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Abstract
Planning with hybrid domains modelled in PDDL+
has been gaining research interest in the Automated
Planning community in recent years. Hybrid do-
main models capture a more accurate representation
of real world problems that involve continuous pro-
cesses than is possible using discrete systems. How-
ever, solving problems represented as PDDL+ do-
mains is very challenging due to the construction of
complex system dynamics, including non-linear pro-
cesses and events. In this paper we introduce DiNo,
a new planner capable of tackling complex problems
with non-linear system dynamics governing the con-
tinuous evolution of states. DiNo is based on the
discretise-and-validate approach and uses the novel
Staged Relaxed Planning Graph+ (SRPG+) heuris-
tic, which is introduced in this paper. Although
several planners have been developed to work with
subsets of PDDL+ features, or restricted forms of
processes, DiNo is currently the only heuristic plan-
ner capable of handling non-linear system dynamics
combined with the full PDDL+ feature set.

1 Introduction
Over the years, Automated Planning research has been con-
tinuously attempting to solve the most advanced and com-
plex planning problems. The standard modelling language,
PDDL [McDermott et al., 1998], has evolved to accommodate
new concepts and operations, enabling research to tackle prob-
lems which more accurately represent real-world scenarios.
PDDL2.1 [Fox and Long, 2003] enabled modelling numeric
variables and temporal information in the domains, while
PDDL+ [Fox and Long, 2006] introduced exogenous events
and continuous processes in the models. PDDL+ is the most
accurate standardised way yet, of defining hybrid problems as
planning domains.

Planning with PDDL+ has been gaining research interest in
the Automated Planning community in recent years. Hybrid
domains are models of systems which exhibit both continuous
and discrete behaviour. They are amongst the most advanced
models of systems and the resulting problems are notoriously
difficult for planners to cope with due to non-linear behaviour
and immense search spaces.

UPMurphi [Della Penna et al., 2009], based on the Discre-
tise & Validate approach, is the only planner able to handle the
full range of PDDL+. However, the main drawback of UPMur-
phi is the lack of heuristics, which critically limits its scalabil-
ity. In this paper, we fill the gap, and introduce DiNo, a new
planner for PDDL+ problems with mixed discrete-continuous
non-linear dynamics. DiNo is built on UPMurphi. It uses the
planning-as-model-checking paradigm [Cimatti et al., 1997;
Bogomolov et al., 2014], and relies on the Discretise & Vali-
date approach [Della Penna et al., 2009] to handle continuous
change and non-linearity.

DiNo uses a novel relaxation-based domain-independent
heuristic for PDDL+, Staged Relaxed Planning Graph+
(SRPG+). The heuristic guides the Enforced Hill-Climbing
algorithm [Hoffmann and Nebel, 2001]. In DiNo we also ex-
ploit the deferred heuristic evaluation [Richter and Westphal,
2010] for completeness (in a discretised search space with
a finite horizon). The SPRG+ heuristic which improves on
the Temporal Relaxed Planning Graph and extends its func-
tionality to include information gained from PDDL+ features,
namely the processes and events.

The domain-independent SRPG+ heuristic makes DiNo the
only heuristic planner capable of handling non-linear system
dynamics combined with the full PDDL+ feature set.

We begin by discussing the related work done in the area
of PDDL+ planning in section 2. We then outline the basis of
the Discretise & Validate method on which DiNo is based and
the underlying UPMurphi architecture in section 3. In section
4 we describe the SRPG+ heuristic. Section 5 describes the
experimental evaluation. Section 6 concludes the paper1.

2 Related Work
Various techniques and tools have been proposed to deal
with hybrid domains [Penberthy and Weld, 1994; McDer-
mott, 2003; Li and Williams, 2008; Coles et al., 2012;
Shin and Davis, 2005]. Nevertheless, none of these approaches
are able to handle the full set of PDDL+ features, i.e. non-
linear domains with processes and events. More recent ap-
proaches in this direction have been proposed by [Bogomolov
et al., 2014], where the close relationship between hybrid
planning domains and hybrid automata is explored. [Bryce

1Research leading to these results has received funding from the
European Commission under contract No. FP7-610532-SQUIRREL
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et al., 2015] use dReach with a SMT solver to handle hybrid
domains. However, dReach does not use PDDL+, and cannot
handle exogenous events.

On the other hand, many works have been proposed in
the model checking and control communities to handle hy-
brid systems. Some examples include [Cimatti et al., 2015;
Cavada et al., 2014; Tabuada et al., 2002; Maly et al., 2013],
sampling-based planners [Karaman et al., 2011; Lahijanian et
al., 2014]. Another related direction is falsification of hybrid
systems (i.e., guiding the search towards the error states, that
can be easily cast as a planning problem) [Plaku et al., 2013;
Cimatti et al., 1997]. However, while all these works aim to
address a similar problem, they cannot reason with PDDL+
domains. Some recent works [Bogomolov et al., 2014;
2015] are trying to define a formal translation between
PDDL+ and standard hybrid automata, but so far only an
over-approximation has been defined, that only allows proving
plan non-existence. PDDL+ also presents important features,
including Timed Initial Literals/Fluents, no-moving target rule,
epsilon separation of actions. Currently, no control-based ap-
proaches can handle PDDL+ models.

To date, the only viable approach in this direction is PDDL+
planning via discretisation. UPMurphi [Della Penna et al.,
2012], which implements the Discretise & Validate approach,
is able to deal with the full range of PDDL+ features. UPMur-
phi’s main drawback is the lack of heuristics which strongly
limits its scalability. However, UPMurphi was successfully
used in the multiple-battery management domain [Fox et al.,
2012], for urban traffic control [Vallati et al., 2016], and for
unit commitment problem [Piacentini et al., 2016] . In all
cases, a domain-specific heuristic was used.

3 Discretise & Validate Approach
As a successor to UPMurphi, DiNo relies on the Discretise &
Validate approach [Della Penna et al., 2012] which approx-
imates the continuous dynamics of systems in a discretised
model with uniform time steps and step functions. Using a
discretised model and a finite-time horizon ensures a finite
number of states in the search for a solution. Solutions to the
discretised problem are validated against the original contin-
uous model using VAL [Howey et al., 2004]. If the plan at
a certain discretisation is not valid, the discretisation can be
refined and the process iterates. An outline of the Discretise &
Validate process is shown in Figure 1.

In order to plan in the discretised setting, PDDL+ models
are translated into finite state temporal systems, as formally
described in the following2.

Definition 1. State. Let P be a finite set of propositions
and V = {v1, ..., vn} a set of real variables. A state s is
a triple s = (p(s), v(s), t(s)), where p(s) ✓ P , v(s) =
(v1(s), ..., vn(s)) 2 Rn is a vector of real numbers, and t(s)
the value of the temporal clock in state s. We also denote with
vi(s) the value of variable at the i-th position in v(s).

Note that real variables and temporal clock are discretised,
according to the Discretise & Validate approach.

2Our notation was inspired by Metric-FF [Hoffmann, 2003].

Figure 1: The Discretise & Validate process

Definition 2. ��Action. A �-action updates the state during
the search. It can be of three types: an instantaneous PDDL
action, a snap action [Long and Fox, 2003], or a time-passing
action, tp.

The effect of instantaneous actions and snap actions, is
to update the state variables in the state resulting from their
application, and to start/end a durative action, respectively.

The time-passing action implements the step function used
to discretise the system dynamics, its effects are: (i) updating
all numeric state variables affected by the combined effect of
all processes that are active at the time of application, (ii) up-
dating all state variables affected by events, and (iii) advancing
time by �t.
Definition 3. Finite State Temporal System (FSTS). Let a Fi-
nite State Temporal System S be a tuple (S, s0,�A,D, F, T )
where S is a finite set of states, s0 2 S the initial state, �A
is a finite set of �-actions and D = {0,�t} where �t is the
discretised time step. F : S ⇥�A⇥D ! S is the transition
function, i.e. F (s,�a, d) = s

0 iff applying �-action �a with
a duration d 2 D to a state s yields a new reachable state s

0.
T is the finite temporal horizon.

Note that d can be 0 to allow for concurrent plans and
instantaneous actions. In fact, d will equal �t only in the case
of the tp action. The finite temporal horizon T makes the set
of discretised states S finite.
Definition 4. Trajectory. A trajectory, ⇡, in an FSTS
S = (S, s0,�A,D, F ) is a sequence of states, �-
actions and durations ending with a state, i.e. ⇡ =
s0,�a0, d0, s1,�a1, d1, ..., sn where 8i � 0, si 2 S is a
state, �ai 2 �A is a �-action and di 2 D is a duration. At
each step i, the transition function F yields the subsequent
state: F (si,�ai, di) = si+1.

Given a trajectory ⇡, we use ⇡s(k),⇡a(k),⇡d(k) to denote
the state, �-action and duration at step k, respectively. The
length of the trajectory based on the number of actions it
contains is denoted by |⇡| and the duration of the trajectory is
denoted as ⇡̃ =

P|⇡|�1
i=0 ⇡d(i) or, simply, as ⇡̃ = t(⇡s(n))

Following from Definition 1, each state s contains the
temporal clock t, and t(s) counts the time elapsed in the
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current trajectory from the initial state to s. Furthermore,
8si, sj 2 S : F (si,�a, d) = sj , t(sj) = t(si) + d. Clearly,
for all states s, t(s)  T .
Definition 5. Planning Problem. In terms of a FSTS,
a planning problem P is defined as a tuple P =
((S, s0,�A,D, F, T ), G) where G ✓ S is a finite set of goal
states. A solution to P is a trajectory ⇡⇤ where |⇡⇤| = n, ⇡̃ 
T,⇡

⇤
s (0) = s0 and ⇡

⇤
s (n) 2 G.

3.1 Handling the PDDL+ Semantics through
Discretisation

In the following we show how FSTS are used to handle the
PDDL+ semantics, and describe how this approach has been
first implemented in UPMurphi3.

Time and Domain Variable Discretisation. UPMurphi
discretises hybrid domains using discrete uniform time steps
and corresponding step functions. The discretisations for the
continuous time and the continuous variables are set by the
user. Timed Initial Literals and Fluents are variables whose
value changes at a predefined time point [Edelkamp and Hoff-
mann, 2004]. UPMurphi can handle Timed Initial Literals and
numeric Timed Initial Fluents to the extent that the discreti-
sation used is fine enough to capture the happenings of TILs
and TIFs. On the other hand, the time granularity of TILs and
TIFs can be used as a guidance for choosing the initial time
discretisation.

Actions and Durative-Actions. Actions are instantaneous,
while durative-actions are handled following the start-process-
stop model introduced by [Fox and Long, 2006]. A durative-
action is translated into: (i) two snap actions that apply the
discrete effects at start and at end of the action; (ii) a process
that applies the continuous change over the action execution
(iii) and an event that checks whether all the overall conditions
are satisfied in the open interval of the durative-action execu-
tion. Following Definition 2, actions in UPMurphi are used to
model instantaneous and snap actions, while the special action
time-passing tp is used to advance time and handle processes
and events.

Processes and Events. UPMurphi uses the tp action to
check preconditions of processes and events at each clock-tick,
and then apply the effects for each triggered event and active
process. Clearly, the processes/events interleaving could easily
result in a complex scenario to be executed, as for example an
event can initiate a process, or multiple events can be triggered
at a single time point. To address this kind of interaction
between processes and events, UPMurphi works as follows:
first, it applies the continuous changes for each active process
and the effects of each triggered event. Second, it assumes
that no event can affect the parts of the state relevant to the
preconditions of other events, according to the no moving
target definition provided by [Fox and Long, 2003]. In this
way, the execution of events is mutually-exclusive, and their
order of execution does not affect the final outcome of the plan.
Third, UPMurphi imposes that, at each clock tick, any event
can be fired at most once, as specified by [Fox et al., 2005],
for avoiding cyclic triggering of events.

3UPMurphi can also be used as Universal Planner, where a policy
is generated, while we focus here on finding single plans.

4 Staged Relaxed Planning Graph+
This section describes the Staged Relaxed Planning Graph+
(SRPG+) domain-independent heuristic designed for PDDL+
domains and implemented in DiNo.

The SRPG+ heuristic is based on Propositional [Hoffmann
and Nebel, 2001], Numeric [Hoffmann, 2003] and Temporal
RPGs [Coles et al., 2010; 2012]. Like its predecessors, SRPG+
relaxes the original problem and ignores the delete effects of
actions on propositional facts. Numeric variables are repre-
sented as upper and lower bounds which are the theoretical
highest and lowest values each variable can take at the given
fact layer. Each layer is time-stamped to keep track of its time
of occurrence.

The SRPG+, however, extends the capability of its RPG
predecessors by tracking processes and events to capture the
continuous and discrete evolution of the system.

For clarity, we denote SRPG+ as the heuristic and SRPG as
the internal relaxed planning graph structure.

4.1 Building the SRPG
Apart from the inclusion of processes and events, the SRPG+
significantly differs from the Temporal RPG in time-handling.
The SRPG contains every fact layer with the corresponding
time clock, and in this sense the RPG is ”staged”, as the finite
set of fact layers are separated by �t. In contrast, the TRPG
takes time constraints into account by time-stamping each fact
layer at the earliest possible occurrence of a happening. Only
fact layers where values are directly affected by actions are
contained in the TRPG.
Definition 6. Fact Layer. A fact layer bs is a tuple
(p+(bs), v+(bs), v�(bs), t(bs)) where p

+(bs) ✓ P is a finite set
of true propositions, v+(bs) is a vector of real upper-bound
variables, v�(bs) is a vector of real lower-bound variables,
and t(bs) is the value of the temporal clock.

Notationally, v+i (s) and v

�
i (s) are, respectively, the upper

and lower-bound values of the variable at position i in v(s).
In the following we give a formal definition of an SRPG,

starting from the problem for which it is constructed.
Definition 7. SRPG. Let P = (S, G) be a planning problem
in the FSTS S = (S, s0,�A,D, F, T ), then a Staged Relaxed
Planning Graph bS is a tuple (bS, bs0, d�A,�t,

b
F , T ) where b

S is
a finite set of fact layers, bs0 is the initial fact layer, d�A is a set
of relaxed � actions, �t is the time step. b

F : bS⇥2
d�A⇥�t !

b
S is the SRPG transition function. T is the finite temporal
horizon.

The SRPG follows the priority of happenings from VAL,
i.e. each new fact layer bs0 is generated by applying the effects
of active processes in bs, applying the effects of any triggered
events and firing all applicable actions, respectively. Note that,
as for the FSTS, also in the SRPG the time passing action
tp is used for handling processes and events effects and for
advancing time by �t.

Fact layers and relaxed actions in the SRPG are defined as
in the standard numeric RPG, except for the fact that each fact
layer includes also the temporal clock.

Effects are defined as a tuple e↵ (x) =
(p+(e↵ (x)), p�(e↵ (x)), v+(e↵ (x)), v�(e↵ (x))) where
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Algorithm 4.1: Building the SRPG
Data: P = ((S, s0,�A,D, F, T ), G);

[
Proc = Set of processes;
c
Ev = Set of events;

Result: return a constructed SRPG object if exists
1 bs := s0;
2 b
S := {s0};

3 bS := (bS, bs, d�A,�t,

b
F , T );

4 while (8g 2 G : p+(g) * p

+(bs)) _ (9vi 2 v(g) : vi < v

�
i (bs)

_ vi > v

+
i (bs)) do

5 if t(bs) > T then
6 return fail;

7 forall dproc 2 [
Proc do

8 if p(pre(dproc)) ✓ p

+(bs) ^
(8vi 2 v(pre(dproc)) : vi � v

�
i (bs) ^ vi  v

+
i (bs))

then
9 8vi 2 v

+(e↵ (dproc)) : v+i (bs) := v

+
i (bs) + vi;

10 8vi 2 v

�(e↵ (dproc)) : v�i (bs) := v

�
i (bs)� vi;

11 forall bev 2 c
Ev do

12 if p(pre( bev)) ✓ p

+(bs) ^
(8vi 2 v(pre( bev)) : vi � v

�
i (bs) ^ vi  v

+
i (bs))

then
13 p

+(bs) := p

+(bs) [ p

+(e↵ ( bev));
14 8vi 2 v

+(e↵ ( bev)) : v+i (bs) := max(v+i (bs), vi)
8vi 2 v

�(e↵ ( bev)) : v�i (bs) := min(v�i (bs), vi)

15 bsc := bs;
16 forall ba 2 d�A do
17 if p(pre(ba)) ✓ p

+(bsc) ^
(8vi 2 v(pre(ba)) : vi � v

�
i (bsc) ^ vi  v

+
i (bsc))

then
18 p

+(bs) := p

+(bs) [ p

+(e↵ (ba));
19 8vi 2 v

+(e↵ (ba)) : v+i (bs) := max(v+i (bs), vi);
20 8vi 2 v

�(e↵ (ba)) : v�i (bs) := min(v�i (bs), vi);

21 t(bs) := t(bs) +�t;
22 b

S := b
S [ bs;

23 return bS;

p

+(e↵ (x)), p�(e↵ (x)) ✓ P (add and delete effects respec-
tively), v+(e↵ (x)) and v

�(e↵ (x)) are effects on numeric
values (increasing and decreasing, respectively), and x can be
any �-action, process, or event. Preconditions are defined
analogously: pre(x) = (p(pre(x)), v(pre(x))) where
p(pre(x)) ✓ P is a set of propositions and v(pre(x)) is a
finite set of numeric constraints. p

+
i (e↵ (x )) 2 p

+(e↵ (x ))
is effect on the i-th proposition in p(s), v

+
i (e↵ (x )) and

v

�
i (e↵ (x )) are the real values of the i-th increasing and

decreasing effects affecting upper bound v

+
i (s) and lower

bound v

�
i (s), respectively.

The SRPG transition function b
F is a relaxation of the origi-

nal FSTS transition function F , and follows the standard RPG
approach: effects deleting any propositions are ignored and
the numeric effects only modify the appropriate bounds for

each numeric variable. Note that the set d�A of relaxed �
actions includes the time passing action tp as from Definition
1. Also in the SRPG the tp is responsible for handling pro-
cesses and events, whose effects are relaxed in the standard
way. The construction of SRPG is shown in Algorithm 4.1.
The first fact layer consists of the initial state (lines 1-3). Then
the SRPG is updated until a goal state is found (line 4) or the
time horizon is reached (line 5). In the former case, the SRPG
constructed so far is returned, and the relaxed plan is extracted
using backwards progression mechanism introduced in [Hoff-
mann, 2003]. In the latter case, a heuristic value of infinity
(h(s) = 1) is assigned to the current state. To construct the
next fact layer, first the active processes are considered (lines
7-8) and the relaxed effects are applied to update upper and
lower bounds of variables (lines 9-10). The same is then ap-
plied for events (lines 11-15) and instantaneous actions (lines
16-20), that can also add new propositions to the current fact
layer. The last step is to increment the temporal clock (line
21), and the new fact layer is then added to the SRPG (line
22).

Note that, as a back-up strategy, DiNo reverts to a breadth-
first search if the SRPG+ is unable to extract sufficient infor-
mation from the domain to reach the relaxed goal within the
set temporal horizon T (i.e. h(s) = 1 for all states).

4.2 Time Handling in the SRPG
The time-passing action plays an important role as it propa-
gates the search in the discretised timeline. During the normal
expansion of the Staged Relaxed Planning Graph, the time-
passing is one of the �-actions and is applied at each fact layer.
Time-passing can be recognised as a helpful action [Hoffmann
and Nebel, 2001] when its effects achieve some goal condi-
tions (or intermediate goal facts). However, if, at a time t, no
helpful actions are available to the planner, time-passing is
assigned highest priority and used as a helpful action. This
allows the search to quickly manage states at time t where no
happenings of interest are likely to occur.

This is the key innovation with respect to the standard search
in the discretised timeline performed, e.g., by UPMurphi. In-
deed, the main drawback of UPMurphi is in that it needs to
expand the states at each time step, even during the idle peri-
ods, i.e., when no interesting interactions or effects can happen.
Conversely, SRPG+ allows DiNo to identify time-passing as
a helpful action during idle periods and thus advance time,
mitigating the state explosions.

An illustrative example is shown in Figure 2, that compares
the branching of the search in UPMurphi and DiNo when
planning with a Solar Rover domain. The domain is described
in detail in Section 5. Here we highlight that the planner can
decide to use two batteries, but the goal can only be achieved
thanks to a Timed Initial Literal that is triggered only late in
the plan. UPMurphi has no information about the future TIL,
therefore it tries to use the batteries at each time step. On the
contrary, DiNo recognises the time-passing as a helpful action,
and this prunes the state space dramatically.

4.3 Processes and Events in SRPG+
As the SRPG+ heuristic is tailored for PDDL+ domains, it
takes into account processes and events. In the SRPG, the
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(a) UPMurphi (b) DiNo

Figure 2: Branching of search trees (Blue states are explored,
orange are visited. Red edges correspond to helpful actions)

continuous effects of processes are handled in the same manner
as durative action effects, i.e. at each action layer, the numeric
variables upper and lower bounds are updated based on the
time-step functions used in the discretisation to approximate
the continuous dynamics of the domain.

Events are checked immediately after processes and their
effects are relaxed as for the instantaneous actions. The events
can be divided into “good” and “bad” categories. “Good”
events aid in finding the goal whereas “bad” events either
hinder or completely disallow reaching the goal. Currently,
DiNo is agnostic about this distinction. However, as a direct
consequence of the SRPG+ behaviour, DiNo exploits good
events and ignores the bad ones. Future work will explore the
possibility of inferring more information about good and bad
events from the domain.

5 Evaluation
In this section we evaluate the performance of DiNo on PDDL+
benchmark domains. Note that the only planner able to deal
with the same class of problems is UPMurphi, which is also the
most interesting competitor as it can highlight the benefits of
the proposed heuristic. For sake of completeness, where possi-
ble, we also provide a comparison with other planners able to
handle (sub-class of) PDDL+ features, i.e. POPF [Coles et al.,
2010] and dReach [Bryce et al., 2015]4.

For our experimental evaluation, we consider two bench-
mark domains: Generator and Car. In addition, we also con-
sider two more domains that highlight specific aspects of DiNo:
Solar Rover that shows how DiNo handles TILs, and Powered
Descent that further tests its non-linear capabilities.

Note that to achieve the results a discretisation of �t = 1.0
was chosen, except non-linear Generator where some problems
required refinement to �t = 0.5.

For a fair comparison, all results were achieved by running
the competitor planners on a machine with an 8-core Intel
Core i7 CPU, 8GB RAM and Ubuntu 14.04 operating system.
For more information visit kcl-planning.github.io/DiNo
Generator. This domain [Howey and Long, 2003] is well-
known across the planning community and has been a test-bed
for many planners. The problem revolves around refueling a

4We do not consider [Bogomolov et al., 2014] as they only focus
on proving plan-non-existence.

diesel-powered generator which has to run for a given duration
without overflowing or running dry. We evaluate DiNo on
both the linear and non-linear versions of the problem. In
both variants, we increase the number of tanks available to
the planner while decreasing the initial generator fuel level for
each subsequent problem.

The non-linear Generator models fuel flow rate using Torri-
celli’s Law which states: Water in an open tank will flow out
through a small hole in the bottom with the velocity it would
acquire in falling freely from the water level to the hole. The
fuel level in a refueling tank (Vfuel) is calculated by:

Vfuel = (�ktr +
p
Vinit)

2
tr 2


0,

p
Vinit

k

�
(1)

Vinit the initial volume of fuel in the tank, k the fuel flow
constant (which depends on gravity, size of the drain hole, and
the cross-section of the tank), and tr is the time of refueling
(bounded by the fuel level and the flow constant). The rate of
change in the tank’s fuel level is modelled by:

dVfuel

dt

= 2k(ktr �
p

Vinit) tr 2

0,

p
Vinit

k

�
(2)

This domain has been previously encoded in PDDL
by [Howey and Long, 2003].

The results for the linear Generator problems show that
DiNo clearly outperforms its competitors and scales really
well on this problem whereas UPMurphi, POPF and dReach
all suffer from state space explosion relatively early.

The non-linear version could only be tested on DiNo and
UPMurphi as the remaining planners do not support non-linear
behaviour. However, the search space proved too large for
UPMurphi, it failed to solve any of our test problems. DiNo
found solutions to problems using �t = 1.0. However, some
of the found plans were invalid. Applying the Discretise &
Validate approach, we refined the discretisation to �t = 0.5
and valid solutions were returned. In both variants of the
domain, time horizon was set to T = 1000, that is the duration
for which the generator is requested to run.

Though dReach is able to reason with non-linear dynamics,
their results have been left out of our comparison due to the
difficulty with reproducing our domain (written in PDDL+)
using the dReach modelling language. The dReach domain
and problem descriptions are not standardised and extremely
difficult to formulate. Each mode has to be explicitly defined,
meaning that the models are excessive in size (i.e. the files
for 1, 2, 3 and 4-tank problems are respectively 91, 328, 1350,
5762 lines long). Furthermore, compared to our model, Bryce
et al. use a much simplified version of the problem where the
generator can never overflow, the refueling action duration
is fixed (tanks have no defined capacity), and the flow rate
formula is defined as (0.1 ⇤ (tank refuel time

2)). Still, in
this simplified domain, dReach could only scale up to 3 tanks.

In contrast, our variant of the non-linear Generator problem
uses the Torricelli’s Law to model the refueling flow rate (2),
the refueling actions have inequality-based duration dependent
on the tanks’ fuel levels (1), and the generator can easily
overflow. As a result, our domain is far more complex and
further proves our improvement.
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LINEAR GENERATOR NON-LINEAR GENERATOR LINEAR SOLAR ROVER NON-LINEAR SOLAR ROVER POWERED DESCENT CAR
PROBLEM DiNo POPF dReach UPMurphi DiNo UPMurphi DiNo UPMurphi DiNo UPMurphi DiNo UPMurphi DiNo UPMurphi

1 0.34 0.01 2.87 140.50 3.62 X 0.70 203.26 1.10 288.94 0.68 0.18 1.74 0.22
2 0.40 0.01 X X 0.78 X 0.92 X 2.58 X 1.04 0.74 4.56 0.30
3 0.50 0.05 X X 2.86 X 1.26 X 4.74 X 1.88 2.98 8.26 0.42
4 0.60 0.41 X X 59.62 X 1.52 X 7.10 X 3.52 7.18 10.28 0.54
5 0.74 6.25 X X 1051.84 X 1.80 X 9.58 X 2.88 30.08 14.16 0.66
6 0.88 120.49 X X X X 2.04 X 12.86 X 3.14 126.08 15.78 0.68
7 1.00 X X X X X 2.28 X 16.48 X 5.26 322.16 17.08 0.72
8 1.16 X X X X X 2.64 X 21.38 X 3.82 879.52 18.90 0.72
9 1.38 X X X X X 2.98 X 26.74 X 1.58 974.60 19.30 0.76
10 2.00 X X X X X 3.30 X 29.90 X 2.26 X 19.50 0.78
11 1.84 X X X N/A N/A 3.50 X 35.96 X 11.24 X N/A N/A
12 2.06 X X X N/A N/A 3.74 X 42.54 X 42.24 X N/A N/A
13 2.32 X X X N/A N/A 4.00 X 48.06 X 14.90 X N/A N/A
14 2.46 X X X N/A N/A 4.38 X 55.46 X 61.94 X N/A N/A
15 2.88 X X X N/A N/A 5.20 X 62.84 X 19.86 X N/A N/A
16 2.94 X X X N/A N/A 5.40 X 74.50 X 80.28 X N/A N/A
17 3.42 X X X N/A N/A 5.08 X 86.96 X 2.94 X N/A N/A
18 3.54 X X X N/A N/A 5.64 X 95.66 X 2234.88 X N/A N/A
19 3.76 X X X N/A N/A 6.12 X 102.86 X X X N/A N/A
20 4.26 X X X N/A N/A 6.02 X 117.48 X X X N/A N/A

Table 1: Run time in seconds for each problem in our test suite (”X” - planner ran out of memory, ”N/A” - problem not tested)

As can be noticed, DiNo scales very well on these problems,
and drastically reduces the number of explored states and the
time to find a solution compared to UPMurphi.
Solar Rover. We developed the Solar Rover domain to test
the limits and potentially overwhelm discretisation-based plan-
ners, as finding a solution to this problem relies on a TIL that
is triggered only late in the plan.

The task revolves around a planetary rover transmitting
data which requires a certain amount of energy. To generate
enough energy the rover can choose to use its batteries or gain
energy through its solar panels. However, the initial state is at
night time and the rover has to wait until daytime to be able
to gather enough energy to send the data. The sunshine event
is triggered by a TIL at a certain time. The set of problem
instances for this domain has the trigger fact become true at
an increasingly further time point (50 to 1000 time units).

This problem has also been extended to a non-linear version
to further test our planner. Instead of instantaneous increase in
rover energy, the TIL triggers a process charging the rover’s
battery at an exponential rate: �E = 0.0025E2.

For both variants of the domain, the time horizon is set
depending on the time point at which the sunexposure TIL is
triggered (as defined in the problems).

DiNo can easily handle this domain and solve all test prob-
lems. UPMurphi struggles and can only solve the smallest
problem instance of either variant. POPF and dReach could
not solve this domain due to problems with handling events.
Powered Descent. We developed a new domain which mod-
els a powered spacecraft landing on a given celestial body. The
vehicle gains velocity due to the force of gravity. The available
action is to fire thrusters to decrease its velocity. The thrust
action duration is flexible and depends on the available propel-
lant mass. The force of thrust is calculated via Tsiolkovsky
rocket equation [Turner, 2008]:

�v = Isp g ln
m0

m1
(3)

�v is the change in spacecraft velocity, Isp is the specific
impulse of the thruster and g is the gravitational pull. m0

is the total mass of the spacecraft before firing thrusters and
m1 = m0� qt is the mass of the spacecraft afterwards (where
q is the rate at which propellant in consumed/ejected and t is
the duration of the thrust). The goal is to make a controlled

landing from the initial altitude within a given time-frame.
Powered Descent problems were set with increasing initial

altitude of the spacecraft (from 100 to 2000 metres) under
Earth’s force of gravity. The SRPG time horizon was set to
T = 20 for the first 3 problems and T = 40 for the remaining
problem instances based on the equations in the domain.

DiNo clearly outperforms UPMurphi which suffers from
state explosion relatively early.

Car. The Car domain [Fox and Long, 2006] shows that DiNo
does not perform well on all types of problems. SRPG+ cannot
extract enough information from the domain and as a result
loses out to UPMurphi by approximately one order of magni-
tude. Table 1 shows results for problems with processes and
events. The plan duration and acceleration are limited, and
the problems are set with increasing bounds on acceleration
(corresponding to the problem number). The SRPG+ time
horizon was set to T = 15 based on the goal conditions.

The reason behind our heuristic struggling in this case is
that the domain is focused on continuous dynamics and, in fact,
little search is required. Also, there is no direct link between
any action and the goal conditions, since only the processes
affect the necessary variables. As a consequence, DiNo reverts
to a blind search and explores the same number of states as
UPMurphi. The results show the overhead generated by the
SRPG+ heuristic in DiNo that fundamentally depends on the
sizes of states and the length of the solution.

6 Conclusion

We have presented DiNo, the first heuristic planner capable of
reasoning with the full PDDL+ feature set and complex non-
linear systems. DiNo is based on the Discretise & Validate
approach, and uses the novel SRPG+ domain-independent
heuristic that we have introduced in this paper. We have
empirically proved DiNo’s superiority over its competitors
on benchmark problems set in hybrid domains. Enriching
discretisation-based planning with an efficient heuristic that
takes processes and events into account is an important step in
PDDL+ planning. Future research will concentrate on expand-
ing DiNo’s capabilities for inferring more information from
the PDDL+ models.
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