Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

Planning for a Single Agent in a Multi-Agent Environment Using FOND

Christian Muise, Paolo Felli, Tim Miller, Adrian R. Pearce, Liz Sonenberg
Department of Computing and Information Systems, University of Melbourne
{christian.muise, paolo.felli, tmiller, adrianrp, l.sonenberg} @unimelb.edu.au

Abstract

Single-agent planning in a multi-agent environment
is challenging because the actions of other agents
can affect our ability to achieve a goal. From
a given agent’s perspective, actions of others can
be viewed as non-deterministic outcomes of that
agent’s actions. While simple conceptually, this in-
terpretation of planning in a multi-agent environ-
ment as non-deterministic planning remains chal-
lenging, not only due to the non-determinism re-
sulting from others’ actions, but because it is not
clear how to compactly model the possible ac-
tions of others in the environment. In this pa-
per, we cast the problem of planning in a multi-
agent environment as one of Fully-Observable
Non-Deterministic (FOND) planning. We extend
a non-deterministic planner to plan in a multi-agent
setting, allowing non-deterministic planning tech-
nology to solve a new class of planning problems.
To improve the efficiency in domains too large for
solving optimally, we propose a technique to use
the goals and possible actions of other agents to fo-
cus the search on a set of plausible actions. We
evaluate our approach on existing and new multi-
agent benchmarks, demonstrating that modelling
the other agents’ goals improves the quality of the
resulting solutions.

1 Introduction

Synthesizing plans for agents operating in a multi-agent do-
main is a challenging and increasingly important problem.
While there has been recent progress in this area [Brafman
et al., 2013; Bolander and Herzig, 2014], most of this work
focuses on synthesizing plans to coordinate a team of agents
working towards a collaborative goal. However, many prob-
lems must instead take a first-person perspective: a single
agent planning in a multi-agent environment, in which the
agent must consider the contingencies in which other agents
perform actions that affect its own.

This first-person view is essential in not only competitive
settings, but also collaborative. Take for example a human-
agent team: the agent may synthesize a plan that includes
particular actions for the human actors in the environment,

3206

X|O

O|O|IX Xl 1O
X mid-right(X) X O|0[X
Olo §
X

OoX ot

Xl 10

Figure 1: Tic-Tac-Toe example from X’s perspective

but human team members may use additional knowledge or
intuition to complete goals in unplanned ways. Even with-
out humans, the first-person perspective may be required; for
example, if communication becomes unavailable but agents
must continue operating. We therefore must consider com-
puting conditional plans in settings where the environment is
collaborative, but out of the planning agent’s control.

We approach the first-person multi-agent planning (FP-
MAP) problem as a non-deterministic planning problem,
where we must synthesize a policy to achieve a goal using
actions in which the effects are non-deterministic. The key
insight is that actions taken by others can be viewed as non-
deterministic outcomes of our own choices. We focus on
multi-agent planning problems where the goals and possible
actions of all agents are known, and the state of the world is
fully observable; restrictions that admit a wide class of multi-
agent problems, including many collaborative and compet-
itive games. As an example, consider the partially-played
game of Tic-Tac-Toe in Figure 1 where we are player X and it
is our turn. Playing the right column / middle row can subse-
quently lead to four possible states where it is our turn again:
these are the non-deterministic outcomes of our move. From
X’s perspective, it is largely irrelevant which action player O
chooses: it is the resulting state that is important.

In a FP-MAP problem, considering all applicable actions
for other agents results in an explosively-large search space.
To mitigate this, we focus the search on the most plausible ac-
tions for other agents, which are those that are assessed to be
the most valuable to them; e.g., based on the highest heuris-
tic value given the agent’s goal. We do not consider how the
goals of others are known, but in many scenarios goals are
known apriori or can be inferred; e.g., using goal recognition
[Ramirez and Geffner, 2010]. This gives us a general means

to handle adversarial settings containing agents with conflict-
ing or opposing goals, and cooperative settings containing
agents with same goal as ours (e.g., on the same team); or a
spectrum of heterogeneous agents with a variety of conflict-
ing or matching goals. Note that we do not presume author-
ity over our teammates, but instead plan for what they would
plausibly do given their goal.

Given the complex nature of characterizing the joint ac-
tions that may be possible, using a FOND planner as a black-
box is infeasible. We instead modify the state-of-the-art
FOND planner PRP [Muise et al., 2012] to handle FP-MAP
problems, and evaluate the approach on five new multi-agent
domains adapted from existing problems. The evaluation as-
sesses improvements made to the non-deterministic planner
for the multi-agent setting, and demonstrates the capability to
solve FP-MAP problems with existing planning technology.

2 Background
2.1 (FOND) Planning Notation

Here, we describe briefly the requisite planning background
(cf. Ghallab et al. (2004) for a full treatment). A Fully Ob-
servable Non-Deterministic (FOND) planning problem con-
sists of a tuple (', 7, Goal, Act); F is a set of fluents, and we
use S as the set of all possible states; 7 C ¥ is the initial state;
Goal C F characterizes the goal to be achieved; and Act is
the set of actions. An action a € Act is a tuple (Pre,, Eff,)
where Pre, C ¥ is the precondition (i.e., the fluents that must
hold for a to be executable) and Eff, is a set of one or more
outcomes. Each e € Eff, contains a set of positive and nega-
tive effects that update the state of the world. After executing
a, exactly one of e € Eff, occurs; the agent does not know
which in advance, and so must plan for every contingency.

A solution is in the form of a policy P that maps the state
of the world to an action: P : & — Act. Executing a non-
deterministic action in a state can potentially lead to several
states. We say that a state s’ is reachable from state s by the
plan P if it is equal to s or if there exists some other state s”’
reachable from s such that s’ is a possible successor to the
execution of P(s”) in state s”.

P is a weak plan if there is some state that is reachable
from I where Goal holds. P is a strong cyclic plan if for
every state s that is reachable from 7, there is another state
reachable from s where Goal holds. Finally, P is a strong plan
if it is a strong cyclic plan and no state s reachable from the
initial state is reachable from the possible successors of s (i.e.,
a reachable cycle is impossible). Finally, the all-outcomes
determinization of a FOND problem (¥, I, Goal, Act) is the
classical planning problem (7, I, Goal, Actap) where Actap
is defined as: Actap = {(Pre,, {e}) | a € Act and e € Eff,}

2.2 A First-person View of Multi-agent Planning

We consider a first-person view of planning in a setting where
the world is known fully and is observable to all agents. We
assume a general framework where action execution for all
agents occurs concurrently. This setting follows the NAPL
syntax for multi-agent planning introduced in Jensen and
Veloso (2000) and Bowling et al. (2003), but we make some

3207

notation changes for convenience. Formally, we define the
multi-agent setting as follows:

Definition 1. First-person Multi-agent Planning Problem

A first-person multi-agent planning (FP-MAP) problem is a
tuple (Ag,F, T, g,‘:o...‘Am_l , ﬂi:O---\Agl—l) where:

e Ag is the set of agents in the world, including the plan-
ning agent specially designated as 0;

e ¥ and 7 are as before;
e G; C F is the goal for agent i € Ag; and
e A, is the finite set of actions agent i can execute.

The set of joint actions is the cross product of all individual
actions: A = Ay X - -+ X Ajag-1. We will use lowercase let-
ters to denote individual actions and capital letters to denote
joint actions (e.g., a € A; and A € A). A; denotes the indi-
vidual action a € A; that agent i executes in the joint action
A. Finally, A! C A; denotes the set of joint actions that are
possible when agent i chooses to execute a.

Joint actions constitute a choice from each agent as to what
individual action they perform. Every joint action A € A is
a tuple (Prey4, eff) where Pre4 C F dictates what must hold
for A to be applicable, and eff is a single outcome of positive
and negative effects.

For convenience, we assume that Pre, is defined for each
individual action. We also make one other key assumption
(following the same reasoning as [Bowling et al., 2003]): the
applicability of an individual action should not depend on the
individual actions of other agents:

{A|A€ﬂAPreAQs}zl—[{alaeﬂ,-/\Preags} (1)
icAg

In a FP-MAP problem, the world is updated through the ex-
ecution of a joint action. Like FOND, we use Prog(s,A) to
indicate the state of the world that results in executing joint
action A in state s. It is not restrictive to assume that A; is de-
fined for every joint action A and agent i, as we can introduce
a ‘noop’ individual action as required, meaning that the agent
does nothing. Every joint action has a single outcome, but
from the perspective of a single agent, choosing an action can
have potentially many outcomes (or consistent joint actions).

From the planning agent 0’s perspective, choosing
individual action a € Ay can result in any one of
the applicable joint actions in Aj being executed.

The planning agent’s task in our FP-MAP setting is to syn-
thesize a policy that maps states to actions from Ay given the
uncertainty of what other agents may do. The analogies to
FOND solutions are direct, and formally we have:

Definition 2. FP-MAP Solution

Given a FP-MAP problem (Ag, 7, 1, Gi-o.-jag> Ai=0--1a¢])> A
solution for agent 0 € Ag is a partial policy Pol : S — Ay
where Pol(s) is applicable in s whenever Pol(s) is defined.

Similar to FOND problems, we define notions of reacha-
bility and guarantees on the FP-MAP solution. We say that s’

Algorithm 1: Generate FP-MAP Strong Cyclic Plan

Input: FP-MAP Problem <Ag, 7‘—,], §;=0.‘.‘Ag|, &Z(,'=()4..|Ag|>
Output: Partial policy Pol
Initialize policy Pol
while Pol changes do
if !ContiNnuEPREVIOUSEPOCH() then
| Open = {(I,0,0)}; Seen = {};

while (Open # 0) A ('NEwEpocH()) do
(s, dist, plausy = Open.pop();
if Gy € s A s ¢ Seen then
Seen.add(s);
if Pol(s) is undefined then

| GENPLANPARS((F, 5, Gy, A), Pol);

if Pol(s) is defined then
for s' € GENERATEM ASUCCESsORS(s, Pol(s)) do
| Open.add((s’, dist + 1, Plaus(s));

ProcessDEADENDS();

15 return P;

is reachable from s with Pol iff one of the following hold: (1)
s is equivalent to s’; (2) a state s” is reachable from s and s’
is in turn reachable from s”; or (3) there exists a joint action
A such that Pol(s) = Ap and s = Prog(s,A). A policy Pol is
complete iff Pol(7) is defined as well as every state reachable
from 7 with Pol. A policy for a FP-MAP problem can be
weak, strong, or strong cyclic. Note that the other agents in
the environment may inherently be unfair; i.e., they may not
execute every possible action with non-zero probability.

3 Approach

3.1 MAP as FOND

Our method of solving MAP problems as FOND is straight-
forward on the surface, but powerful in practice: we view
the set of possible states that result from other agents’ ac-
tions as non-deterministic outcomes to the planning agent’s
own choice of action. Not all FOND planners are built using
the same solving technique, but many approaches (e.g., NDP
[Alford et al., 2014], FIP [Fu et al., 2011], and PRP [Muise
et al., 2012]) build a policy by exploring the reachable state
space and augmenting the policy with new plan fragments
(i.e., weak plans) when encountering a new state (see Muise
et al. (2012) for a deeper discussion). The key changes we
make for the FP-MAP setting are to define suitable replace-
ments for creating weak plans (GENPLANPAIRs) and successor
states (GENERATESUCCESsORS). Algorithm 1 shows our algo-
rithm with additional elements. These are the core methods
used in the FP-MAP setting (further details are given below):

o GENPLANPAIRS({F, 5, Go, A), Pol): Solves the classical
planning problem where the actions correspond to every
joint action in A and the goal used is Gy.

o GENERATEMASUCCESSORS(s, a): Returns the set of states
possible after executing any of the joint actions possible
given that agent 0 executes individual a in state s:

{Prog(s,A) | A € Aj}

3208

e ProcessDEADENDS(): Records the deadends and creates
a forbidden state-action pair, so that future iterations of
the outer loop can avoid joint actions that have at least
one outcome leading to any of the deadends.

As an example, consider our Tic-Tac-Toe scenario in Fig-
ure 1. One omnipotent strategy is to play in the top-middle
spot in lieu of middle-right, as it brings us close to win-
ning with the top row. However, this leaves player O with
a winning move at middle-right (a deadend). Our forbidden
state-action procedure creates rules that forbid every move
other than playing the one shown that blocks O from win-
ning. In fact, with the deadend generalization already in PRP,
our modified forbidden state-action pairs will create a tem-
plate of the form shown in Figure 2a — no matter what the
rest of the board is like (x indicates any value of the spot), if
player O is about to win on the middle row then we block.

3.2 Focusing the Policy Search

Thusfar, we only use the goal for agent 0, which is acceptable
when we can derive a strong plan for agent 0. In practice
though, this is often not the case. Here we consider how to fo-
cus the search for a policy in two complementary ways when
a guaranteed solution is not possible: (1) address states that
we are likely to encounter early; and (2) address states that
are more likely to be reached. We achieve both by modifying
how states are selected (cf. Alg 1/ line 6).

Traditionally, PRP uses a stack for Open. Here, we use a
priority queue that selects the most plausible states, and then
selects one among those that minimizes the distance from the
initial state (breaking ties arbitrarily). The second criterion
involves simple bookkeeping when we add new states to the
open list (cf. line 13), and is useful when a complete solu-
tion cannot be fully computed. We focus our attention on the
criterion of plausibility. Note that one option for further ex-
ploration is to be more aggressive in our handling of plausible
states and prune those states that are not plausible.

There are many ways to define plausibility, and in this work
we investigate one of these: goal-based plausibility. When
the planner determines the set of possible successors using
GENERATEM ASUCCESSORS(s, a), these successors are ranked
from the most to least plausible by reasoning as if we were
the other agents in the domain (i.e., using their goal). For-
mally, the plausibility score of each successor is computed as
follows (where lower is more plausible):

Plaus(s) = Z h(s,G))

ieAg\(0}

The heuristic function A(s,G;) can be any admissible or
inadmissible classical heuristic in the omnipotent equivalent
of the FP-MAP problem; that is, for computing h(s, G;) we
assume that A; coincides with A. In practice we use the
common hgp heuristic [Hoffmann and Nebel, 2001] as it is
computationally efficient, and leave investigating other op-
tions as future work. Once we have determined Plaus(s”) for
all s’ € GENERATEMASUCCESSORS(s, @), we re-map the values
from 1 to | GENERATEM ASUCCESSORS(s, a)|. Then, Plaus(s) = k
indicates that s was the k" most plausible outcome of an ac-
tion agent 0 decided to execute. Note that in the calculation

Ll

il J

> (D> |

C> (B>

D20 b0 Do |be
0000

o0
AlATATA 09000000

A
A

* * * b

a $A

0|0 ° &

B

* * * B
B |B A
(a) Tic-Tac-Toe Deadend (b) Sokoban

(c) Breakthrough (d) Connect4

Figure 2: Example configurations for the Tic-Tac-Toe (partial state), Sokoban, Breakthrough and Connect4 domains.

of Plaus, we do not include the heuristic for agent 0, as the
individual action for agent 0 will already be chosen.

Combining the above, line 6 selects states that first min-
imize the remapped Plaus(s) score, and then minimize the
distance that the planner has gone from 7 to reach s in the
search for a policy. As a result, all states that are considered
most plausible will be investigated first (ties broken on those
states we are likely to see earlier on during execution).

3.3 Planning in Epochs

Rather than backtrack, PRP records deadend information dur-
ing the search and then uses that information in subsequent it-
erations of the outer loop to avoid falling into the same traps.
While effective in many FOND domains, this strategy can be
damaging in problems that are too difficult to solve fully.

If a single pass of the outer loop exhausts the plan-
ner resources, then little deadend information will
be used during the search.

This situation is particularly problematic where a decision
early in the search can be detrimental to performance (e.g.,
making a bad move early in a 2-player game). To remedy
this, we introduce epochs for the planning process. Given a
time limit of 7 seconds and a bound of k epochs, we allow
a single pass of the loop in Algorithm 1 on line 2 to run for
T /k seconds before we process the deadends on line 14 and
complete another pass. We must be cautious, however, and
avoid handicapping the planner if it has the ability to fully
solve the problem. We thus use the following strategy:

e If no deadends are found during the previous pass, the
search resumes where it left off (cf. line 3).

o If one epoch finishes early, the next epoch is allotted the
remaining time.

o If all k epochs have occurred and time remains, the plan-
ner continues as normal.

e Half of the total time given to the planner is allocated to
5 epochs (a value that proved most effective across the
range of benchmarks). The remainder performs one final
pass of the incumbent policy with deadend avoidance
disabled, allowing a “best effort” response for any state
that the policy does not handle (i.e., do something that
could succeed, even if it may fail).

The combination of the above finds complete solutions for
problems that are small enough to do so, while developing
effective strategies for problems that are prohibitively large.

4 Evaluation

We modified the FOND planner PRP as described above to
create MA-PRP, and enabled it to parse custom PDDL that
specifies the agents and their goals. To simplify the expres-
sion of joint actions, the domains enforce a round-robin exe-
cution of the agents. This setup is similar to the round robin
games specified in the Game Description Logic [Love et al.,
2008], and allows us to adhere to Equation (1) effectively.

As our approach opens planning to a new class of prob-
lems, there are no publicly available FP-MAP benchmarks to
evaluate on as far as we are aware. Instead, we provide a suite
of new benchmark problems for five domains: Blocksworld,
Sokoban, Tic-Tac-Toe, Breakthrough, and Connect4. We use
these to evaluate our proposed strategies for mitigating non-
determinism, and the general ability of the planner to solve
fully-observable FP-MAP problems.

We ran several planner configurations to generate the poli-
cies for a single planning agent, and we tested the generated
policies using 100 simulated trials. Moves for other agents
were selected by taking the best applicable action measured
using 500 monte-carlo roll-outs per action in the current state,
with the stopping condition set to the agent’s goal.

The general average success rate for each of the problems
and a representative selection of the planner configurations is
shown in Figure 3. Some setups did not show anything inter-
esting in most cases, so are omitted for readability; although
some are presented later in Table 1. Every run was limited to
2Gb memory and 30min time limit (unless otherwise spec-
ified). If the planner did not finish in the time provided,
the best incumbent policy computed thus-far was used. The
following planner configurations were considered: (30min)
MA-PRP with 5 epochs and smart priority list (cf. Sec 3.2);
([3min|30sec]) reduced time limit; (1-Epoch) same as 30min
with only one epoch; ([PlausibleDistance|Stack] OL) same
as 30min with only action plausibility (respectively distance
from initial state and original LIFO) used for the open list.

Blocksworld The Blocksworld domain includes the first 10
problems from the benchmark in the 2008 International Plan-
ning Competition (IPC), with roughly 5 blocks and three new
agents included in addition to the planning agent to evaluate

3209

100
0} .
o 30min
'ﬁ 80 3min
0 Distance OL
o 60)
O Plausible OL
-}
40
0]
o
5 20
z
0
blocks

100

80

60

40

20

0

sokoban ttt bt c4

Figure 3: Average number of successful runs for all five domains for four representative planner configurations.

with a range of heterogeneous agents: (1) The friend agent
has the same goal as us. (2) The opponent agent has a con-
flicting goal. (3) The stranger agent has non-interacting goal.
In general the success rate ranged from 10% to 20% for
the 30min configuration, with the other configurations not far
behind in performance (cf. Figure 3). The interesting aspect
of this domain is what happens with the unsuccessful trials: a
deadlock situation occurred in the vast majority of trials, and
the trials ended only after a set limit of actions was reached.
Recall that we build plans under the assumption of “fair-
ness” [Cimatti ef al., 2003]: every outcome has some chance
of happening. In some domains, this optimistic assumption
does not hurt (e.g., in games that we rarely or never see the
same state twice). The Blocksworld domain, however, is in-
herently “unfair”. This would be common across adversarial
settings. Even if all of the agents shared the same goal, dead-
locks may still occur; e.g., if everyone expects someone else
to pick up the next block, all agents would idle indefinitely.

Sokoban We extended the Sokoban domain so that the
planning agent and a competitive opponent must push a sin-
gle box each to a different location. Across the five problems
in the benchmark, the opponent agent starts at decreasing dis-
tances from both our starting location and the block (i.e., in
problem pl the other agent cannot interfere, while in prob-
lem p5 the other agent can interfere to a large extent). Figure
2b shows the layout of the Sokoban instances. The planning
agent is player A pushing the block $ to location a, while the
opponent starts in one of the B locations and must push the
same block to location b.

We found an interesting transition for the problem diffi-
culty when the opponent agent was directly below their goal
location; demonstrated by the dip in success rate seen in Fig-
ure 3 for problem p3. In the later problems, the opponent’s
monte-carlo simulation concludes that it is best if A pushes
the block part of the way (note that B’s monte-carlo roll-outs
do not consider A’s goal). However in problem p3, the op-
ponent proceeds under the assumption that they should move
the block themselves to b, thus causing trouble for agent A.

As for the planner configurations, we found that the 1-
Epoch performed as well as the 30min configuration, and out-
performed it in a few problems. This is due to a good policy
computed initially not being recognized as having the best

3210

chance of success in the 30min configuration. The 1-Epoch
configuration never finishes a single pass of the outer loop in
Algorithm 1, and so uses the first and only policy computed.
In the Sokoban domain, there is no way to guarantee that the
goal is achieved, and the deadend handling discards the ini-
tial policy in lieu of later ones that avoid recognized dead-
ends. This motivates the need for better assessment of policy
quality in the multi-agent setting, which currently uses a naive
approach of random roll-outs using the planning agent’s goal.

Tic-Tac-Toe For Tic-Tac-Toe, we considered three varia-
tions on the common setup:

1. We play second, the board starts open, and the goal is to

not lose the game (i.e., do not let the opponent win).
2. Standard setup with us first trying to win.

3. We play X, the board starts with X/O in the left / middle
cells on the bottom row, and the goal is to win.

The opponent’s goal is always for them to win. A com-
plete solution (i.e., one that guarantees the goal is achieved)
was found for the first and third problems in every planner
configuration. The success rate varies for the second prob-
lem, but these rates are largely uninformative as the game
is too small to adequately distinguish between good and bad
policies; an arbitrary choice in the first move yields wildly
different results. The standard configuration poses an inter-
esting challenge, as there is no play that can guarantee a win.
There is no distinction between losing by a wide margin and
drawing a game: if we cannot win in problem 2, then the state
is a deadend. Tic-Tac-Toe falls under a generalization of goal
achievement where we would like to satisfy a hierarchy of
objectives: e.g., I would like to win, and otherwise draw.

Breakthrough The Breakthrough domain is a two-player
game from the general game playing contest [Love ef al.,
2008] that involves moving chess pawns from one end of the
board to the other. The winner is the first player to get a pawn
to the other side of the board (see an example in Figure 2¢
where black wins). The starting configuration is two rows of
pawns, and the standard chess mechanics apply.

We report the results for every planner configuration in the
left column of Table 1. We see a marked improvement when
we enable the concepts introduced in Section 3.2. 30sec leads

Configuration \ Breakthrough Connect4
30min 54.7 49.9

3min 40.8 40.9

30sec 259 1.8
1-Epoch 53.8 34
Plausible OL 3.1 0.5
Distance OL 3.8 0
Stack OL mem 0

Table 1: Average success rates for the various configurations.

to only 25.9% of the trials succeeding compared to 54.7%
in the 30min configuration. The 1-Epoch configuration does
well, as there are no shallow deadends in this domain. The
alternate forms of open list perform poorly: the Plausible-
only and Distance-only versions have less than 4% success
while the original Stack open list runs out of memory.

Connect4 The final domain is another from the general
game playing contest: Connect4. Starting with an empty
board, players take turns dropping tokens in a column with
the aim of getting four in a row (vertical, horizontal, or diag-
onal), such as in Figure 2d. Table 1 outlines the results.
Again, the alternate open list types perform poorly. How-
ever, note that the performance of 1-Epoch and 30sec con-
figurations have dropped substantially as well. The reason is
that there are a number of deadends early in the game. Even
with 5 epochs, 30 seconds is not enough time to detect these,
but given more time they are properly identified and avoided
in future epochs. The Connect4 domain shows the full po-
tential of the methods we introduce, as it is difficult for the
planner to finish even a single epoch in a reasonable amount
of time. Both the Breakthrough and Connect4 domains have
the property of never reaching the same state twice, and so
fairness is not an issue. Further, unlike the Sokoban domain,
policies from future epochs are always better to use in these
domains, as they mitigate bad moves early in the game.

5 Related Work

A similar thread of research for multi-agent planning can
be found in the probabilistic planning literature. In particu-
lar, Decentralized Partially Observable Markov Decision Pro-
cesses (DecPOMDPs) aim to model distributed multi-agent
planning [Bernstein et al., 2002], and subsequent related for-
malisms have been introduced to model the qualitative case
with QDecPOMDPs [Brafman et al., 2013] as well as the
iterative case with I-POMDPs that captures the expected be-
haviour of the other agents [Gmytrasiewicz and Doshi, 2005].
While similar in spirit, the realization of the framework, and
the techniques used to solve the problems, are quite different
from what we present here.

The FP-MAP formalism is most related to the work of
Jensen and Veloso (2000), although the solution techniques
are vastly different. In a fashion similar to FP-MAP, plan-
ning is conducted from the perspective of a single agent
in a multi-agent environment, including the possibility of
non-deternministic actions. On the other hand, many multi-
agent planning frameworks assume a form of omnipotence
in the planning process: the planning agent has full control

3211

over the other agents in the domain (e.g., [Brenner, 2003;
Brafman and Domshlak, 2008; Kovacs, 2012]). Under this
umbrella, various avenues have been explored to plan with
privacy-based constraints [Bonisoli er al., 2014; Brafman,
2015] or plan with explicit representation of the agents belief
[Kominis and Geffner, 2015; Muise et al., 2015]. However,
the assumption of omnipotence is a common thread between
many multi-agent formalisms.

This work is in contrast with treating the environment and
the other agents as an explicit adversary, which is the idea
behind game structures used in verification [Piterman et al.,
2006]. This is in turn at the base of ATL interpretation struc-
tures [Alur et al., 2002], in which a successor state is selected
depending on the action that each agent performs. The lat-
ter approach is the one captured by the notion of joint state-
action pairs in Bowling et al. (2003). Although conceptually
different, these two approaches allow one to model actions
whose effects are not completely determined by the state of
the world. The high level concepts we use (e.g., treating agent
actions as non-determinism) are also found in game theory
formalisms such as extensive form games [Aumann and Hart,
1992]. However, the game theory techniques could not be
practically used on the domains we are interested in, as the
states are too many to enumerate.

Finally, the work of Bowling et al. (2003) considers a set-
ting similar to ours where the goals of the other agents are
known. The distinction, however, is that they use the model
of agents’ goals to devise a game-theoretic notion of equilib-
ria for the agents, whereas we use the information to improve
the efficiency of reasoning.

6 Summary

In this work, we presented a novel application of non-
deterministic planning in multi-agent environments based on
the intuition that actions taken by others can be viewed as
non-deterministic outcomes of our own choices. The main
contribution of our work is the realization of this intuition
in order to leverage the recent advances in non-deterministic
planning for solving problems in a multi-agent setting. A sec-
ond key contribution is a means to focus the search on ac-
tions for other agents that are plausible given their goal. We
demonstrated the ability of our approach to solve multi-agent
problems on a new suite of benchmarks that include both col-
laborative and competitive tasks.

The connection that we make between multi-agent plan-
ning and FOND planning presents an exciting initial step to-
wards a range of more sophisticated techniques. The gener-
ality of a plausibility function opens the door to techniques
ranging from nested simulations to online learning methods
that model other agents. It also provides an avenue to incor-
porate UCT and sample-based approaches (e.g., the PROST
planner [Keller and Eyerich, 2012]) with the more systematic
search used by determinization-based planners such as PRP.
One such opportunity is to use UCT as a mechanism for deter-
mining plausibility, and another is to use the plans produced
by MA-PRP as guidance for UCT.

Acknowledgements

This research is partially funded by Australian Research
Council Discovery Grant DP130102825, Foundations of
Human-Agent Collaboration: Situation-Relevant Informa-
tion Sharing.

References

[Alford ef al., 2014] Ron Alford, Ugur Kuter, Dana Nau, and
Robert P Goldman. Plan aggregation for strong cyclic
planning in nondeterministic domains. Artificial Intelli-
gence, 216:206-232, 2014.

[Alur et al., 2002] Rajeev Alur, Thomas A. Henzinger, and
Orna Kupferman. Alternating-time temporal logic. J.
ACM, 49(5):672—713, September 2002.

[Aumann and Hart, 1992] Robert J Aumann and Sergiu
Hart. Handbook of game theory with economic applica-
tions, volume 2. Elsevier, 1992.

[Bernstein ef al., 2002] Daniel S. Bernstein, Robert Givan,
Neil Immerman, and Shlomo Zilberstein. The complex-
ity of decentralized control of markov decision processes.
Math. Oper. Res., 27(4):819-840, 2002.

[Bolander and Herzig, 2014] Thomas Bolander and Andreas
Herzig. Group attitudes and multi-agent planning:
overview and perspectives. Technical report, 2014.

[Bonisoli et al., 2014] Andrea Bonisoli, Alfonso Emilio
Gerevini, Alessandro Saetti, and Ivan Serina. A privacy-
preserving model for the multi-agent propositional plan-
ning problem. In 21st European Conference on Artificial
Intelligence, pages 973-974, 2014.

[Bowling er al., 2003] Michael H. Bowling, Rune M. Jensen,
and Manuela M. Veloso. A formalization of equilibria
for multiagent planning. In Proceedings of the Eighteenth
International Joint Conference on Artificial Intelligence,
pages 14601462, 2003.

[Brafman and Domshlak, 2008] Ronen 1. Brafman and
Carmel Domshlak. From one to many: Planning for
loosely coupled multi-agent systems. In Proceedings of

the Eighteenth International Conference on Automated
Planning and Scheduling, pages 28-35, 2008.

[Brafman et al., 2013] Ronen I. Brafman, Guy Shani, and
Shlomo Zilberstein. Qualitative planning under partial
observability in multi-agent domains. In Proceedings of
the Twenty-Seventh AAAI Conference on Artificial Intelli-
gence, 2013.

[Brafman, 2015] Ronen I. Brafman. A privacy preserving al-
gorithm for multi-agent planning and search. In Proceed-
ings of the Twenty-Fourth International Joint Conference
on Artificial Intelligence, pages 1530-1536, 2015.

[Brenner, 2003] Michael Brenner. A multiagent planning
language. In Proceedings of the ICAPS Workshop on
PDDL, volume 3, pages 33-38, 2003.

[Cimatti et al., 2003] A. Cimatti, M. Pistore, M. Roveri, and
P. Traverso. Weak, strong, and strong cyclic planning
via symbolic model checking. Artificial Intelligence,
147(1):35-84, 2003.

3212

[Fu er al., 2011] Jicheng Fu, Vincent Ng, Farokh B. Bastani,
and I-Ling Yen. Simple and fast strong cyclic planning
for fully-observable nondeterministic planning problems.

In Proceedings of the 22nd International Joint Conference
On Artificial Intelligence, pages 1949—-1954, 2011.

[Ghallab et al., 2004] Malik Ghallab, Dana Nau, and Paolo
Traverso. Automated planning: theory & practice. Else-
vier, 2004.

[Gmytrasiewicz and Doshi, 2005] Piotr J. Gmytrasiewicz
and Prashant Doshi. A framework for sequential planning
in multi-agent settings. Journal of Artificial Intelligence
Research, 24:49-79, 2005.

[Hoffmann and Nebel, 2001] Jorg Hoffmann and Bernhard
Nebel. The FF planning system: Fast plan generation
through heuristic search. Journal of Artificial Intelligence
Research, 14:253-302, 2001.

[Jensen and Veloso, 2000] Rune M. Jensen and Manuela M.
Veloso. OBDD-based universal planning for synchronized
agents in non-deterministic domains. Journal of Artificial
Intelligence Research, 13:189-226, 2000.

[Keller and Eyerich, 2012] Thomas Keller and Patrick Eye-
rich. PROST: Probabilistic Planning Based on UCT. In
Proceedings of the 22nd International Conference on Au-
tomated Planning and Scheduling, pages 119-127. AAAI
Press, June 2012.

[Kominis and Geffner, 2015] Filippos Kominis and Hector
Geffner. Beliefs in multiagent planning: From one agent
to many. In Proceedings of the Twenty-Fifth International
Conference on Automated Planning and Scheduling, pages
147-155, 2015.

[Kovacs, 2012] Daniel L Kovacs. A multi-agent extension of
pddl3.1. In Proceedings of the Workshop on the Interna-
tional Planning Competition, page 19, 2012.

[Love et al., 2008] Nathaniel Love, Timothy Hinrichs,
David Haley, Eric Schkufza, and Michael Genesereth.
General game playing: Game description language
specification, 2008.

[Muise et al., 2012] Christian Muise, Sheila A. Mcllraith,
and J. Christopher Beck. Improved Non-deterministic
Planning by Exploiting State Relevance. In The 22nd
International Conference on Automated Planning and
Scheduling, 2012.

[Muise et al., 2015] Christian Muise, Vaishak Belle, Paolo
Felli, Sheila A. Mcllraith, Tim Miller, Adrian R. Pearce,
and Liz Sonenberg. Planning over multi-agent epistemic
states: A classical planning approach. In The 29th AAAI
Conference on Artificial Intelligence, 2015.

[Piterman et al., 2006] N. Piterman, A. Pnueli, and Y. Sa’ar.
Synthesis of reactive(l) designs. In VMCAI, pages 364—
380, 2006.

[Ramirez and Geffner, 2010] Miquel Ramirez and Hector
Geflner. Probabilistic plan recognition using off-the-shelf
classical planners. In Proceedings of the Twenty-Fourth
AAAI Conference on Artificial Intelligence, 2010.

