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Abstract
The problem of belief tracking in the presence
of stochastic actions and observations is perva-
sive and yet computationally intractable. In this
work we show however that probabilistic beliefs
can be maintained in factored form exactly and ef-
ficiently across a number of causally closed beams,
when the state variables that appear in more than
one beam obey a form of backward determinism.
Since computing marginals from the factors is still
computationally intractable in general, and vari-
ables appearing in several beams are not always
backward-deterministic, the basic formulation is
extended with two approximations: forms of be-
lief propagation for computing marginals from fac-
tors, and sampling of non-backward-deterministic
variables for making such variables backward-
deterministic given their sampled history. Unlike,
Rao-Blackwellized particle-filtering, the sampling
is not used for making inference tractable but for
making the factorization sound. The resulting al-
gorithm involves sampling and belief propagation
or just one of them as determined by the structure
of the model.

1 Introduction
Keeping track of beliefs when actions and sensors are proba-
bilistic is crucial and yet computationally intractable, with ex-
act algorithms running in time that is exponential in the num-
ber of state variables in the worst case. Current approaches
rely on samples for approximating probabilistic beliefs by
sets of particles [Kanazawa et al., 1995; Thrun et al., 2001]
or decompositions where joint beliefs are approximated by
products of smaller local beliefs [Boyen and Koller, 1998].
Particle filtering methods however may require too many par-
ticles even in the Rao-Blackwellized (RB) version [Murphy,
1999; Doucet et al., 2000], while decomposition approaches
may result in poor approximations.

In this work we take a different approach and show that
probabilistic beliefs can be maintained in factored form ex-
actly and efficiently across a number causally closed beams
when the state variables that appear in more than one beam
obey a form of backward determinism by which the value of

a variable at time t is determined by the value of the vari-
able at time t + 1, the history, and the prior beliefs. Since
computing marginals from a factorized representation is com-
putationally hard in general, and variables appearing in sev-
eral beams are not always backward-deterministic, the basic
formulation is extended through two approximations: forms
of belief propagation for computing marginals from the fac-
torized representation [Pearl, 1988], and sampling of non-
backward-deterministic variables for making them backward-
deterministic given their sampled history. This last part is
similar to Rao-Blackwellized particle-filtering with one cru-
cial difference: sampling is not introduced for making infer-
ence tractable but for making the factorization sound. Like
the method of Boyen and Koller [1998], the algorithm main-
tains global beliefs in terms of smaller local factors but the
scope of these local factors is determined by the structure of
the model and variables usually appear in many factors.

We call the general algorithm probabilistic beam tracking
(PBT) as it is the probabilistic version of the beam tracking
scheme of Bonet and Geffner [2014] that deals with beliefs
represented as sets of states rather than probability distribu-
tions. When the size of the beams and the number of parti-
cles are bounded, PBT runs in polynomial time. In addition,
when the structure of the beams results in factored represen-
tations that are acyclic and where factors share variables that
are backward-deterministic only, the algorithm is exact.

As an illustration, the 1-line SLAM problem of Murphy
[1999] that involves an agent that moves along a line sensing
the color of each cell i, results in factors B

i

of size two, where
one variable represents the agent location, and the other, the
color of cell i. PBT reduces then to RB particle-filtering, as
the variable that appears in more than one beam (the agent
location) is not backward deterministic and must be sampled,
leaving each beam with a single, unique variable. On the
other hand, if the problem is modified so that the color sensed
in a cell depends on the color of the two surrounding cells,
PBT would still sample the agent location variable, but in ad-
dition would keep track of factors of size three representing
the color of each cell and the color of the two surrounding
cells. Inference over these factors can be done exactly by
the jointree algorithm, as the treewidth of the factor graph
is bounded and small [Darwiche, 2014], or approximately
but more efficiently in general, by belief propagation. In all
cases, the formulation determines the scope of the factors (the
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beams) and the set of variables that need to be sampled from
the structure of the model.

We begin by discussing the background and related work,
and then present the model, the structure, and the beams that
follow from them. Next, we derive the equations for factor-
ized belief tracking in belief decomposable systems and ex-
tend the formulation over non-decomposable systems. We
conclude with an approximation algorithm for computing
marginals, some experimental results, and discussion.

2 Background and Related Work
In the flat model, a state s is a value assignment to a set
of state variables, actions a affect the state through transi-
tion probabilities P(s0|s, a), and observation tokens o pro-
vide partial information about the resulting state s0 through
sensing probabilities P(o|s0, a). Given the prior P(s), the tar-
get belief P(s|h), where h = ha0, o0, . . . , ai, oii is an in-
terleaved sequence of actions and observations, is character-
ized inductively as P(s|h) = P(s) for empty h, P(s|h, a) =P

s

0 P(s|s0, a)⇥P(s0|h), and P(s|h, a, o) = ↵P(o|s, a)⇥
P(s|h, a) where ↵ = 1/P(o|h, a) is a normalizing constant.

Keeping track of beliefs using this representation is expo-
nential in the number of state variables. Approaches have thus
been developed to exploit problem structure. This structure
is often made explicit through the language of Bayesian net-
works [Pearl, 1988]. However, while the posterior P(s|h) can
be obtained from a Dynamic Bayesian network (DBN) with
as many slices as time steps [Dean and Kanazawa, 1989],
exact inference over such networks is hard (yet see [Vlasse-
laer et al., 2016]), so approximate inference schemes have
been pursued instead [Murphy, 2002]. In the method of
Boyen and Koller [1998], global joint beliefs are approxi-
mated as products of smaller local beliefs, while in parti-
cle filtering methods (PF), global beliefs are formed from a
set of samples [Kanazawa et al., 1995; Thrun et al., 2001;
Koller and Friedman, 2009]. The methods are related to well
known approximation techniques for general Bayesian net-
works like the mini-bucket approximation [Dechter and Rish,
2003], (sampled) cut-set conditioning [Pearl, 1988], and re-
stricted forms of belief propagation [Murphy and Weiss,
2001].

Our work is related to the ideas underlying these methods
but it does not build explicitly on them. It is indeed a gener-
alization of the beam tracking (BT) method for keeping track
of beliefs given by sets of states as opposed to probability
distributions [Bonet and Geffner, 2014]. Probabilistic beam
tracking is aimed at combining the effectiveness of BT with
the ability to handle noisy actions and sensing.

3 Model, Structure, and Beams
Model. The set of all state variables is denoted as X . A
state x defines a value for each state variable. In general,
subsets of variables are denoted with uppercase letters and
their values with lowercase letters. Actions a affect the state
stochastically with given transition probabilities tr(x0|x, a).
The set of all observation variables is denoted with O and
lowercase o denotes an observation; i.e. a value for each of the

observation variables. The sensor model is also Markovian
with probabilities q(o|x, a). The joint prior is P(x).

Histories and Beliefs. A history or execution h is an inter-
leaved sequence of action and observations that begins with
an action. A history is complete if it is empty or ends with
an observation. The state and observation variables at time t
are denoted as Xt and Ot respectively. The observation o

t

in
the history h encodes the value of the observation variables
Ot. For each history h, either complete or incomplete, there
is a probability measure P

h

over the events defined by the
random variables associated with h. We abuse notation by
writing P(A|h) instead of P

h

(A), and P(A|a, h) instead of
P
ha

(A). For a complete execution h for t time steps, the joint
over the state variables Xt is denoted by Bh(x)

.
= P(x|h).

The prior belief for the empty history h is Bh(x) = P(x).

Causal Structure and 2-DBN. The transition and sensing
probabilities are given by a 2-slice DBN whose nodes V , V 0,
and O stand for the state variables before and after the ac-
tion, and for the observation variables. The transition and
sensing probabilities (parameters) are P (V 0|pa(V 0), a) and
P (O|pa(O), a) where the parents pa(V 0) of V 0 are among
the V -variables, and the parents pa(O) of O are among the
V 0-variables. A variable W is a cause of V if W or W 0 is a
parent of V in the 2-DBN, and W is causally relevant to V if
it is a cause of V or is causally relevant to a cause of V .

Beams. A beam is a non-empty subset of state variables that
is causally closed; i.e., if a variable belongs to the beam,
its causes must belong to the beam as well. A collection of
beams is complete if each state variable is included in some
beam and for each observation variable, its set of causes is
included in some beam. The size of a beam is the num-
ber of variables that it contains, and a complete collection
of beams is minimal if no beam can be replaced by a col-
lection of beams of smaller size. There is actually a unique
minimal complete collection of beams B that can be con-
structed as follows: if B

i

is the set of state variables that are
causally relevant to a state variable V

i

or to an observation
variable O

i

, then B is the collection of beams B
i

with the
duplicate beams removed, and the beams B

k

properly con-
tained in other beams removed as well. By default, we as-
sume this beam structure B. If we enumerate the beams in
this structure as B1, . . . , Bm

, we will refer to beam B
i

also
by its index i. This beam structure is the same as the one in
the non-probabilistic formulation [Bonet and Geffner, 2014]
where the causal width of the problem is defined as the size
of the largest beam. This structural measure is important be-
cause beam tracking runs in time that is exponential in the
causal width.1 The same will be true for probabilistic beam
tracking. Many problems of interest can be formulated so that
their causal width is bounded and small.

Example: In Minesweeper, whether in the normal or noisy
version, there are hidden state variables V

i

encoding whether
there is a mine at cell i, and observation variables O

i

that

1Actually, variables that are determined, meaning that their ini-
tial value is known and can be affected by deterministic actions only,
do not add to the causal width [Bonet and Geffner, 2014].
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Figure 1: 2-slice DBN and beam structure for the direct for-
mulation of the 1-line SLAM problem. The observation prob-
abilities satisfy P(o|`,m1, . . . ,mn

, a) = q(o|`,m
`

) that cor-
responds to a form of context-specific independence. This
independence is not exploited and results in a beam structure
that contains a single beam B with all the n+1 state variables.

after probing cell i reveal the total number of mines at the
8 surrounding cells and V

i

itself. The causes of O
i

are the
9 cell variables V

k

that have no further causes (observation
variables for border cells have fewer causes). The minimal
complete beam structure is given by beams B

i

, one for each
cell i, each of size no greater than 9. Thus, while tracking
beliefs in Minesweeper is NP-hard [Kaye, 2000], the causal
width of the problem is 9.

Example: In the direct formulation of Murphy’s 1-line SLAM
problem mentioned above, there are color variables M

i

for
each cell i, an agent location variable L, and one ob-
servation variable O. The observation o that results af-
ter applying an action a is determined by the probabili-
ties q(o|`,m1, . . . ,mn

, a) = q(o|`,m
`

) that encode a form
of context-specific independence [Boutilier et al., 1996] in
which the observation o depends only on the color m

`

of the
cell ` for L = `. In this representation, all the state vari-
ables L and {M

i

}
i

are causally relevant to the observation
variable O, determining a beam structure with a single beam
B of size n + 1 (Fig. 1). It is possible, however, to take ad-
vantage of context-specific independence to reformulate the
model so that its causal width becomes bounded and small.
For this, it suffices to split the single observation variable O
into n observation variables O1, . . . , On

, one for each cell i,
such that the parents of variable O

i

are the variables L and
M

i

only, and to set the probability q
i

(o
i

|`,m
i

) for variable
O

i

equal to q(o
`

|`,m
`

) when ` = i and to 1/2 (a normalizing
constant) when ` 6= i. The value of all the “artificial” ob-
servation variables O

i

at time t is set to the value of the real
observation variable O at time t; that is, if the observation
O has value o at time t then all variables O

i

are set to o at
time t. The sensor model of the reformulated task is defined
as q(ho1, . . . , oni|`,m1, . . . ,mn

, a) =
Q

n

i=1 qi(oi|`,mi

).
While the two models are equivalent, the first has one beam
of size n+ 1, while the latter has n beams B

i

of size 2, each
containing the agent location variable L and the cell variable
M

i

, i = 1, . . . , n, for a causal width of 2 (Fig. 2).

Internal and External Variables. A variable that appears in
more than one beam is called external, while one that appears

Time

t

t+ 1

L M1 M2 M3 . . . Mn

L0 M 0
1 M 0

2 M 0
3

. . . M 0
n

O1 O2 O3 . . . On

B1

B2 B3 Bn

Figure 2: 2-slice DBN and beam structure for the 1-line
SLAM problem formulated with multiple “dummy” observa-
tion variables O

i

that are set to the value of O. In this model,
there is one beam B

i

for each cell i that contains two variables
only, L and M

i

, for a causal width of 2.

in one beam only is called internal. The internal and external
variables for beam X

j

are denoted as Y
j

and Z
j

respectively.
The set X of all (state) variables is partitioned as X = Y Z
where Y are all the internal variables and Z are all the exter-
nal variables. In the second formulation of 1-line SLAM, the
color variables are all internal, and the agent location variable
is external. In Minesweeper, all variables are external.

Factored Model. Given the beam structure determined
by the 2-DBN structure, the transition and sensing prob-
abilities tr(x0|x, a) and q(o0|x0, a) can be factorized as
tr(x0|x, a) = tr(y0z0|x, a) = tr(y0|z0, x, a)tr(z0|x, a)
with tr(y0|z0, x, a) =

Q
j

tr
j

(y0
j

|z0
j

, x
j

, a), tr(z0|x, a) =Q
j

tr
j

(z0
j

|x
j

, a), and q(o0|x0, a) =
Q

j

q
j

(o0
j

|x0
j

, a), where
j ranges over the beam indices. All the tr

j

and q
j

probabilities are determined by the conditional probabilities
P (V 0|pa(V 0), a) in the 2-DBN.2 It is also assumed without
loss of generality that the prior belief Bh(x) for the empty
history factorizes across the beams as

Q
j

Bh

j

(x
j

). When
this is not the case, the model can be extended with an extra
action-observation pair that must start any non-empty history.

4 Tracking in Belief Decomposable Systems
Given the model structure and beams, our task is to show that
the posterior joint beliefs Bh(x) = Bh(Xt = x) for histories
h = ha0, o0, . . . , at, oti can be expressed as the normalized
product of belief factors

Q
j

Bh

j

(x
j

), one for each beam j,
that are tracked independently. For this, we assume a form of
determinism over the state variables that appear in more than

2If Yj is {V1, . . . , Vk} where the variables Vi are ordered topo-
logically, trj(y0

j |z0j , xj , a) is
Qk

i=1P (V 0
i |pa(V 0

i ), a). Associating
each external variable V with the smallest j such that Bj con-
tains V , and each observation variable W with the smallest j
such that Bj contains all of its causes, trj(z

0
j |xj , a) factorizes

as
Qk

i=1P (V 0
i |pa(V 0

i ), a), where V1, . . . , Vk are the external vari-
ables in Zj associated with the beam j in topological order, and
qj(w

0|x0
j , a) is P (w0|pa(w0), a) when the observation variable W

is associated with the beam j, and else qj(w
0|x0

j , a) = 1.
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one beam; namely, the external variables. The following key
definition is from Bonet and Geffner [2014]:
Definition 1 (Backward Determinism) A state variable V
is backward deterministic if the value of V at any time t is
determined by the value of V at time t+1, the action at time
t, the history h up to time t, and the priors.

Notice that static variables and variables that are initially
fully known and are affected by deterministic actions only
are backward deterministic, as are the variables that are fully
observable and the variables V affected by deterministic ac-
tions that map different values of V into different values of V 0

[Amir and Russell, 2003]. When V is backward determinis-
tic, we write R

a

(v|h) to denote the value of V at time t that
is determined by the value v of V at time t+ 1, the complete
history h up to time t, the next action a, and the priors. We
refer to R

a

(v|h) as the regression of V = v given h, a, and
the priors (left implicit in the notation).
Definition 2 (Belief Decomposable Model) A model is be-
lief decomposable when all the external variables are back-
ward deterministic.

It will be convenient to use the abbreviation BD to refer to
both belief decomposable models and to backward determin-
istic variables. The notation R

a

(z|h) for the set Z of exter-
nal BD variables denotes the regression of the value vector z
through h and a. If the value v for a variable or set of BD vari-
ables V is impossible given h and a, we write R

a

(z|h) = ?.
Clearly, R

a

(z|h) = ? iff R
a

(z
j

|h) = ? for some beam j,
and R

a

(z|h)
j

= R
a

(z
j

|h).

4.1 Equations for the Belief Factors
We want to show that the distribution Bh(x) = P(x|h) after
history h for a BD model is the normalized product of factors
Bh

j

(x
j

):
Bh(x) = �

Q
j

Bh

j

(x
j

) (1)

where Bh

j

(x
j

) denotes the belief factor over the variables in
beam j, and � = �(h) is a normalization factor that only
depends on h. We show this inductively by using the as-
sumption of factorized priors and by expressing the factors
that define the joint belief Bh

0
(x) for h0 = hh, a, oi in terms

of the factors that define the joint belief Bh(x), where a is
an action and o an observation such that P (o|a, h) > 0. The
factors Bh

j

(x
j

) for the empty history h are given.

Let x0 = y0z0 be a valuation for Xt+1. Using Bayes’ rule, the
posterior can be expressed as

P(x0|o, a, h) = ↵P(o|x0, a, h)P(x0|a, h) (2)

where ↵ = 1/P(o|a, h) is a normalizing constant, and the
second term is

P(x0|a, h) =
P

y

P(y0|z0, y, a, h)P(z0, y|a, h) . (3)

Assume now that R
a

(z0|h) 6= ?. Using backward determin-
ism and factored transitions, the first term in (3) becomes:

P(y0|z0, y, a, h) = tr(y0|z0, y,R
a

(z0|h), a) (4)
=

Q
j

tr
j

(y0
j

|z0
j

, y
j

,R
a

(z0|h)
j

, a) . (5)

For the second term, we use the inductive hypothesis:

P(z0, y|a, h) = P(z0, y,R
a

(z0|h)|a, h) (6)
= P(z0|y,R

a

(z0|h), a, h) P(y,R
a

(z0|h)|a, h) (7)
= tr(z0|y,R

a

(z0|h), a) P(y,R
a

(z0|h)|h) (8)
= tr(z0|y,R

a

(z0|h), a) �
Q

j

Bh

j

(y
j

,R
a

(z0|h)
j

) (9)

= �
Q

j

tr
j

(z0
j

|y
j

,R
a

(z0
j

|h), a)Bh

j

(y
j

,R
a

(z0
j

|h)) . (10)

Substituting these expressions back into (3), abbreviating
R

a

(z0
j

|h) as R(z0
j

), and using Y
i

\ Y
j

= ; for i 6= j:

P(x0|a, h)��1 =

=
P

y

Q
j

tr
j

(y0
j

, z0
j

|y
j

,R(z0
j

), a)Bh

j

(y
j

,R(z0
j

)) (11)

=
Q

j

P
yj
tr

j

(y0
j

, z0
j

|y
j

,R(z0
j

), a)Bh

j

(y
j

,R(z0
j

)) (12)

=
Q

j

P
yj
tr

j

(x0
j

|y
j

,R(z0
j

), a)Bh

j

(y
j

,R(z0
j

)) . (13)

Finally, from the factorization of the observations

P(o|x0, a, h) = q(o|x0, a) =
Q

j

q
j

(o
j

|x0
j

, a) , (14)

and the inductive hypothesis, the factors Bh

0
(x0

j

) become:

Bh

0

j

(y0
j

, z0
j

) = ↵0 q
j

(o
j

|y0
j

, z0
j

, a) ⇥
P

yj
tr

j

(x0
j

| y
j

,R
a

(z0
j

|h), a)Bh

j

(y
j

,R
a

(z0
j

|h)) (15)

when R
a

(z0|h) 6= ?, and Bh

0

j

(y0
j

, z0
j

) = 0 otherwise. That
is, the belief factors Bh

j

are progressed and filtered indepen-
dently for each beam j. The complexity of updating each
belief factor, i.e., mapping Bh

j

into Bh

0

j

for h0 = hh, a, oi,
is exponential in the beam j size, and more precisely, in the
number of internal variables in beam j.

While the factors Bh

j

determine the joint distribution Bh,
the computation of marginals from such a joint is hard in
general. We will come back to this issue but focus now on
extending the formulation to models where not all external
variables are backward deterministic. For this, like in Rao-
Blackwellized PF methods, we sample such variables to make
them backward deterministic given their sampled history.3

5 Tracking in Non-Decomposable Systems
We assume now that the set X of state variables is partitioned
into three sets YZU where Y stands for the internal variables
(variables appearing in one beam only), Z for the external
variables that are backward deterministic, and the new set U
for the external variables that are not BD and need to be sam-
pled. If the context above was provided by the history h of
actions and observations, the new context is provided by h

3The assumption of backward determinism appears in (15)
through the use of the regressions Ra(z

0
j |h). A different type of

approximation can be defined by replacing such regressions by val-
ues zj that are summed over with weights given by P(zj |z0j , h, a).
When the BD assumption holds, these weights are either 0 or 1, and
the new formula reduces to the old formula. When BD does not
hold, the new formula encodes an approximation. We tested this ap-
proximation empirically, but in the examples considered, it does not
run faster than the particle-based approximation and its quality does
not appear to be better either.
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and the sampled history ū of the U variables. The expres-
sion R

a

(z0, u0|ū0, h) denotes the pair of values R
a

(z0|h) and
R

a

(u0|ū0) where the latter denotes u, the value preceding the
last value u0 in the sampled history ū0. The joint over the Y
and Z variables can be expressed as

P(y, z|h) =
P

ū

P(y, z|ū, h)P(ū|h) (16)

which can be approximated as:

P(y, z|h) ⇡
P

N

i=1 P(y, z|ūi

, h) (17)

where the histories ū
i

are sampled with probability P(ū
i

|h).
It is often convenient however to sample ū

i

with a different
distribution ⇡(ū|h), called the sampling or proposal distri-
bution, as long as no possible U history is made impossible.
In this method, called importance-based sampling [Bishop,
2007] the approximation becomes:

P(y, z|h) ⇡ ↵
P

N

i=1 wi

⇥ P(y, z|ū
i

, h) (18)

where ↵ is a normalizing constant, and the weights w
i

are

w
i

= P(ū
i

|h)/⇡(ū
i

|h) . (19)

Provided with the sampled histories ū, it can be shown that
P(y, z|ū, h) in (16) becomes:

P(y, z|ū, h) = Bh(y, z|ū) = �
Q

j

Bh

j

(y
j

, z
j

|ū) (20)

where the factors Bh

j

( · | ū) can be progressed to h0 =
hh, a, oi and ū0 = hū, u0i as:

Bh

0

j

(y0
j

, z0
j

|ū0) = ↵00 q
j

(o
j

|x0
j

, a) ⇥
P

yj
tr

j

(x0
j

|y
j

,R
a

(z0
j

|h), u
j

, a)Bh

j

(y
j

,R
a

(z0
j

|h)|ū) (21)

when R
a

(z0
j

|h) 6= ?, else Bh

0

j

(y0
j

, z0
j

|ū0) = 0. This equation
is indeed exactly like (15) except for the sampled history ū
included in the context, and the new component u0

j

in x0
j

.
In summary, the filter for approximating the target joint dis-

tribution P(y, z|h) is given by the sequence of triplets F
h

=
{(ū

i

, w
i

, {Bh

j

}
j

)}
i

where h is the action-observation history,
ū
i

is the sampled history of the U variables, i = 1, . . . , N ,
w

i

is the weight associated with ū
i

, and Bh

j

(y
j

, z
j

|ū
i

) repre-
sents the belief factor given h and ū

i

for each beam j. These
belief factors determine the probability P(y, z|ū, h) via (20),
that provides the approximation for P(y, z|h) via (18). The
filter F

h

is extended to F
h

0 for h0 = hh, a, oi by 1) extending
the sampled history, 2) computing its associated weight, and
3) updating the belief factors with the new action-observation
pair and the new sample. This last operation is defined by
(21). We focus next on the other two operations. Initially, ū

i

is empty and w
i

= 1 for i = 1, . . . , N .

5.1 Marginals, Samples, and Weights
The factors Bh

j

(x
j

|ū), where x
j

represents the valuations
y
j

z
j

over the non-sampled variables in beam b
j

, do not rep-
resent themselves the probabilities P(x

j

|h, ū), that stand ac-
tually for the marginals:

P(x
j

|h, ū) = �
P

w

Q
i

Bh

i

(x
i

|ū) (22)

where � is a normalizing constant and the sum ranges over all
the variables W that are not in the beam j. Such marginals
can be computed from the factors Bh

j

(x
j

|ū) by standard
methods such as the jointree algorithm or belief propagation.
We show next how to compute the proposal distribution and
weights from such marginals.

We consider two proposal distributions ⇡: the so-called
motion and optimal distributions [Doucet, 1998; Grisetti et
al., 2005]. The motion distribution uses only the transition
probabilities to generate new histories ū0 = hū, u0i from pre-
vious histories ū (not using the information provided by o):

⇡
motion

(u0|h, a, o, ū) = P(u0|h, a, ū) , (23)
while the optimal proposal makes use of both a and o:

⇡
opt

(u0|h, a, o, ū) = P(u0|h, a, o, ū) . (24)
For computing these probabilities effectively, we will as-

sume that there is at least one beam j that contains the whole
set of variables U , i.e. for which U = U

j

. This assumption
holds automatically when U is a singleton as in many SLAM
problems. In addition and without loss of generality, we as-
sume that the observation o = ot at time t, for each time step,
falls into a single beam only; i.e., q(o|x, a) = q

j

(o
j

|x
j

, a) for
some beam j, and q

k

(o
k

|x
k

, a) = 1 for k 6= j. This is true
when one observation variable is observed at each time point,
and when this is not true, it can be made true by serializing the
observations, using dummy actions in between. Under these
assumptions, the proposal distributions and their weights can
be computed from the marginals P (x

j

|h, ū) associated with
one beam. Indeed, if U = U

j

and x
j

= y
j

, z
j

, u
j

:
P(u0|h, a, ū) =

P
yj ,zj

P(u0|x
j

, a)P(y
j

, z
j

|h, ū) (25)

and P(u0|h, a, o, ū) / P(o|h, a, ū0)P(u0|h, a, ū) where
P(o|h, a, ū0) =

P
y

0
k,z

0
k
q
k

(o
k

|x0
k

, a)P(x0
k

|h, a, ū0) (26)

if o falls into the beam k. The marginal P(x0
k

|h, a, ū0) =
P(y0

k

, z0
k

|h, a, ū0) excludes the observation o, and hence it is
obtained with (21) by setting all q

j

(o
j

|x0
j

, a) to 1.
The weights w0 = P(ū0|h0)/⇡(ū0|h0) can be computed

incrementally from the weights w = P(ū|h)/⇡(ū|h) when
h0 = hh, a, oi and ū0 = hū, u0i. For the motion proposal, the
weight is the ratio between:

P(ū0|h0) = ↵0 P(o|ū0, h, a)P(u0|h, a, ū)P(ū|h)
and ⇡

motion

(ū0|h0) = P(u0|h, a, ū)⇡(ū|h), which results in:
w0

motion

= ↵0 w
motion

⇥ P(o|ū0, h, a) . (27)
For the optimal proposal, the weight is the ratio between

P(ū0|h0) = ↵00 P(u0|h, a, o, ū)P(o|h, a, ū)P(ū|h)
and ⇡

opt

(ū0|h0) = P(u0|h, a, o, ū)⇡(ū|h) which results in:
w0

opt

= ↵00 w
opt

⇥ P(o|h, a, ū) . (28)
If the observation o falls into beam k, the marginals required
can be computed as:
P(o|ū0, h, a) =

P
x

0
k
q
k

(o|x0
k

, a)P(x0
k

|h, a, ū0) , and

P(o|ū, h, a) =P
x

0
k
q
k

(o|x0
k

, a)
P

u

0 P(x0
k

|h, a, ū0)P(u0|h, a, ū)

where P(x0
j

|h, a, ū0) = P(y0
j

, z0
j

|h, a, ū0) is obtained as indi-
cated above, and P(u0|h, a, ū) is given by (25).
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6 Faster Approximation of Marginals
The main bottleneck of the algorithm is the computation of
the marginals P(x

j

|h, ū) from the factors Bh

j

(x
j

|ū) follow-
ing (22). Such marginals are needed for computing the sam-
ples and weights, and for answering queries. The marginals
can be computed using the jointree algorithm or belief prop-
agation (BP). However, since scalability is crucial, we intro-
duce a third method that will be evaluated in comparison with
the other two. It is motivated by the results reported by beam
tracking that uses arc consistency (AC) [Mackworth, 1977;
Dechter, 2003] for progressing logical (non-probabilistic) be-
liefs. The relation between BP and AC is well-known: both
methods are exact for trees and BP propagates the zero-
probability entries in agreement with AC [Dechter and Ma-
teescu, 2002]. We call the new method Iterated AC which is
aimed at combining the speed and monotonic convergence of
AC with the ability to approximate probabilistic beliefs, even
if roughly.

Iterated AC approximates the marginals from the be-
lief factors by using arc consistency along with order-of-
magnitude probabilities also called -rankings [Spohn, 1988;
Goldszmidt and Pearl, 1996; Darwiche and Goldszmidt,
1994]. For this, it follows three steps that we sketch briefly
with no much justification. The algorithm uses two parame-
ters ✏ and m. First, real values p 2 (0, 1] are mapped into the
smallest non-negative integer  = 

✏

(p) for which ✏+1 < p,
while p = 0 is mapped into 

✏

(p) = 1. This mapping is
used to transform the belief factor Bh

j

( · |ū) into tables Di

j

that contain all the valuations x
j

(for the variables X
j

in
beam j) that satisfy 

✏

(Bh

j

(x
j

|ū))  i+ ⌘
j

for a given non-
negative integer i where ⌘

j

= min
xj ✏

(Bh

j

(x
j

|ū)) is a nor-
malization constant. Second, the tables Di

j

associated with
the different beams j and the same i are made arc consis-
tent (the tables share variables). The -marginal (x

j

|h, ū)
is defined then as i iff i is the minimum non-negative inte-
ger for which the tuple x

j

belongs to Di

j

after running AC,
while (x

j

|h, ū) = 1 when there is no such i. Finally, the
(x

j

|h, ū) marginals are used to approximate the marginals
as P(x

j

|h, ū) = ↵✏(xj |h,ū) where ↵ is a normalizing con-
stant.

A further simplification is that  measures that are greater
than the m parameter but less than 1, are treated as if they
were equal to m. This means that the approximation of
the marginals P(x

j

|h, ū) from the belief factors Bh

j

( · |ū) are
computed by running arc consistency m + 1 times. Iterated
AC will be denoted as AC

m

where m is the parameter used.
The parameter ✏ is fixed to 0.1.

7 Experimental Results
The general PBT algorithm can use different algorithms for
computing marginals from the factors. We experiment with
the jointree (JT), belief propagation (BP), and AC

m

algo-
rithms for m 2 {0, 1}. For JT and BP we use libdai
[Mooij, 2010] while AC

m

is ours. The experiments were per-
formed on Intel Xeon E5-2666 CPUs running at 2.9GHz with
a memory cap of 10Gb (exhausted/approached only by JT).

JT BP AC0

board mines %succ time %succ time %succ time

6⇥6 6 84.1 .002 68.5 .046 84.2 .000
8⇥8 10 83.3 .070 66.3 .069 84.6 .002

16⇥16 40 — — 41.4 .232 79.9 .005
30⇥16 99 — — 1.8 .991 33.4 .003

Table 1: PBT in Minesweeper using three methods for com-
puting marginals. Time is average time per decision in sec-
onds. JT runs out of memory in larger maps. Figures are
averages over 500 runs.

Minesweeper. Minesweeper cannot be fully solved by pure
inference and requires guessing in certain situations, even if
variables are static and sensing is noiseless. Since all vari-
ables are external but static, and hence backward determin-
istic, no sampling is required. The beam decomposition has
one beam B

i

for each cell i that contains up to 9 variables. Ta-
ble 1 shows the results for PBT using JT, BP, and AC0, with
a policy that chooses to tag (resp. open) the cell that is most
certain to contain a mine (resp. to be clear). The success ratio
indicates the percentage of maps solved, i.e., without doing a
wrong action. In this noise-free example, it can be shown that
the marginals computed by PBT with AC0 are equivalent to
the ones computed by beam tracking where the belief factors
represent sets of states [Bonet and Geffner, 2014]. Actually,
PBT with AC0 scales up best with a quality that matches the
quality of JT in the small instances. JT does not scale up to
larger instances and BP does but achieves a much lower score.

1-line-3-SLAM. This is a variant of the 1-line SLAM task
considered before in which the observation received by the
agent when in a certain cell depends also on the colors of the
two adjacent cells. In such version of the problem, sampling
the agent location is no longer sufficient for decoupling the
color cell variables, but in our formulation makes the belief
factors acyclic, so that exact inference over such factors is not
exponential in the total number of variables but in the size of
the largest factor. The observation is a 0/1 token equal to the
color of the current cell with probability p = 0.9noise where
noise is one plus the number of adjacent cells with a different
color. For a line of n cells, there are n beams of size up to
4, one for each cell, that include the agent location and the
color of the three cells that influence the observation at the
location. The agent location is the only external variable and
is not backward deterministic, so it must be sampled. Table 2
shows results for instances of size n = 64 and n = 512, us-
ing 16 and 256 particles sampled with the optimal proposal
distribution. The executions choose actions randomly until
each cell of the grid is visited 10 times. The table shows aver-
ages with 97.5% confidence intervals over 100 executions for
percentages of cells labeled correctly (one of two colors), not
labeled at all (no sufficiently certainty), and times per step and
per execution. For this problem, a cell is assumed “labeled”
when for one of the possible colors its marginal probability
is 0.55 of higher. Since the resulting factorized model has
bounded and small treewidth, JT scales up well to provide
a good baseline with few errors, although 40% of the cells
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1⇥n #p inf. %good %unknowns time / step time / exec

1⇥ 64 16 JT 97.7± 0.2 41.7± 0.7 0.0± 0.0 2.9± 0.0
1⇥ 64 16 BP 98.5± 0.2 43.0± 0.7 0.0± 0.0 8.9± 0.0
1⇥ 64 16 AC0 82.9± 0.6 36.5± 0.7 0.0± 0.0 1.1± 0.0
1⇥ 64 16 AC1 84.0± 0.5 36.5± 0.7 0.0± 0.0 1.1± 0.0

1⇥ 64 256 JT 97.9± 0.2 41.0± 0.8 0.0± 0.0 42.8± 0.4
1⇥ 64 256 BP 98.5± 0.2 40.8± 0.7 0.1± 0.0 110.9± 0.9
1⇥ 64 256 AC0 82.5± 0.6 34.5± 0.7 0.0± 0.0 19.1± 0.1
1⇥ 64 256 AC1 83.9± 0.6 33.3± 0.8 0.0± 0.0 19.6± 0.1

1⇥512 16 JT 97.8± 0.1 47.8± 0.2 0.0± 0.0 319.7± 1.0
1⇥512 16 BP 98.3± 0.1 47.8± 0.2 0.1± 0.0 681.7± 2.8
1⇥512 16 AC0 81.8± 0.2 42.3± 0.2 0.0± 0.0 88.7± 0.3
1⇥512 16 AC1 81.7± 0.2 42.1± 0.2 0.0± 0.0 91.0± 0.3

1⇥512 256 JT 98.2± 0.1 47.5± 0.2 0.7± 0.0 4, 012.9± 11.5
1⇥512 256 BP 98.4± 0.1 47.7± 0.2 1.4± 0.0 8, 193.1± 22.6
1⇥512 256 AC0 82.7± 0.2 41.7± 0.2 0.2± 0.0 1, 117.9± 3.1
1⇥512 256 AC1 82.6± 0.2 42.1± 0.2 0.2± 0.0 1, 121.0± 3.0

Table 2: PBT in 1-line SLAM using three methods for com-
puting marginals. In this task, observations depend on the
color of the current and adjacent cells. Figures are averages
over 100 random executions, each of length roughly 10 times
the number of cells.

are not labeled. The quality for BP in this case is similar but
runs slower. AC0 is an order-of-magnitude faster but of lower
quality. The results for AC1 are similar.

Minemapping. This problem is a version of Minesweeper
that involves an agent that moves stochastically and receives
noisy information about the presence/absence of mines in the
cell and surrounding cells. The task for the agent is to map
the minefield instead of clearing it as in Minesweeper, and
the observations are similar but noisy. More precisely, move-
ment actions have .9 probability of success and .1 probability
of doing nothing, and when the current location is i, the obser-
vation token o is generated by summing stochastic indicator
variables I(j) for each adjacent cell j and for j = i, where
the variable I(j) is equal to 1 (resp. 0) with probability .9 if
the cell j contains a mine (resp. no mine). The resulting beam
structure is similar to the one for Minesweeper except that the
agent location belongs to all the beams and must be sampled.
Results for this problem are shown Table 3 in a format simi-
lar to Table 2. This time, JT is feasible for the small instances
only, and BP appears to be the best choice for approximating
the marginals: it doesn’t make many mistakes when labeling
cells (with mines or not) and runs faster than AC methods that
make many more mistakes.

8 Discussion
We have introduced a formulation and algorithm PBT for
tracking probabilistic beliefs in the presence of stochastic ac-
tions and sensors in the form of local belief factors that can
be progressed independently in time when variables appear-
ing in more than one beam are backward deterministic. In
such a case, the local belief factors provide an exact decom-
position of the joint distribution at any time point, and pro-
gressing the factors in time is exponential in the size of the
beams. The beams are fully determined by the 2-DBN model
structure, and are usually bounded and small. For computing
marginal probabilities, however, the local belief factors need
to be merged. This computation can be performed exactly

n⇥n #p inf . %good %unknowns time / step time /exec

6⇥6 32 JT 97.3± 0.6 12.1± 1.6 0.2± 0.0 73.6± 1.0
6⇥6 32 BP 98.4± 0.6 16.6± 1.8 0.2± 0.0 81.0± 2.2
6⇥6 32 AC0 68.0± 1.5 18.1± 0.8 0.1± 0.0 57.4± 3.2
6⇥6 32 AC1 69.0± 1.4 17.6± 0.8 0.1± 0.0 56.8± 3.3

6⇥6 256 JT 97.9± 0.6 8.5± 1.4 1.7± 0.0 515.9± 5.9
6⇥6 256 BP 97.9± 0.6 10.3± 1.5 1.6± 0.0 506.7± 9.8
6⇥6 256 AC0 67.0± 1.6 17.2± 0.8 1.3± 0.0 395.9± 20.6
6⇥6 256 AC1 66.8± 1.6 17.4± 0.7 1.3± 0.0 397.8± 20.9

10⇥10 32 BP 98.9± 0.5 33.9± 1.3 0.8± 0.0 814.6± 8.3
10⇥10 32 AC0 55.6± 0.9 23.7± 0.6 0.9± 0.0 852.3± 53.3
10⇥10 32 AC1 55.0± 0.9 22.5± 0.6 0.9± 0.0 883.9± 48.7

10⇥10 256 BP 97.4± 0.6 27.9± 1.3 5.7± 0.0 5, 326.6± 48.9
10⇥10 256 AC0 54.7± 1.1 23.8± 0.6 7.0± 0.3 6, 531.9± 333.7
10⇥10 256 AC1 54.3± 1.2 23.5± 0.7 7.1± 0.3 6, 643.6± 307.2

Table 3: PBT in Minemapping using three methods for com-
puting marginals. Figures are averages over 100 random exe-
cutions. Each execution consists of roughly 5 times the num-
ber of cells in the grid.

using the jointree algorithm or approximately by belief prop-
agation or other local consistency methods. In addition, when
the beams share variables that are not backward determinis-
tic, such variables must be sampled to make them backward
deterministic given their sampled histories.

As far as we know, there are no other general, princi-
pled approaches for dealing effectively with problems such as
Minemapping or even 1-line-3-SLAM. RB particle-filtering
methods would need to consider too many particles for mak-
ing inference tractable in the first problem, and would need to
be programmed to exploit the resulting tractable factorization
in the second. In our setting, this all follows from the problem
structure and the general formulation. At the same time, de-
composition methods that operate over disjoint factors result
in poor approximations, and standard grid SLAM algorithms
[Grisetti et al., 2005] involve a number of domain-dependent
tricks that would not apply to more general problems, like the
idea of associating one particular map to each particle, dras-
tically simplifying the uncertainty about the map.

In the future, we want to develop new ideas for scaling
PBT further so that it can be applied to more realistic SLAM
problems. The bottleneck is not the progression of factors but
the computation of marginals from factors that is done from
scratch at every time point. We want to explore ways for
making such computation incremental. Likewise, the perfor-
mance of PBT needs to be compared with other approaches,
in particular, approaches that also manage to exploit forms
of context-specific independence and determinism [Vlasse-
laer et al., 2016].
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