
Identifying Key Observers to Find Popular Information in Advance

Takuya Konishi,†‡ Tomoharu Iwata,§ Kohei Hayashi,†‡ Ken-ichi Kawarabayashi†‡
†National Institute of Informatics

‡JST, ERATO, Kawarabayashi Large Graph Project
§NTT Communication Science Laboratories

takuya-ko@nii.ac.jp iwata.tomoharu@lab.ntt.co.jp kohei-h@nii.ac.jp k keniti@nii.ac.jp

Abstract
Identifying soon-to-be-popular items in web ser-
vices offers important benefits. We attempt to iden-
tify users who can find prospective popular items.
Such visionary users are called observers. By
adding observers to a favorite user list, they act
to find popular items in advance. To identify ef-
ficient observers, we propose a feature selection
based framework. This uses a classifier to predict
item popularity, where the input features are a set
of users who adopted an item before others. By
training the classifier with sparse and non-negative
constraints, observers are extracted as users whose
parameters take a non-zero value. In experiments,
we test our approach using real social bookmark
datasets. The results demonstrate that our approach
can find popular items in advance more effectively
than baseline methods.

1 Introduction
Users in web services often share their favored or adopted
items, such as messages (e.g. Twitter), web pages (Red-
dit), images/movies (Instagram), products (Amazon), and lo-
cal services (Yelp). When a user finds a favorite item in the
social networking services (SNSs), he/she adopts it, for ex-
ample, by bookmarking a web page in a social bookmarking
site or by retweeting on Twitter. Also, when a user purchases
a product via an e-commerce website, he/she sometimes sub-
mits the review of this product, which is accessible online.

The early detection of popular items is beneficial for any-
one. For example, it helps a company to make the plan
of marketing strategies effective [Yu and Kak, 2012]. Or it
helps a researcher to identify prospective research topics be-
fore other teams. Or it helps a gourmet to make a reservation
at a hidden fine restaurant before it gets crowded.

To obtain popular items in advance, we investigate the task
of identifying observers that are early adopters of popular
items. Although the majority of users knows popular infor-
mation after becoming a trend, some users may find it before
it starts trending. Such special users would be experts who
know the items more than others, heavy users who constantly
monitor information, prescient users who have good insight
for the future, or influential people whose choices influence

those of other users. If such users are recruited to a favorite
user list, they can help identify likely future trends.

Identifying observers provides more benefits than the ap-
proaches that merely predict popular items such as previous
works [Kupavskii et al., 2012; Li et al., 2014; Kong et al.,
2014]. It can easily personalize the obtained items by chang-
ing observers: if an observer has different preferences with
us, we should remove him/her in our favorite user list. Also,
when the followed observers are special users as described
above, we will acquire expert knowledge from their activi-
ties. For example, their reviews in e-commerce websites give
insight for finding out good products by ourselves.

Selecting appropriate observers from the massive number
of users is a hard task. If inefficient observers are selected,
an excessive number of items will be collected, and identi-
fied popular items will be swamped by many unpopular items.
Also, if the selected observers are late majority, the most of
obtained items will have become popular, and the first-mover
advantage will be lost. One solution is to apply the methods
for estimating influential users on SNSs [Trusov et al., 2010;
Tang and Yang, 2010]. However, these methods suppose that
the network among users is given. Such user network does
not often exist in web services such as e-commerce.

To identify efficient observers, we take an approach based
on feature selection in machine learning. We use a classi-
fier to predict whether a given item would become popular or
not in the future. The input features are users who adopted
the item in advance. By training the classifier with sparse
and non-negative constraints, only parameters of users who
frequently adopted popular items in advance take a non-zero
value. We then select the users as observers. Moreover, for
augmenting the effective number of training samples, we de-
sign the loss function as an expectation over the time evolving
of adoptions, which is solved by stochastic optimization. Our
approach only uses event data: an event is an adoption by a
user for an item with a time stamp. Such event log can be
obtained from many web services, and the approach will be
more widely applicable than user network based methods.

2 Problem Formulation
Suppose we seek to extract observers who can find prospec-
tive popular items but avoid selecting unpopular ones. More
rigorously, we specify two requirements for the adoption be-
havior of observers as follows: (a) they adopt a s-popular

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

3761

Figure 1: Illustration of adoptions by three users

item—the item that is in top s percent in terms of the number
of adoptions1—before (b) m users adopt that item. The pos-
sible values of s and m depend on the data. We exclude at
least some extreme values, e.g. s = 100. Figure 1 gives ex-
amples of the adoption behavior that either satisfies or fails to
satisfy these requirements. The right hand side of the figure
represents time-popularity curves of items A and B. The up-
per horizontal line means the threshold of s-popularity. Thus,
item A is s-popular, and item B is not s-popular. The lower
line shows the threshold of users adopting the items more or
less than m times. The adoption behavior of user 1 satisfies
(a) but not (b): he/she adopts popular item A, but m users
have adopted it. The adoption behavior of user 2 satisfies (b)
but not (a): he/she adopts item B before m users adopt it, but
item B fails to become s-popular. The adoption behavior of
user 3 satisfies both (a) and (b).

Suppose we have an event log E = {(ie, ue, te)}|E|
e=1,

where (ie, ue, te) denotes the eth event that user ue 2 U
adopts item ie 2 I at time te  T . I is a set of items, U is a
set of users, and T is the period of the event log. The event log
E enables us to know whether each adoption satisfies (a) and
(b) or not. Using this data, we extract the observers O ⇢ U
whose adoptions frequently satisfy (a) and (b).

3 Proposed Methods
3.1 Item classification by popularity
For our task, we use a binary classifier that divides items into
popular and unpopular ones. Let yi 2 {0, 1} be a binary
target variable that takes one when item i is popular, and zero
otherwise. The input features of the classifier indicate users
who adopt the item. Let xi = (xi,0, xi,1, . . . , xi,|U |) be a
(|U |+ 1)-dimensional input feature vector. The first element
is defined as xi,0 = 1, which is introduced in the feature
vector to represent a bias term conveniently. The value xi,u

for 1, . . . , |U | is defined as follows:

xi,u =

⇢
1 if mi,u < m

0 otherwise,
(1)

1We assume that adoption occurs at most once for each (user,
item) pair and users do not undo adoption.

where mi,u 2 {0, 1, . . . , |U | � 1} is the ranking of user u
adopting item i, and m is a threshold. mi,u takes 0 when
user u is ranked first for item i. The set of feature-target pairs
{(xi, yi)}|I|i=1 represents requirements (a) and (b) from Sec-
tion 2 and is derived from the event log E.

As the classifier, we employ logistic regression with L1

regularization and non-negative constraints for weight param-
eters. The loss function of logistic regression is given by:

|I|X

i=1

` (w,xi, yi) , (2)

where

` (w,xi, yi) = (yi � 1) ln

�
1� �(w>

xi)
�

� yi ln�(w
>
xi), (3)

�(·) is the sigmoid function,w = (w0, w1, . . . , w|U |) is the
(|U |+1)-dimensional weight parameter vector, and w0 is the
bias parameter. Under the regularization and constraints, the
optimum solution w

⇤ is obtained via the following minimiza-
tion problem:

w

⇤
= argmin

ŵ2R|U|
�0 ,w02R

8
<

:

|I|X

i=1

` (w,xi, yi) +R(

ˆ

w)

9
=

; , (4)

where ˆ

w = (w1, . . . , w|U |) is the weight parameter vector ex-
cept for bias w0, R(

ˆ

w) = �|| ˆw||1 is the L1 regularized term,
and � > 0 is the regularized parameter. R|U |

�0 denotes |U |-
dimensional space on non-negative real numbers, constrain-
ing the possible values of ˆ

w on non-negative space.
The non-negative constraints and L1 regularization for ˆ

w

help for selecting observers. Without the non-negativity, the
classifier would give negative weights for users who fre-
quently adopt unpopular items. Although this will improve
prediction performance, this does not serve the purpose of
feature selection; we are not interested in such “novice” ob-
servers. L1 regularization makes w⇤ sparse, which means it
eliminates weak or redundant observers.

3.2 Augmenting temporal information
In (2), we have |I| training samples where each feature vector
has m non-zero elements. However, the setting of m is some-
what arbitrary. For instance, by changing m to 1, . . . , |U |, we
obtain |U | different training datasets. These “padded” sam-
ples contain richer information than the original samples, and
will improve the performance. From this intuition, we intro-
duce feature vector xi(z) =

�
xi,0(z), xi,1(z), . . . , xi,|U |(z)

�

with varying thresholds, where each element xi,u(z) for
1, . . . , |U | is defined as follows:

xi,u(z) =

⇢
1 if mi,u < z

0 otherwise.
(5)

Here, z > 0 is the real-valued varying threshold. As in xi,0,
the first element is defined as xi,0(z) = 1. If the number of
events (i.e. adoptions) in item i was Ei, xi(z) can represent
Ei different feature vectors. The event log E can have at most
|E| different training samples, which is greater than |I|.

3762

The training samples with high threshold values z would
not be important for our task because these samples include
information of late adoptions. In contrast, samples with low
threshold values would be important because they only in-
clude information of early adoptions. To take into account
these importance, we introduce p(z) as the probability den-
sity function over threshold z. By weighting all possible
training samples with p(z), the augmented loss is derived as
the expectation of ` with respect to z:

|I|X

i=1

Ep(z) [`(w,xi(z), yi)] =

|I|X

i=1

Z
p(z)`(w,xi(z), yi)dz.

(6)

As a result, the problem is written as follows:

w

⇤
= argmin

ŵ2R|U|
�0 ,w02R

8
<

:

|I|X

i=1

Ep(z)[`(w,xi(z), yi)] +R(

ˆ

w)

9
=

; .

(7)

Note that this data augmented method (7) includes the above
non-augmented method (4) as the special case of setting
p(z) = �(z �m) where �(·) is the delta function.

Before solving (7), we need to choose p(z). Because the
optimal p(z) may be different for each dataset, we prepare
some flexible distribution and determine its parameters by
cross validation. In the experiments, we used the Weibull
distribution of which the density is given by:

p(z|k, ✓) =
✓
k

✓

◆⇣z
✓

⌘k�1
exp

✓
�
⇣z
✓

⌘k
◆
, (8)

where k is a shape parameter, and ✓ is a scale parameter.2
The Weibull distribution includes the exponential distribution
(k = 1) and the Rayleigh distribution (k = 2) as a special
case. It can also represent heavy/right tailed distribution.

3.3 Learning algorithm
Unfortunately, (7) may not be solved by standard optimiza-
tion methods such as gradient descent because the expecta-
tion is not analytically written. The expectation is, however,
approximated by many samples {zs}Ss=1 as follows:

|I|X

i=1

Ep(z)[`(w,xi(z), yi)] '
|I|X

i=1

SX

s=1

`(w,xi(zs), yi). (9)

On the basis of the approximation, we consider solving (7)
with stochastic optimization. Note that because both ` and R
are convex, general stochastic optimization algorithms such
as stochastic gradient descent are guaranteed to converge to
w

⇤ [Bottou, 1998].
We use the regularized dual averaging method with the

adaptive gradient method (Ada-RDA) [Xiao, 2010; Duchi et
al., 2011]. Ada-RDA repeatedly selects one sample randomly
and updates the parameters for many times. A feature-target
pair (xi(z), yi) is sampled, where i is randomly drawn from

2In contrast to (5), z in the Weibull distribution can take 0. How-
ever, this will be not a serious problem as explained in Section 3.3.

{1, 2, ..., |I|}, and z is drawn from the probability distribu-
tion having the density p(z). At the nth step, the Ada-RDA
updates the parameter w by using the current weight vector
wn = (wn,0, . . . , wn,|U |), as follows:

wn+1,u =

8
<

:

h
sign(�gn,u)

⌘n
hn,u

⇥
|gn,u|� �

⇤
+

i

+
u 6= 0

� ⌘n
hn,u

gn,u u = 0,

(10)

where

gn,u =

1

n

nX

n0=1

gn0,u, hn,u = ✏+

vuut
nX

n0=1

g2n0,u, (11)

gn,u =

�
�
�
w

>
n xi(z)

�
� yi

�
xi,u(z), (12)

sign(·) is the sign function, [·]+ is the hinge function, and
⌘ > 0 and ✏ � 0 are learning parameters. gn,u is the uth
element of a gradient vector gn with respect to w at nth step.
Note that the outer [·]+ in (10) ensures the non-negativity of
wn+1,u, and the bias term wn+1,0 is updated without the reg-
ularization and the non-negative constraint. The whole learn-
ing algorithm is shown as Algorithm 1. In this paper, we set
the number of epochs to C and repeat the updates C times
for the item set I . “shuffle(I)” returns the randomly aligned
index set of items. “z ⇠ p(z)” means that z is drawn from the
distribution having the density p(z). We set p(z) to (8) in our
experiments.3 If we set p(z) = �(z�m), Algorithm 1 is also
employed for the learning of the non-augmented method (4).
After C|I| iterations, we obtain the learned parameter w⇤. Fi-
nally, we extract observers O from the learned w

⇤ as follows:

O = {u 2 U |w⇤
u > 0}

:= observers(w⇤
). (13)

One problem of this method is that it can not specify the
number of observers in advance. A method to address this
problem is grid search of �. If we want to obtain d observers,
we can search them by repeating the learning algorithm for
some prepared �s. However, grid search does not ensure that
just d observers are always obtained.

This problem also arises in a more general case: extract-
ing D sets of observers {Od}Dd=1, where Od denotes the set
of observers consisting of d users. Extracting some sets with
different sizes in advance is practically useful for quick re-
sponses to users of our method. Grid search of � also suffers
from obtaining {Od}Dd=1 completely; grid search would often
fail to obtain some sets in {Od}Dd=1.

To address this problem, we consider interpolating the set
of observers by a larger one. Suppose we want to obtain Od

but only have Od0 where d0 > d. The smaller elements in the
learned w

⇤ for Od0 are less influential in the classifier, and
the corresponding users would be also less effective. Thus,

3As noted above, z in the Weibull distribution can take 0. How-
ever, the probability that z takes just 0 is 0, and thus the effect would
be almost ignored. When z takes 0, the sampled feature is “empty”;
this means all users take 0. While our experiments did not exclude
this empty feature, we would be also able to ignore the feature.

3763

Algorithm 1 Ada-RDA (E, �, ⌘, ✏)

1: Input: E = {(ie, ue, te)}|E|
e=1, �, ⌘, ✏

2: Initialize: w1 = 0, n = 1

3: for epoch c = 1, . . . , C do
4: {i0s}

|I|
s=1 = shuffle(I)

5: for i = i01, . . . , i
0
|I| do

6: z ⇠ p(z)
7: Set yi and xi(z) according to (5)
8: Compute gn according to (12)
9: Compute gn and hn according to (11)

10: Compute wn+1 according to (10)
11: n = n+ 1

12: end for
13: end for
14: Output: w⇤

= wn

Od0 after removing d0 � d users taking smaller values would
give a good approximation of Od.

Based on this insight, we perform a forward backward al-
gorithm to extract D sets of observers. The algorithm is given
as Algorithm 2. We prepare � = {�j}Jj=1, which is sorted
in descending order.4 This indicates that the larger index j
(i.e. smaller �j) are used, the more non-zero elements the
learned w

⇤ tends to have. In lines 5 to 20, the algorithm re-
peats extracting and storing observers by forward grid search
of �. If D or more observers were obtained, the algorithm
finishes the grid search. Next, the algorithm performs back-
ward interpolation of missing sets of observers (lines 21 to
27). “remove(w, r)” in line 24 returns a vector in which the
smaller non-zero r elements in w are replaced by zero. If
Od is empty, the algorithm interpolates it with the larger and
non-empty set Od+1. Finally, the algorithm outputs {Od}Dd=1
without the missing sets.

4 Related Work
Methods for predicting the number of adoptions in SNSs have
been proposed before [Kupavskii et al., 2012; Li et al., 2014;
Kong et al., 2014], and attempts have been made to improve
predictive performance. In contrast with earlier approaches,
our proposed method uses classifiers to identify observers
who can adopt popular items in advance.

In most of existing user or followee recommendation meth-
ods, these suggest users who have similar preference to obtain
personalized information [Hannon et al., 2011; Armentano et
al., 2013; Ying et al., 2012]. A similar method for locating
the sources of information diffusion in social networks has
been also proposed [Pinto et al., 2012]. Our aim of obtaining
popular information in advance is different.

Algorithms for social network inference have been pro-
posed [Du et al., 2013; Iwata et al., 2013; Gomez Rodriguez
et al., 2013; Zaman et al., 2010]. By simulating informa-
tion diffusion on inferred networks, item popularity could be

4Algorithm 2 supposes that �J learns the weight vector that has
D or more non-zero elements.

Algorithm 2 Forward-backward extraction (E, �, ⌘, ✏)

1: Input: E = {(ie, ue, te)}|E|
e=1, � = {�j}Jj=1, ⌘, ✏

2: Initialize:
3: Od = ;, for d = 1, . . . , D + 1

4: wd = 0, for d = 1, . . . , D + 1

5: for j = 1, . . . , J do
6: wj = Ada-RDA (E, �j , ⌘, ✏)
7: d = |observers(wj)|
8: if 0 < d < D and Od = ; then
9: wd = wj

10: Od = observers(wd)
11: else if d = D then
12: wD = wj

13: OD = observers(wD)
14: break
15: else if d > D then
16: wD+1 = wj

17: OD+1 = observers(wD+1)
18: break
19: end if
20: end for
21: for d = D, . . . , 1 do
22: if Od = ; then
23: r = |observers(wd+1)|� |observers(wd)|
24: wd = remove(wd+1, r)
25: Od = observers(wd)
26: end if
27: end for
28: Output: {Od}Dd=1

predicted. However, inferring networks is a challenging task
as the number of unknown parameters to be estimated is the
square of the number of users. In contrast, the number of
unknown parameters in our proposed method is the number
of users, which is more tractable. In addition, our proposed
method directly learns classifiers for predicting popularity us-
ing log data, which leads to better predictive performance.

Our proposed method can be seen as a method for find-
ing influential users. Identifying such users leads to detection
of popular items as soon as possible: once those influential
users adopt an item, many other users are likely to adopt the
same item. There are some existing methods for detecting
influential users [Trusov et al., 2010; Tang and Yang, 2010].
Garcia-Herranz et al. showed that even randomly selected
users are helpful for detecting outbreaks on Twitter [Garcia-
Herranz et al., 2014]. However, these methods need to user
network, which is unavailable in many web services.

A closely related work is the method of [Menjo and
Yoshikawa, 2008]. For predicting item popularity, this
method also uses event logs. The method scores the impor-
tance of users and outputs the ranking of potential item pop-
ularity at a certain time by using the scores. Although the
method seems to be able to use our problem at first glance, it
does not meet our task. The method assumes each item has
some growing interval that rapidly increases the number of

3764

Table 1: Summary of Delicious datasets
Dataset #items #users #events
ajax 7,924 9,553 458,706
css 11,647 16,528 955,829
design 39,100 33,481 2,015,359
java 8,703 6,641 289,976
javascript 10,841 11,254 641,639
linux 14,835 13,867 615,193
news 3,807 5,267 133,571
opensource 7,485 6,923 296,902
photography 9,910 11,704 399,751
science 4,790 4,505 130,747
webdesign 16,171 18,035 1,038,161

adoptions. Then, the method gives high scores to users that
adopt an item before all the growing intervals even when the
item has been already popular. In contrast, we require to ob-
tain items before becoming a trend, and thus the method is
not relevant to our task.

5 Experiments
To evaluate our proposed augmented and non-augmented
methods, we used Delicious datasets [Wetzker et al., 2008],
which comprise records of events where Delicious users
bookmarked (adopted) web pages with time stamps. We used
11 datasets separated by tag information in Delicious. Users
who appeared less than 30 times in every data set were ex-
cluded, and only items that were adopted more than 10 times
were used. We assigned popular labels to the top s = 10 per-
cent of items, and unpopular labels to the others. The sum-
mary of the datasets is given in Table 1.

We prepared six baseline methods. The baselines give a
score to each user and select users having a high score as
observers. The baselines assign the following score to user u:
Random: A random real number in [0.0, 1.0).
Nadoptions: The number of items adopted by u.
Nfollowers: The sum of the number of users adopting the

same item as u but after u.
Nearly: The number of times that u adopted items before m

other users adopted them.
Nearly-pos: The number of times that u adopted popular

(i.e. positive) items before m other users.
Nearly-pos/neg: Nearly-pos divided by the number of times

that u adopted unpopular (i.e. negative) items before m
other users.

Random and Nadoptions fail to consider requirements (a) and
(b) from Section 2, because it does not take account of pop-
ularity and the order of adoptions. Nfollowers and Nearly
consider (b) by giving priority to users adopting items early.
However, they do not consider (a). Nearly-pos and Nearly-
pos/neg consider (a) and (b) by taking account of both popu-
larity and the order of adoptions.

We did not compare any previous work described in Sec-
tion 4. The methods using user network was unavailable in
the Delicious datasets where the network does not exist as

in many other web services. We did not also compare the
methods for directly predicting popularity because the pur-
pose is different from ours, and they require more informa-
tion that is not included in the Delicious datasets. The method
of [Menjo and Yoshikawa, 2008] is applicable for our exper-
iments. However, the definition of important users and the
purpose are different from ours as discussed in Section 4.

We conducted the experiments with the following settings.
Items were split into ten subsets, with 90 percent of the items
used as training data and the other 10 percent as test data. In
the training dataset, all events were fully observed. From this
training data, we extracted 100 sets of observers {Od}100d=1 us-
ing the proposed methods and the baselines respectively. In
the test data, we assumed that the initial m = 10 users were
only observed for each item. If several users adopted items
at the same date around the threshold m, we randomly se-
lected ten users to be observed. If at least one observer was
in the initial 10 users, each method classified the item as a
popular item by supposing that we could obtain the item be-
fore more than 10 other users through observers. We eval-
uated the methods by using the F-measure. To simplify the
comparison, we computed the area under the curve (AUC) of
the #observers-F-measure curve, after normalizing the axis
of #observers from [1, 100] to [0, 1.0]. We repeated the above
procedure ten times while changing the training and test data
(i.e. 10-fold cross validation) and took the average of the
AUCs.

We set the parameters as follows. For the non-augmented
method, Nearly, Nearly-pos, and Nearly-pos/neg, we set m
to 10 so as to meet the above experimental setting. Al-
though we only tested the case of m = 10, it will not be
so critical for the methods; these methods are adapted ac-
cording to m. The augmented and non-augmented meth-
ods are learned using Algorithm 2. We set both ⌘ and ✏ to
1.0, and C to 20. We also set � to the set of 500 points in
[0.00001, 0.01]. For the augmented method, we needed to
select the pair of parameters (k, ✓). We performed v-fold
cross validation on k 2 K = {0.5, 1.0, 2.0, 5.0, 10.0, 50.0},
✓ 2 ⇥ = {1.0, 5.0, 9.5, 15.0}, and v = 5 using training
data. After computing the AUC for each fold, the pair taking
the best average was used in the test.5 Thus, the augmented
method requires to validate the parameters v|K||⇥| times be-
fore extracting observers. However, the validation can be ex-
ecuted in parallel. We used 24 (= |K||⇥|) threads6 in order
to validate all (k, ✓)s in parallel for each fold. Note that the
augmented method is closest to the non-augmented method
when (k, ✓) is set to (50.0, 9.5). This setting ensures that
the augmented method performs at least as well as the non-
augmented method.

All the results are shown in Table 2. Figure 2 illustrates
the example of #observers-F-measure curve in the webdesign
dataset. The results show that the augmented method had

5Some (k, ✓)s failed to obtain 100 or more observers in forward
grid search of �. Although we tried to extend the range of the grid
search, the observers were not extracted. Because the performance
of such (k, ✓)s was mostly poor, we ignored the (k, ✓)s and set the
AUC to zero.

6We used one server that has 16 processors and allows for com-
puting 32 threads at a time by hyper-threading.

3765

Table 2: Results of AUC in the Delicious datasets. The boldface means that the result was significantly best in terms of the
two-sided t-test with 95 percent confidence.

Dataset Random Nadoptions Nfollowers Nearly Nearly-pos
Nearly-
pos/neg Non-augmented Augmented

ajax 0.051 0.168 0.200 0.172 0.252 0.133 0.305 0.315
css 0.034 0.135 0.174 0.156 0.293 0.178 0.332 0.344
design 0.024 0.136 0.164 0.164 0.244 0.060 0.276 0.276
java 0.058 0.190 0.210 0.204 0.228 0.113 0.246 0.247
javascript 0.052 0.134 0.183 0.129 0.240 0.082 0.299 0.304
linux 0.056 0.171 0.194 0.195 0.266 0.102 0.299 0.298
news 0.085 0.163 0.247 0.224 0.327 0.306 0.374 0.376
opensource 0.082 0.154 0.177 0.191 0.235 0.118 0.255 0.256
photography 0.047 0.169 0.202 0.183 0.223 0.071 0.236 0.240
science 0.085 0.170 0.189 0.183 0.218 0.143 0.241 0.241
webdesign 0.034 0.143 0.168 0.170 0.291 0.132 0.336 0.350
Average 0.055 0.157 0.192 0.179 0.256 0.131 0.291 0.295

Table 3: Averages of runtime taken to extract observers in the design and webdesign datasets. The value in the parenthesis of
the augmented method denotes the average time (seconds) for the validation of (k, ✓).

Nadoptions Nfollowers Nearly Nearly-pos Nearly-pos/neg Non-augmented Augmented
design 6.00 16.93 2.57 4.16 4.15 118.60 1206.75 (1069.31)
webdesign 3.18 10.11 1.24 2.02 2.02 28.45 904.02 (875.98)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 10 20 30 40 50 60 70 80 90 100
Random

N adoptions
N followers

N early

N early-pos
N early-pos/neg
Non-augmented

Augmented

Figure 2: #observers-F-measure curve in the webdesign
dataset.

significantly better performance than the baselines for all the
datasets. While both the two proposed methods had nearly
equal performances for seven datasets, the augmented method
was significantly better for four datasets and the average of
all the datasets. This result suggests that augmentation of the
training samples improves performance.

Table 3 shows the averages of runtime taken to extract
observers in the design and webdesign datasets.7 We ex-
cluded the result of Random; although it was as fast as other
baselines, the performance improvement would be expected
depending on the implementation. The proposed methods
took more time than baselines: while baselines check train-
ing items only once, the proposed methods repeat checking

7While the proposed methods were implemented by Java, base-
lines were done by Python.

them C times. The augmented method took the longest time,
and the most part was used in the validation of (k, ✓). Al-
though we computed all the (k, ✓)s in parallel, the runtime
did not decrease as we expected. This is due to the overhead
of the hardware scheduling and the computation of the AUC
for selecting the best (k, ✓).

6 Summary and Discussion
In this paper, we formulated a new problem to find observers
and proposed a feature selection based framework to address
the problem. Our proposed methods outperformed the base-
lines in real social bookmark datasets.

Let us remark the tradeoff between performance and com-
putational cost for our proposed methods. While the aug-
mented method outperformed the non-augmented method in
many datasets, the augmented method requires additional
computation caused by the cross validation of (k, ✓). This
computation can be reduced by validating (k, ✓)s in parallel.
If all the parameters are validated in parallel, the augmented
method can run the validation ideally v|K||⇥| times faster.
However, as described in experiments, the actual runtime will
get worse than the expected one due to hardware limitation
and additional costs. Thus, when setting large |K|, |⇥|, and
v in large-scale data, we suggest using the non-augmented
method. Otherwise the augmented method is recommended.

Acknowledgments
KH was supported by MEXT KAKENHI 15K16055.

References
[Armentano et al., 2013] Marcelo Gabriel Armentano,

Daniela Godoy, and Analı́a A Amandi. Followee rec-

3766

ommendation based on text analysis of micro-blogging
activity. Information systems, 38(8):1116–1127, 2013.

[Bottou, 1998] Léon Bottou. Online algorithms and stochas-
tic approximations. In David Saad, editor, Online Learn-
ing and Neural Networks. Cambridge University Press,
Cambridge, UK, 1998. revised, oct 2012.

[Du et al., 2013] Nan Du, Le Song, Hyenkyun Woo, and
Hongyuan Zha. Uncover topic-sensitive information dif-
fusion networks. In Proceedings of the Sixteenth Interna-
tional Conference on Artificial Intelligence and Statistics,
pages 229–237, 2013.

[Duchi et al., 2011] John Duchi, Elad Hazan, and Yoram
Singer. Adaptive subgradient methods for online learning
and stochastic optimization. JMLR, 12:2121–2159, 2011.

[Garcia-Herranz et al., 2014] Manuel Garcia-Herranz, Este-
ban Moro, Manuel Cebrian, Nicholas A. Christakis, and
James H. Fowler. Using friends as sensors to detect global-
scale contagious outbreaks. PLoS ONE, 9(4):e92413, 04
2014.

[Gomez Rodriguez et al., 2013] Manuel Gomez Rodriguez,
Jure Leskovec, and Bernhard Schölkopf. Structure and dy-
namics of information pathways in online media. In Pro-
ceedings of the 6th ACM International Conference on Web
Search and Data Mining, pages 23–32. ACM, 2013.

[Hannon et al., 2011] John Hannon, Kevin McCarthy, and
Barry Smyth. Finding useful users on twitter: twit-
tomender the followee recommender. In Advances in In-
formation Retrieval, pages 784–787. Springer, 2011.

[Iwata et al., 2013] Tomoharu Iwata, Amar Shah, and
Zoubin Ghahramani. Discovering latent influence in on-
line social activities via shared cascade poisson processes.
In Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pages 266–274. ACM, 2013.

[Kong et al., 2014] S Kong, F Ye, and L Feng. Predicting
future retweet counts in a microblog. Journal of Compu-
tational Information Systems, 10(4):1393–1404, 2014.

[Kupavskii et al., 2012] Andrey Kupavskii, Liudmila Os-
troumova, Alexey Umnov, Svyatoslav Usachev, Pavel
Serdyukov, Gleb Gusev, and Andrey Kustarev. Prediction
of retweet cascade size over time. In Proceedings of the
21st ACM International Conference on Information and
Knowledge Management, pages 2335–2338. ACM, 2012.

[Li et al., 2014] Yang Li, Yiheng Chen, Ting Liu, and Wen-
chao Deng. Predicting the popularity of messages on
micro-blog services. In Social Media Processing, pages
44–54. Springer, 2014.

[Menjo and Yoshikawa, 2008] Takashi Menjo and
Masatoshi Yoshikawa. Trend prediction in social
bookmark service using time series of bookmarks. In
Proceedings of WWW2008 Workshop on Social Search
and Mining, 2008.

[Pinto et al., 2012] Pedro C Pinto, Patrick Thiran, and Mar-
tin Vetterli. Locating the source of diffusion in large-scale
networks. Physical Review Letters, 109(6):068702, 2012.

[Tang and Yang, 2010] Xuning Tang and Christopher C
Yang. Identifing influential users in an online healthcare
social network. In IEEE International Conference on In-
telligence and Security Informatics, pages 43–48. IEEE,
2010.

[Trusov et al., 2010] Michael Trusov, Anand V Bodapati,
and Randolph E Bucklin. Determining influential users in
Internet social networks. Journal of Marketing Research,
47(4):643–658, 2010.

[Wetzker et al., 2008] Robert Wetzker, Carsten Zimmer-
mann, and Christian Bauckhage. Analyzing social book-
marking systems: A del.icio.us cookbook. In ECAI 2008
Mining Social Data Workshop, pages 26–30, 2008.

[Xiao, 2010] Lin Xiao. Dual averaging methods for regular-
ized stochastic learning and online optimization. JMLR,
11:2543–2596, 2010.

[Ying et al., 2012] Josh Jia-Ching Ying, Eric Hsueh-Chan
Lu, and Vincent S Tseng. Followee recommendation in
asymmetrical location-based social networks. In Proceed-
ings of the 2012 ACM Conference on Ubiquitous Comput-
ing, pages 988–995. ACM, 2012.

[Yu and Kak, 2012] Sheng Yu and Subhash Kak. A survey
of prediction using social media. CoRR, abs/1207.0016,
2012.

[Zaman et al., 2010] Tauhid R. Zaman, Ralf Herbrich, Jur-
gen Van Gael, and David Stern. Predicting information
spreading in Twitter. In Proceedings of NIPS2010 Work-
shop on Computational Social Science and the Wisdom of
Crowds, 2010.

3767

