Abstract

Existentially quantified variables in goals and action preconditions are part of the standard PDDL planning language, yet few planners support them, while those that do compile them away at an exponential cost. In this work, we argue that existential variables are an essential feature for representing and reasoning with constraints in planning, and that it is harmful to compile them away or avoid them altogether, since this hides part of the problem structure that can be exploited computationally. We show how to do this by formulating an extension of the standard delete-relaxation heuristics that handles existential variables. While this extension is simple, the consequences for both modeling and computation are important. Furthermore, by allowing existential variables in STRIPS and treating them properly, CSPs can be represented and solved in a direct manner as action-less, fluent-less STRIPS planning problems, something important for problems involving restrictions. In addition, functional fluents in Functional STRIPS can be compiled away with no effect on the structure and informativeness of the resulting heuristic. Experiments are reported comparing our native \(\exists\)-STRIPS planner with state-of-the-art STRIPS planners over compiled and propositional encodings, and with a Functional STRIPS planner.

1 Introduction

Modeling and computation are essential components for using planners and many other automated tools. On the one hand, we want planners to scale up gracefully to large problems, even if the task is computationally intractable in the general case [Bylander, 1994]; on the other, we want users to be able to encode problems naturally and directly without having to understand how the different planners work. Indeed, the need to “hack” encodings to make planners work is one of the factors that hinder the use of planners by non-experts. Since modeling and computation are heavily coupled, the problem cannot be entirely solved, yet this doesn’t mean that progress on this front is not possible and necessary. In this work, we focus on the use of existentially quantified variables in goals and action preconditions in STRIPS and the way in which they can have a positive impact on both modeling and computation. Existential variables provide indeed a very simple and convenient modeling feature in problems where the goal is not a fully-specified single state but leaves room for choices. The goal in a Sokoban-like problem, for instance, may require placing a set of packages in different target locations without explicitly saying in which target location to place each package; or in the blocks-world, the goal may be to reach a state where a blue block is on a red block, without specifying the exact block identities. While there are other mechanisms to model such open choices, existential variables make them explicit, which is useful for reasoning about them. Existentially quantified variables in preconditions and goals are part of the standard PDDL language [McDermott et al., 1998] but few planners support them, and those that do compile them away at a cost that is exponential in their number, which is not a good option from a computational standpoint. The usual alternative is to avoid existential variables altogether, which as we will show is not good either, since it leads to clumsy encodings that hide structure and result in less informed heuristics than the compilation-based approach, not to mention the fact that coming up with such alternative encodings is not always trivial. We illustrate these various points below.

Consider the problem of placing a blue block on top of a red block, and this block on top of a blue block. The problem can be easily encoded in PDDL with a goal formula

\[\exists z_1, z_2, z_3. on(z_1, z_2) \land on(z_2, z_3) \land \text{red}(z_1) \land \text{bl}(z_2) \land \text{bl}(z_3).\]

Modern classical planners like FF, FD, and LAMA [Hoffmann and Nebel, 2001; Helmert, 2006; Richter and Westphal, 2010] accept such existentially quantified formulas, but they precompile the quantification away, producing in this case a goal in disjunctive normal form (DNF) with terms

\[on(a, b) \land on(b, c) \land \text{bl}(a) \land \text{red}(b) \land \text{bl}(c)\]

for all possible combinations of blocks \(a\), \(b\) and \(c\). This DNF goal is mapped in turn into an atomic dummy goal that can be achieved with extra actions whose preconditions are those terms [Gazen and Knoblock, 1997]. The immediate problem with this compilation is that it blows up. The number of terms in the compilation is exponential in the number of variables, and thus it cannot scale up to more than a few quantified variables. This is a problem because it is not always easy to find
alternative, equivalent, and compact propositional encodings. Do and Tran [2013], for instance, present one such encoding for a similar problem, but the encoding assumes that the goal is complete and describes a single state. In such a case, one can actually forget about the blocks and describe the goal by stating the desired pattern of “cell colors” as blue(3,1), red(2,1), blue(1,1), etc., which can be encoded compactly in STRIPS without existential variables, but represents a different, less general problem.

In other cases, it is simpler to come up with equivalent and compact encodings that avoid existential variables. The goal of placing \(n \) packages \(p_i \) into \(n \) different target locations \(t_k \), for instance, can be expressed with existential quantification and equality as

\[
\exists z_1, \ldots, z_n, \left(\bigwedge_{j \neq i} z_i \neq z_j \land \bigwedge_i \text{target}(z_i) \land \text{at}(p_i, z_i) \right).
\]

The quantification and the compilation can be avoided here by using a clear predicate over target locations that becomes a precondition of the action of dropping a package in such locations. The resulting encoding is equivalent to the one obtained by compiling the previous formula in the sense that both encodings result in the same set of plans (dummy actions aside), and it has the advantage that its size does not grow exponentially with \(n \). This compact encoding, however, is not only less clean and direct than the one with quantification, but it is also certainly not equivalent from a computational point of view. To see this, consider the standard delete-relaxation heuristics used in classical planning [McDermott, 1999; Bonet and Geffner, 2001] and a situation where none of the packages is at a target location. In the compilation, the heuristic would estimate the cost of taking each package to a different target location, while in the alternative compact encoding with no variables, the heuristic would estimate something different: namely, the cost of taking each package to its closest target location. These estimates will be different when several packages have the same closest target location. This is easy to see for \(n = 2 \) where the compilation results in a DNF goal with terms \(\text{at}(p_1, t_1) \land \text{at}(p_2, t_2) \) and \(\text{at}(p_1, t_2) \land \text{at}(p_2, t_1) \), but without the terms \(\text{at}(p_1, t_1) \land \text{at}(p_2, t_1) \) or \(\text{at}(p_1, t_2) \land \text{at}(p_2, t_2) \) where both packages end up at the same location. The encoding with clear predicates does not account for this difference, as both target locations will remain clear in the delete relaxation as long as they are clear in the state on which the heuristic is evaluated.

The last example illustrates that while compiling away the variables in the goal has an exponential cost, there are also hidden computational costs in the avoidance of existential variables to prevent the exponential blow-up. This point can be made more general and compelling once that we notice that existential variables in the goal allow us to encode naturally and directly constraint satisfaction problems [Dechter, 2003]. Indeed, a binary CSP with variables \(X_1, \ldots, X_n \) with domain \(D \) and constraints \(R_{i,j} \) among all pairs of variables \(X_i \) and \(X_j \) can be naturally and directly encoded as a STRIPS problem with no actions at all, initial facts \(R_{i,j}(a, b) \) for each value pair \((a, b) \) in the domain allowed by the constraint \(R_{i,j} \), and an existentially quantified goal:

\[
\exists z_1, \ldots, z_n, \bigwedge_{i,j} R_{i,j}(z_i, z_j).
\]

The compilation-based approach would convert such a quantified goal into a grounded DNF goal whose terms are all possible joint valuations of the CSP. Definitely, this is not an effective way of solving the CSP, yet the delete-relaxation heuristic for the compilation is exact: it will yield a heuristic value of 0 for the initial state if the CSP is actually solvable. Alternative STRIPS encodings of the CSP that do not involve variables and are compact are certainly possible, yet such compact, polynomial encodings cannot yield a (polynomial) delete-relaxation heuristic equivalent to the heuristic obtained from the compilation unless \(P = NP \).

In other words, while dealing with existential variables by compiling them away is exponential, avoiding them altogether results in poorer heuristic estimates in general. In this paper we show that there is a third option which is the explicit handling of existentially quantified variables during the computation of the delete-relaxation heuristic. The resulting method avoids the exponential blow-up in the compilation, and yet it delivers a heuristic that is equivalent to the one that would be delivered by the delete-relaxation in the grounded, compiled problem. For this, the construction of the relaxed planning graph must take into account the first-order structure of the atoms. Actually, the evaluation of any action precondition or goal formula involving existentially quantified variables maps into a CSP that must be solved during the computation of the heuristic. The computation of the heuristic is thus intractable in the worst case, but as we will show, it can be informed and cost-effective in practice. The consideration of the first-order structure of formulas in the heuristic computation has a close relation with the Functional STRIPS (FSTRIPS) heuristic presented in [Frances and Geffner, 2015], which is also intractable in the worst case. Even more interestingly, the proper handling of existential variables in STRIPS gives a way for compiling pure FSTRIPS into 3-STRIPS as in [Haslum, 2008], but with no effect on the structure and informativeness of the resulting heuristic.

The rest of the paper is organized as follows. We present the 3-STRIPS language that extends STRIPS with existentially quantified variables, and formulate a version of the delete-relaxation heuristic for such a language. We then evaluate the resulting native 3-STRIPS planner, which we call ES, by comparing it with state-of-the-art STRIPS planners run on existentially-quantified encodings and on alternative, compact propositional encodings that avoid the compilation, and also with an extension of the FSTRIPS planner FS0.

2 3-STRIPS Language

We briefly review the language and semantics of STRIPS with existential quantification in action preconditions and goals. The classical planning model \(S = (S, s_0, S_G, A, f) \) is made up of a finite set of states \(S \), an initial state \(s_0 \), a set of goal states \(S_G \), and actions \(a \in A(s) \) that deterministically map one state \(s \) into another \(s' = f(a, s) \), where \(A(s) \) is the set of actions applicable in \(s \). A solution or plan is a sequence of actions \(a_0, \ldots, a_m \) that generates a state sequence
s_0, s_1, \ldots, s_{m+1} \text{ such that } a_i \in A(s_i), s_{i+1} = f(a_i, s_i), \text{ and } s_{m+1} \in S_G.

A classical planning problem \(P \) defines a classical model in compact form. In STRIPS, \(P \) is a tuple \(\langle F, I, O, G \rangle \), where \(F \) is the set of states, \(I \) is the set of states characterizing the initial situation, \(O \) is the set of actions, and \(G \) is the set of goal atoms. The actions \(a \) in STRIPS are given by three sets of atoms: \(\text{Pre}(a), \text{Add}(a) \), and \(\text{Del}(a) \).

A STRIPS problem \(P = \langle F, I, O, G \rangle \) defines a classical model \(S(P) = (S, s_0, S_G, A, f) \) where the states in \(S \) are subsets of \(F \) that represent truth valuations where an atom \(P \) is true in \(s \) iff \(p \in s \). The other elements in \(S(P) \) are \(s_0 = I, S_G \) that is given by the states that satisfy \(G \), \(A(s) \) that stands for the actions \(a \in O \) whose preconditions \(\text{Pre}(a) \) are true in \(s \), and \(f(a, s) \) that stands for \(s' = (s \setminus \text{Del}(a)) \cup \text{Add}(a) \).

STRIPS is used as a propositional language even if it was originally a first-order language [Fikes and Nilsson, 1971]. Indeed, while in PDDL, STRIPS problems are given in a language featuring action schemas, and predicate and variable symbols, modern planners ground all these schemas using the object names and their types if available. A resulting ground atom like \(on(a, b) \) is then treated propositionally, but the addition of existential quantification to the language requires that we look into the structure of such atoms.

In 3-STRIPS, a problem is also a tuple \(P = \langle F, I, O, G \rangle \), with the same semantics given by the state model \(S(P) \), but with one difference: in addition to ground atoms, preconditions and goals may feature e-formulas. An e-formula is a first-order formula of the form \(\exists x_1, \ldots, x_n, \phi \), where \(\phi \) is a conjunction of atoms \(p(t_1, \ldots, t_n) \) with the terms \(t_i \) being constant symbols or variable symbols \(x_i \) from the quantification prefix. The e-formula \(\exists x_1, \ldots, x_n, \phi \) is true in a state \(s \) if the variable symbols \(x_i \) can be consistently replaced by constant symbols \(c_i \) so that the resulting grounded formula \(\phi' \) is true in \(s \). This definition extends naturally when the quantified variables \(x_i \) and the constant symbols \(c_i \) in the instance have types — in such a case, variables have to be replaced by constants of a compatible type. When \(x \) is a tuple of variables, we write the e-formula \(\exists x. \phi \) as \(\exists x, \phi(x) \) so that the ground conjunction of atoms \(\phi' \) that results from the substitution \(x \mapsto c \) in \(\phi \) can be written as \(\phi(x \mapsto c) \) or simply \(\phi[c] \). For example, for the formula \(\exists x_1, x_2, x_3. p(x_1, x_2) \land p(x_2, x_3) \), if \(\phi = p(x_1, x_2) \land p(x_2, x_3) \), then the variable-free formula \(p(c, d) \land p(d, c) \) denotes the variable-free formula \(\phi(c, d) \land \phi(d, c) \).

As discussed in the introduction, determining if an e-formula holds in a state \(s \) is an NP-complete problem. This means that plan verification in 3-STRIPS is NP-complete, and that any heuristic \(h \) able to distinguish between goal and non-goal states (i.e., such that \(h(s) = 0 \) iff \(s \) is a goal state) will be intractable. This however does not imply that such heuristics cannot be cost-effective.

3 3-STRIPS Heuristics

Adapting the relaxed planning graph (RPG) heuristic from STRIPS to 3-STRIPS is simple, even if the resulting heuristic is no longer polynomial. Recall that the RPG heuristic \(h(s) \) for STRIPS is given by the number of actions in a plan \(\pi^*(s) \) obtained from the delete-free relaxation by following a 2-step procedure [Hoffmann and Nebel, 2001]. In a first forward phase, the procedure incrementally builds a layered graph with propositional layers \(P_i \) and action layers \(A_i \). Starting with \(i = 0 \) and with a proposition layer \(P_0 \) that contains the ground facts that hold in \(s \), action \(a \) makes it into layer \(A_i \) if each precondition in \(\text{Pre}(a) \) is in \(P_i \), and similarly an atom \(p \) makes it into layer \(P_{i+1} \) if there is an action \(a \in A_i \) with \(p \) in \(\text{Add}(a) \). The procedure stops on the first propositional layer \(P \) such that the goals \(G \) are in \(P_i \), or \(G \notin P_i \), and \(P_i = P_{i+1} \). In addition, an action \(a \in A_i \) is deemed a supporter of an atom \(p \) if \(p \) appears in layer \(P_{i+1} \) for the first time and \(p \in \text{Add}(a) \). The heuristic \(h(s) \) is set to \(\infty \) when the graph construction finishes without reaching the goal \(G \), and is otherwise given by the number of different actions in a plan \(\pi^*(s) \) for the delete-relaxation obtained backward from the goal. The plan includes a supporter for each goal atom that is not in \(s \), and recursively, a supporter for each precondition of such supporter that is not in \(s \) either. The relaxed plan and the heuristic are not unique, as an atom may have more than one support.

Extending the RPG heuristic from STRIPS to 3-STRIPS simply requires to define how to deal with e-formulas in preconditions and goals. While a ground atom \(p \) is deemed to be satisfiable in a propositional layer \(P_i \) when \(p \) belongs to \(P_i \), we take an e-formula \(\exists x. \phi(x) \) to be satisfiable in \(P_i \) when there is a substitution \(x \mapsto c \) such that all ground atoms in \(\phi[c] \) belong to \(P_i \). If, for instance, \(\phi = p(x_1, x_2) \land p(x_2, x_3) \), then the formula \(\exists x_1, x_2, x_3. \phi \) is satisfiable in a layer \(P \) that contains the atoms \(p(c, d), p(c, e) \), and \(p(d, c) \), through the substitution \([x_1, x_2, x_3 \mapsto c, d, e] \). On the other hand, the same formula would not be satisfiable in that layer if only the first two atoms were contained in \(P_i \).

Extending the RPG construction to take into account e-formulas is simple to state but potentially complex to compute: the satisfiability test for e-formulas in a state or in a propositional layer \(P_i \) amounts to solving a CSP with variables that correspond to the variable symbols in the prefix, domains given by the sets of constant symbols (respecting type-consistency when types are used) and constraints given by the atoms \(p(t_1, \ldots, t_n) \) in \(\phi \) such that the predicate symbols represent the tables that contain the tuples of constants \(c_1, \ldots, c_n \) for atoms \(p(c_1, \ldots, c_n) \) in layer \(P_i \) only. A substitution \(x \mapsto c \) satisfies \(\phi \) if \(c \) is a solution to this CSP.

For plan extraction, the supporters of an e-formula \(\exists x. \phi(x) \) that is satisfied in a layer \(P_i \) with substitution \(x \mapsto c \) are identified with the supporters of the atoms in \(\phi[c] \). Thus the plan extraction procedure that works backward from the goal does not see e-formulas at all, just ground atoms, as in the standard RPG procedure.

We call the relaxed plans and the heuristic that result from this procedure for the 3-STRIPS language \(\pi^\text{FF}(s) \) and \(h^\text{FF}(s) \) respectively. If instead of counting the actions in the relaxed plan we count the number of propositional layers, we get a variant of the \(h^\text{max} \) heuristic, \(h^\text{max} \), that can be shown to be admissible for 3-STRIPS. The heuristic \(h^\text{FF}(s) \) is not admissible, in the same way that \(h^\text{FF} \) is not admissible for STRIPS. The consistency check for e-formulas in each layer \(P_i \) is delegated to the standard Gecode CP solver [Gecode Team, 2006].
4 Relation to Compilation and Functional STRIPS

The heuristics \(h^e \) formulated above for \(\exists \)-STRIPS are equivalent to the corresponding heuristics \(h \) for the STRIPS compilation and can be regarded as a lazy version of them. The key difference is that the compilation requires *time and space* exponential in the number of existential variables, while the heuristics for \(\exists \)-STRIPS require only exponential *time* in the worst case. The terms of the ground DNF formulas required for compiling away e-formulas \(\exists x. \phi[x] \) in preconditions and goals correspond indeed to the conjunctions of ground atoms \(\phi[c] \) for each of the possible substitutions \(x \mapsto c \). The computation of the heuristics however does not apply these possible substitutions all at once, and moreover, it does not explore the space of all possible substitutions exhaustively either. Instead, it uses constraint propagation to search for a substitution that makes the e-formula \(\exists x. \phi[x] \) satisfiable.

More interestingly, the heuristics proposed for \(\exists \)-STRIPS have a strong relation to recently-proposed heuristics for Functional STRIPS, a language that extends STRIPS with (possibly fluent) function symbols [Geffner, 2000] — a feature recently incorporated to the PDDL 3.1 language standard under the name of object fluents. Haslum [2008] has shown how pure Functional STRIPS (with no built-in functions) can be compiled into \(\exists \)-STRIPS by adding existential variables and replacing functions by relations using the principles of Skolemization in reverse. For example, a grounded atom \(f(c_1) = c_2 \) is replaced by the e-formula \(\exists x_1. f(x_1, c_2) \land g(c_1, x_1) \) where the relations \(f(x_1, x) \) and \(g(c_1, x) \) represent \(f(x_1) = x \) and \(g(c_1) = x \) respectively.

The heuristic \(h^c \) developed recently for Functional STRIPS [Francès and Geffner, 2015] is aimed at capturing the constraints induced among state variables in preconditions and goals. In the COUNTERS domain, for instance, there is a set of integer variables \(X_1, \ldots, X_n \) and actions that allow us to increase or decrease by one the value of any variable within the \([1, n]\) interval. Given some initial values, the goal is to achieve the inequalities \(X_i < X_{i+1} \), for \(1 \leq i < n \). Francès and Geffner show how delete-relaxation heuristics are not informative in this problem, as they all find that the goal is reachable in the first propositional layer \(P_1 \) that makes each of the goals satisfiable. Yet there is a crucial difference between making each goal satisfiable and making all goals satisfiable at the same time. For example, a layer in which each variable \(X_i \) can take the values 1 and 2 will make each of the goals satisfiable but will not make the joint goal satisfiable. For this, each variable \(X_i \) must have the value \(i \), for \(i = 1, \ldots, n \). The heuristic developed by Francès and Geffner captures such induced constraints. Interestingly, the proposed heuristics \(h^e \) for \(\exists \)-STRIPS account for such constraints too. Indeed, the problem can be represented in \(\exists \)-STRIPS in terms of atoms \(val(i, k) \) to state that variable \(X_i \) has value \(k \), and static atoms \(less(k, n) \) to express that value \(k \) is less than value \(k' \). The goal for the problem can then be encoded as

\[
\exists z_1, \ldots, z_n \cdot \bigwedge_{i=1..n} [val(i, z_i)] \land \bigwedge_{i=1..n-1} less(z_i, z_{i+1}).
\]

This formula \(\exists x. \phi[x] \) will be satisfied in a propositional layer \(P_e \) only by the substitution that replaces the variable \(z_i \) by the value \(i \), because the heuristic accounts for the fact that the \(z_i \) variables need to be replaced consistently in all goal subformulas. This is interesting because it means that the heuristic-search planner for FSTRIPS developed by Francès and Geffner can be emulated by compiling FSTRIPS into \(\exists \)-STRIPS through Haslum’s translation and applying then the new heuristics. Running other planners on such translations would not deliver the same results. It must be said, however, that Haslum’s translation captures the core of FSTRIPS only, leaving out the ability to use built-in functions and global constraints, which in certain problems can make a large difference. On the other hand, the heuristic for \(\exists \)-STRIPS is simpler to describe and implement than the heuristic for FSTRIPS.

5 Experimental Results

We have developed a preliminary implementation of the CSP-based approach for handling existential quantification on top of the existing Functional STRIPS planner FSO [Francès and Geffner, 2015], which already integrates a CSP solver. We call the resulting \(\exists \)-STRIPS planner ES. The planner uses the \(h^c \) heuristic to drive a plain greedy best first search. As a side effect of the implementation, we also obtain the ability to deal with existential variables in the underlying Functional STRIPS planner.

STRIPS Setup. We consider four families of problems, each encoded both in \(\exists \)-STRIPS and in a propositional STRIPS manual reformulation that avoids existential quantifiers while preserving equivalence. On these problems, we compare the performance of our ES planner running on the \(\exists \)-STRIPS encoding against that of the Fast-Downward planner (FD) running on both encodings. FD is configured with the same search strategy; namely, greedy BFS with the \(h^c \) heuristic, a single queue, no EHC, and non-delayed evaluation. All planners run a maximum of 30 minutes on a cluster with AMD Opteron 6300@2.4Ghz nodes, and are allowed a maximum of 8GB of memory. The source code of ES plus all problem encodings are available on gfrances.github.io/pubs.

Domains. The four families of domains that we test are BW-PATTERN, VERTEX-COLORING, GROUPING and COUNTERS, the last two from [Francès and Geffner, 2015]. BW-PATTERN, discussed in the introduction, is a variation of Blocksworld with colored blocks where we want to reach any block configuration that displays a given color pattern, such as “a red block on a blue block on a green block”, which is modeled with the goal e-formula \(\exists b_1, b_2, b_3. \text{col}(b_1, \text{red}) \land \text{col}(b_2, \text{blue}) \land \text{col}(b_3, \text{green}) \land \text{on}(b_1, b_2) \land \text{on}(b_2, b_3) \).

We test no propositional encoding, as it is not trivial to reformulate this problem without existential variables.

VERTEX-COLORING illustrates how any CSP can be easily embedded in an (action-less, fluent-less) \(\exists \)-STRIPS planning problem. A classical \(k \)-VERTEX-COLORING problem with \(n \) nodes and edges \(E \) maps into an \(\exists \)-STRIPS problem with \(k \) color objects and (typed) goal e-formula \(\exists z_1, \ldots, z_n \in \text{COLOR} \land_{(i, j) \in E} z_i \neq z_j \). The initial (and only) state of this
planning problem will be detected as a goal if the graph is k-colorable. We also test AGENT-COLORING, a variation of the domain where an agent moves around the graph picking up and dropping paint cans to paint the vertices “manually”. We use two sets of instances: first, random instances (100 $\leq n \leq 500$, 10 $\leq k \leq 30$) where the graph results from adding edges at random to a uniform spanning tree to reach a certain graph density; second, standard instances from a public compilation from the literature,\(^2\) of which we have pruned those instances reported as not solvable in less than 1 hour by state-of-the-art coloring methods or having a chromatic number $\chi > 10$. From the remaining instances, we generate planning problems with a number of colors $k \in \{\chi, \chi + 1\}$.

In GROUPING, several colored blocks are randomly placed on a grid and need to be moved so that two blocks end up on the same cell if they have the same color. The original FSTRIPS formulation features a goal formula with an atom $loc(b_i) \Leftrightarrow loc(b_j)$ for each pair of blocks b_i, b_j, where \Leftrightarrow is the same as (\neq) if the two blocks have the same (different) color. This translates directly to \exists-STRIPS, so that the goal of a problem with red blocks a and b and a blue block c is $\exists l, l'. l \neq l' \land at(a, l) \land at(b, l') \land at(c, l')$.

Finally, COUNTERS is the problem described in Section 4 where we increase or decrease the value of certain integer variables X_i until the inequalities $X_1 < \ldots < X_n$ hold. We use two variations, labeled COUNT$_0$ and COUNT$_\text{Rnd}$, where variables are initially set to 0 and to random values, respectively. The \exists-STRIPS encoding is the result of applying Haslum’s compilation technique to the original FSTRIPS encoding, save for the substitution of the “$<$” built-in predicate for a less predicate with extensional denotation.

Results of STRIPS Planners. Table 1 shows the results of the ES planner running on \exists-STRIPS (“E-ES”) as well as of Fast-Downward on both the \exists-STRIPS encoding ("E-FF") and the manual propositional reformulation ("P-FF"). We next highlight the main conclusions that can be drawn from these results.

First, the exponential time and space required to compile away \exists-STRIPS existential variables has a huge impact on domain coverage. In general, FD tends to either time or memory out during preprocessing. As an example, the planner times/memories out on GROUPING instances with more than 3 colors, and on COUNTERS instances with more than 9 variables. The only domain with acceptable coverage is GROUPING, but this is just because the benchmark set includes many instances with only 2 existential variables.

Second, the heuristic that can be derived from the propositional reformulations is less informed than the one computed from the compiled \exists-STRIPS encoding. In GROUPING or in COUNT$_0$, for instance, the average number of node expansions is orders of magnitude higher on the propositional reformulation, because the delete-relaxation does not account for certain constraints that are captured on the \exists-STRIPS version, such as (in GROUPING) the constraint that all blocks of the same color must be on the same position at the same time. In spite of this, however, FD has much better performance on these propositional reformulations, because it avoids the exponential time and space required to compile away the existential variables and to process the result of the compilation.

Third, the constraint-based approach of ES to handle ex-

\(\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline
\textbf{Domain} & \textbf{N} & \textbf{Coverage} & \textbf{Plan length} & \textbf{Node expansions} & \textbf{Time (s.)} \\
\hline
\textbf{COUNT}_0 & 12 & 3 & 7 & 7 & \text{E-FF} & \text{P-FF} & \text{E-ES} & \text{E-FF} & \text{P-FF} & \text{E-ES} & \text{E-FF} & \text{P-FF} & \text{E-ES} \\
\hline
\textbf{COUNT}_\text{Rnd} & 36 & 9 & 25 & 21 & 21.4 & 21.6 & 22.1 & 22.4 & 36.6 & 22.1 & 0.9 & 0.0 & 0.7 \\
\hline
\textbf{GROUPING} & 48 & 28 & 34 & 47 & 25.8 & 41.6 & 26.1 & 26.8 & 203K & 26.2 & 2.1 & 179.5 & 54.6 \\
\hline
\textbf{BW-PATTERN} & 30 & 11 & \text{-} & 20 & 8.4 & \text{-} & 50.9 & 306.3 & \text{-} & 16.19K & 0.6 & \text{-} & 60.9 \\
\hline
\textbf{V-COLORING} & 80 & 1 & 43 & 78 & \text{-} & 84.3 & \text{-} & \text{-} & \text{-} & 60.7K & \text{-} & 87.7 & \text{-} \\
\hline
\textbf{A-COLORING} & 88 & 6 & 30 & 27 & 24.5 & 26.9 & 29.2 & 41.2 & 80.8 & 65.0 & 0.0 & 0.0 & 0.3 \\
\hline
\end{array}\)

\(\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline
\textbf{Domain} & \textbf{N} & \textbf{Coverage} & \textbf{Plan length} & \textbf{Node expansions} & \textbf{Time (s.)} \\
\hline
\textbf{COUNT}_0 & 12 & 7 & 7 & 11 & 70.7 & 70.7 & 70.7 & 542K & 70.7 & 70.7 & 52.6 & 84.9 & 5.6 \\
\hline
\textbf{COUNT}_\text{Rnd} & 36 & 25 & 21 & 30 & 93.0 & 86.6 & 82.2 & 6.9K & 87.2 & 86.2 & 15.8 & 117.9 & 11.2 \\
\hline
\textbf{GROUPING} & 48 & 34 & 47 & 48 & 42.4 & 23.8 & 24.3 & 150K & 23.8 & 24.3 & 146.8 & 25.9 & 5.8 \\
\hline
\textbf{BW-PATTERN} & 30 & \text{-} & 20 & 29 & \text{-} & 45.1 & 5.7 & \text{-} & 9.28K & 6.2 & \text{-} & 38.8 & 0.2 \\
\hline
\textbf{V-COLORING} & 80 & 43 & 78 & 78 & 84.3 & \text{-} & \text{-} & \text{-} & 60.7K & \text{-} & 87.7 & \text{-} \\
\hline
\textbf{A-COLORING} & 88 & 30 & 27 & 38 & 71.9 & 94.9 & 77.9 & 353.3 & 1.82K & 609.6 & 0.1 & 30.9 & 4.1 \\
\hline
\end{array}\)

\(^2\)See https://sites.google.com/site/graphcoloring/.
consistent better. In particular, the extension of Functional
GROUPING in STRIPS planning. This work is partially supported by the
Acknowledgments
References
3087
[204, 1994].

Secondly, the manual propositional STRIPS reformulations
have significantly fewer variables (e.g. quadratically so in
vertices). This shortcoming does not appear in Functional
STRIPS with existential quantification yields better results
than the manual propositional STRIPS reformulations in all
domains.

6 Discussion
We have presented a novel view of existential quantification
in STRIPS that relates planning to constraint satisfaction and
relational databases [Gottlob et al., 1999]. A goal that in-
volves existential variables is indeed like a query: what makes
it particular in the context of planning is that we are not sim-
ply evaluating the goal “query” in a static database, but can
apply actions that modify the database in order to make the
query satisfiable, and hence the goal true.

We have also argued that the use of existential quantification
for leaving some choices open in goal and preconditions
allows for simpler and more concise models, while giving
planners the chance to reason about those choices. Instead
of compiling existential variables away with an exponential
technique or avoiding them altogether, we have shown how
delete-relaxation heuristics can be extended to deal with
existential variables by using constraint satisfaction techniques,
resulting in heuristics that are more informed than those that
can be obtained from alternative propositional encodings.

This view of existential variables in STRIPS has resulted
in a new 3-STRIPS planner implemented on top of the exist-
ing Functional STRIPS FS0 planner, plus a new Functional
STRIPS planner that completes support and extends the or-
original language as defined in [Geffner, 2000]. We have evalu-
ated these planners on four families of domains encoded in
STRIPS and FSTRIPS with existential variables, and when
feasible and simple enough, without them. The fact that
the best computational results have been achieved for the
more expressive language illustrates the importance of mak-
ing problem structure explicit so that it can be exploited com-
putationally [Rintanen, 2015; Ivanovic and Haslum, 2015].

Significantly enough, there is no domain featuring existen-
tial quantifiers in any of the last three international planning
competitions. This lack is arguably due to the inefficiency of
the standard compilation technique, which imposes a heavy
burden on both modelers and planners. We hope that this
work can contribute to change this situation.

Acknowledgments
The ES and FS planners are partially built on top of the
Lightweight Automated Planning Toolkit (www.lapkt.org)
and the Fast Downward PDDL parser (www.fast-downward.
org). The authors thank Miquel Ramirez for useful discus-
sions and insights. This work is partially supported by the
M. de Maeztu Programme (MDM-2015-0502) and by grants
TIN2015-67959 and CSD2010-00034, MEC, Spain.

References
ing as heuristic search. Artificial Intelligence, 129(1–
[Bylander, 1994] T. Bylander. The computational complex-
ity of STRIPS planning. Artificial Intelligence, 69:165–
204, 1994.

