features and
TSG has more than 6k features on the ESL dataset. As a
simpler fragmentation heuristic, TBF is not as competitive
for fluency judgment, especially for the MT domain. This
suggests that CLF has learned useful signals from the REF
training examples.

Finally, adding parse tree fragmentation features to lan-
guage modeling features improves the overall fluency judg-
ment performance. As the results show, the combination
of CLF features with LM features (CLF + LM) signifi-
cantly outperforms LM+l (using two-sided paired t-test with
> 95% confidence from the 10 folds).

7https://github.com/mjpost/extract-spfeatures
8https://github.com/mjpost/post2011judging

6 Related Work

Parsing ungrammatical sentences can be considered as an in-
stance of domain adaptation, in which the goal is to adapt a
standard parser to accurately process the ungrammatical text
[Foster et al., 2008]. The ungrammatical text might be con-
sidered as the target domain that contains the language that is
not covered by the parser’s grammar. One of the challenges
of parser adaptation is the lack of training data for the tar-
get domain. Therefore, various approaches have been pro-
posed to automatically label data in the target domain to use
as training data. These approaches include self-training [Mc-
Closky et al., 2006], parser ensemble [Sagae and Tsujii, 2007;
Baucom et al., 2013], selecting source sentences that are most
similar to a target domain [McClosky et al., 2010], and build-
ing ungrammatical treebank by automatically generating er-
rors to grammatical sentences [Foster, 2007]. The PGold
fragmentation in this paper is inspired by [Foster, 2007] in
which we iteratively fragment parse trees according to error
types. The task of parse tree fragmentation can also be con-
sidered as an approach for parser adaptation with ungrammat-
ical inputs. Having a treebank of ungrammatical sentences
and their parse tree fragments, one might train a new special-
ized fragmentation parser of ungrammatical sentences.

7 Conclusion

We have introduced parse tree fragmentation as a way to ad-
dress the mismatch between ungrammatical sentences and
statistical parsers that are not trained to handle them. We have
devised methods for extracting gold standard tree fragments
using evaluative corpora available for other NLP applications.
The gold standard corpus enables us to train and evaluate
other fragmentation methods. We have proposed two prac-
tical fragmentation methods, a classifier-trained method and
a deterministic treebank method. Through empirical studies,
we have verified that the automatically extracted tree frag-
ments are competitive for an NLP application of fluency de-
tection.

2801

Acknowledgments
This work was supported in part by the National Science
Foundation Grant IIS-0745914. We would like to thank the
anonymous reviewers and Pitt NLP students for their helpful
comments.

References
[Abney, 1991] Steven P Abney. Parsing by chunks. In

Principle-Based Parsing, 1991.
[Baucom et al., 2013] Eric Baucom, Levi King, and Sandra

Kübler. Domain adaptation for parsing. In RANLP, 2013.
[Charniak and Johnson, 2005] Eugene Charniak and Mark

Johnson. Coarse-to-fine n-best parsing and MaxEnt dis-
criminative reranking. In ACL, 2005.

[Fan et al., 2008] Rong-En Fan, Kai-Wei Chang, Cho-Jui
Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. Liblinear: A
library for large linear classification. The Journal of Ma-
chine Learning Research, 9:1871–1874, 2008.

[Ferguson et al., 2015] James Ferguson, Greg Durrett, and
Dan Klein. Disfluency detection with a Semi-Markov
model and prosodic features. In NAACL, 2015.

[Foster et al., 2008] Jennifer Foster, Joachim Wagner, and
Josef Van Genabith. Adapting a WSJ-trained parser to
grammatically noisy text. In ACL, 2008.

[Foster et al., 2011] Jennifer Foster, Özlem Çetinoglu,
Joachim Wagner, Joseph Le Roux, Stephen Hogan,
Joakim Nivre, Deirdre Hogan, Josef Van Genabith, et al.
hardtoparse: POS tagging and parsing the twitterverse.
In Workshop On Analyzing Microtext (AAAI), 2011.

[Foster, 2007] Jennifer Foster. Treebanks gone bad. Inter-
national Journal of Document Analysis and Recognition,
10:129–145, 2007.

[Foster, 2010] Jennifer Foster. “cba to check the spelling” in-
vestigating parser performance on discussion forum posts.
In NAACL, 2010.

[Friedman, 2001] Jerome H Friedman. Greedy function ap-
proximation: a gradient boosting machine. Annals of
statistics, pages 1189–1232, 2001.

[Gildea, 2001] Daniel Gildea. Corpus variation and parser
performance. In EMNLP, 2001.

[Graff et al., 2003] David Graff, Junbo Kong, Ke Chen, and
Kazuaki Maeda. English Gigaword. Linguistic Data Con-
sortium, 2003.

[Hanley and McNeil, 1982] James A Hanley and Barbara J
McNeil. The meaning and use of the area under a re-
ceiver operating characteristic (ROC) curve. Radiology,
143(1):29–36, 1982.

[Honnibal and Johnson, 2014] Matthew Honnibal and Mark
Johnson. Joint incremental disfluency detection and de-
pendency parsing. TACL, 2:131–142, 2014.

[Klein and Manning, 2003] Dan Klein and Christopher D
Manning. Accurate unlexicalized parsing. In ACL, 2003.

[McClosky et al., 2006] David McClosky, Eugene Charniak,
and Mark Johnson. Reranking and self-training for parser
adaptation. In ACL, 2006.

[McClosky et al., 2010] David McClosky, Eugene Charniak,
and Mark Johnson. Automatic domain adaptation for pars-
ing. In NAACL, 2010.

[Mutton et al., 2007] A. Mutton, M. Dras, S. Wan, and
R. Dale. GLEU: Automatic evaluation of sentence-level
fluency. In ACL, 2007.

[Pawlik and Augsten, 2011] Mateusz Pawlik and Nikolaus
Augsten. RTED: A robust algorithm for the tree edit dis-
tance. Proceedings of the VLDB Endowment, 5(4):334–
345, 2011.

[Pedregosa et al., 2011] Fabian Pedregosa, Gaël Varoquaux,
Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. Scikit-learn: Machine
learning in Python. The Journal of Machine Learning Re-
search, 12:2825–2830, 2011.

[Petrov et al., 2010] Slav Petrov, Pi-Chuan Chang, Michael
Ringgaard, and Hiyan Alshawi. Uptraining for accurate
deterministic question parsing. In EMNLP, 2010.

[Post and Bergsma, 2013] Matt Post and Shane Bergsma.
Explicit and implicit syntactic features for text classifica-
tion. In ACL, 2013.

[Post, 2011] M. Post. Judging grammaticality with tree sub-
stitution grammar derivations. In ACL (short paper), 2011.

[Potet et al., 2012] Marion Potet, Emmanuelle Esperança-
Rodier, Laurent Besacier, and Hervé Blanchon. Collection
of a large database of French-English SMT output correc-
tions. In LREC, pages 4043–4048, 2012.

[Rasooli and Tetreault, 2013] Mohammad Sadegh Rasooli
and Joel R Tetreault. Joint parsing and disfluency detection
in linear time. In EMNLP (short paper), 2013.

[Sagae and Tsujii, 2007] Kenji Sagae and Jun’ichi Tsujii.
Dependency parsing and domain adaptation with LR mod-
els and parser ensembles. In EMNLP-CoNLL, 2007.

[Sha and Pereira, 2003] Fei Sha and Fernando Pereira. Shal-
low parsing with conditional random fields. In NAACL,
2003.

[Snover et al., 2006] Matthew Snover, Bonnie Dorr, Richard
Schwartz, Linnea Micciulla, and John Makhoul. A study
of translation edit rate with targeted human annotation.
In Association for Machine Translation in the Americas,
pages 223–231, 2006.

[Sun et al., 2008] Xu Sun, Louis-Philippe Morency, Daisuke
Okanohara, and Jun’ichi Tsujii. Modeling latent-dynamic
in shallow parsing: a latent conditional model with im-
proved inference. In International Conference on Compu-
tational Linguistics, pages 841–848, 2008.

[Yannakoudakis et al., 2011] Helen Yannakoudakis, Ted
Briscoe, and Ben Medlock. A new dataset and method for
automatically grading ESOL texts. In ACL, 2011.

2802

