Toward a Robust and Universal Crowd-Labeling Framework

Faiza Khan Khattak
Columbia University, New York
fk2224@columbia.edu

Abstract

One of the main challenges in crowd-labeling is to control for or determine in advance the proportion of low-quality/malicious labelers. We propose methods that estimate the labeler and data instance related parameters using frequentist and Bayesian approaches. All these approaches are based on expert-labeled instance (ground truth) for a small percentage of data to learn the parameters. We also derive a lower bound on the number of expert-labeled instances needed to get better quality labels.

1 Introduction

Crowd-labeling is the process of having a human crowd label a large dataset. It is well-known that the precision and accuracy of labeling can vary due to differing skill sets. The labelers can be good/experienced, random/careless or even malicious. If the proportion of malicious labelers grows too high, there is often a phase transition leading to a steep, non-linear drop in labeling accuracy as noted by [Karger et al., 2014]. We propose methods for a robust and accurate crowd-labeling system that delays the phase transition. Our hypothesis is that using some expert-labeled instances (ground truth) can help us get insight about the labeler-ability as well as instance-difficulty, which can help in improving the accuracy of the aggregated final label. We propose a frequentist and a Bayesian approaches to learn these parameters.

2 Frequentist Approach

Based on our hypothesis, we propose the first version of Expert Label Injected Crowd Estimation (ELICE) [Khattak and Salleb-Aouissi, 2011]. We estimate the labeler-ability \(\alpha \) and instance-difficulty \(\beta \) based on a few (usually 0.1%-10% of the whole dataset) expert-labeled instances as:

\[
\alpha_j = \frac{1}{n} \sum_{i=1}^{n} [1(L_i = l_{ij}) - 1(L_i \neq l_{ij})],
\]

\[
\beta_i = \frac{1}{M} \sum_{j=1}^{M} [1(L_i = l_{ij})],
\]

where \(L_i \) is the true label for instance \(i \), \(l_{ij} \) is the label given by labeler \(j \) to instance \(i \), \(j = 1, \ldots, M \) and \(i = 1, \ldots, n \). Next \(\beta \)'s for the rest of the data (with no expert-labels) are estimated based on \(\alpha \)'s as:

\[
EL_i = \text{sign}\left(\frac{1}{M} \sum_{j=1}^{M} \alpha_j * l_{ij}\right), \quad \beta_i = \frac{1}{M} \sum_{j=1}^{M} [1(EL_i = l_{ij})]
\]

Label aggregation is done by using logistic function \((\sigma) \).

\[
IL_i = \text{sign}\left(\frac{1}{M} \sum_{j=1}^{M} \sigma(\alpha_j \beta_i) * l_{ij}\right)
\]

ELICE 1 [Khattak and Salleb-Aouissi, 2011] is efficient as well as effective. It assigns high weights to the good labelers’ annotation to identify the correct final labels. To further squeeze information, even from the malicious labelers, we proposed ELICE 2 [Khattak and Salleb-Aouissi, 2013]. In this method, we introduce entropy as a way to estimate the uncertainty of labeling. This provides an advantage of differentiating between good, random and malicious labelers. The aggregation method for ELICE version 2 flips the label (for binary classification case) provided by the malicious labeler thus utilizing the information that is generally discarded by other labeling methods. We define labeler-ability \((\alpha) \) and instance-difficulty \((\beta) \) as:

\[
\alpha_j = (p_j - q_j)(1 - E_j), \quad E_j = -p_j \log(p_j) - q_j \log(q_j)
\]

and \(p_j = \frac{n_j}{M}, \quad q_j = 1 - p_j \) and \(n_j^+ \) is the number of correctly labeled instances from \(D^j \) by labeler \(j \).

\[
\beta_i = \frac{(p_i^+ - q_i^+)(1 - E_i^+)}{1 - E_i^+} + 1, \quad E_i^+ = -p_i^+ \log(p_i^+) - q_i^+ \log(q_i^+)
\]

where \(p_i^+ = \frac{n_i^+}{M}, \quad q_i^+ = 1 - p_i^+, \quad p_i^+ \) is the probability of getting a correct label for instance \(i \), from the crowd labeler and \(M^+ \) is the number of correct labels given to the instance \(i \). All these values are calculated using the expert labeled instances.

Then \(\alpha, \beta \) are used for label aggregation as follows:

\[
A_i = \text{sign}\left(\sum_{j=1}^{M} \sigma(\alpha_j \beta_i) * l_{ij} * \text{sign}(\alpha_j \beta_i)\right)
\]

The \(\beta \)'s for the rest of the data are estimated using equation 1. Here \(c \) is the scaling factor and \(\text{sign}(\alpha \beta) \) is used to flip the label provided by the malicious labeler i.e., when \(\alpha \) is negative. Both versions of ELICE have a cluster-based variant in which rather than making a random choice of instances from the whole dataset, clusters of data are first formed using any clustering approach e.g., K-means.

The motivation behind developing the third version of ELICE [Khattak and Salleb-Aouissi, 2016] was to further improve the accuracy by using the crowd-labels, which unlike expert-labels, are available for the whole dataset and may provide a more comprehensive view of the labeler ability and instance
difficulty. This is especially helpful for the case when the domain experts do not agree on one label and ground truth is not known for certain. Therefore, incorporating more information beyond expert-labels can provide better results. Besides taking advantage of expert-labeled instances, the third version of ELICE, incorporates pairwise/circular comparison of labelers to labelers and instances to instances. In this variant of ELICE, we use a generalization of the model in [Bradley and Terry, 1952; Huang et al., 2006]. We show empirically that our approaches are robust even in the presence of a large proportion of low-quality labelers in the crowd (Figure 1). Furthermore, we derive a lower bound of the number of expert labels needed [Khattak and Salleb-Aouissi, 2013].

3 Bayesian Approach

Currently, we are exploring Bayesian method for parameter estimation. Our new approach [Khattak and Salleb-Aouissi, 2015] is inspired by Item Response Theory (IRT) [Lord, 1952]. IRT aims to design and analyze test scoring strategies by modeling student ability, question difficulty, question clarity and probability of correctness of the answer to the question. Similarly in crowd-labeling, we model labeler ability, instance difficulty, clarity of the question about the instance and probability of correctness of label. The crowd-labeling scenario is more challenging, as unlike IRT model, the parameters as well as final labels are unknown. To deal with this challenge, we use expert-labeled instance (ground truth) for a small percentage of data to learn the parameters. These parameters are used for aggregation of multiple crowd-labels for the rest of the dataset with no ground truth available. Our new model is as follows:

$$P(c|y_{ij} = c, \gamma_c, \beta_i, \pi_c^{(j)}) = \logit^{-1}(\delta_i(\gamma_c + \pi_c^{(j)} - \beta_i))$$

where $$c \in \{-1, 1\}$$: class/category, $$y_{ij}$$: Label provided by labeler $$j$$ to instance $$i$$, $$\pi_c^{(j)}$$: per-class ability of labeler $$j$$, $$\beta_i$$: difficulty of instance $$i$$, $$\gamma_c$$: prevalence of class $$c$$, $$\delta_i$$: clarity of question asked about instance $$i$$. Experiments are ongoing.

4 Conclusion

We propose a set of methodologies to advance the state-of-the-art in crowd-labeling methods using a handful expert-labeled instances. Our future plans include developing methodologies for analyzing and modeling labeler’s variable performance due to fatigue, stress and boredom. We hope that it will help in further improving crowd-labeling accuracy.

References

