Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

First-Order Model Counting in a Nutshell

Guy Van den Broeck
Computer Science Department
University of California, Los Angeles
guyvdb@cs.ucla.edu

Abstract

First-order model counting recently emerged as a
computational tool for high-level probabilistic rea-
soning. It is concerned with counting satisfying as-
signments to sentences in first-order logic and up-
grades the successful propositional model count-
ing approaches to probabilistic reasoning. We give
an overview of model counting as it is applied
in statistical relational learning, probabilistic pro-
gramming, databases, and hybrid reasoning. A
short tutorial illustrates the principles behind these
solvers. Finally, we show that first-order count-
ing is a fundamentally different problem from the
propositional counting techniques that inspired it.

1 Why First-Order Model Counting?

Model counting comes in many flavors, depending on the
form of logic being used. In propositional model counting,
or #SAT, one counts the number of assignments w that satisfy
a propositional sentence A, denoted w = A [Gomes et al.,
2009]. In weighted model counting (WMC), one accords a
weight to every model, and computes the sum of the weights
of all models. The weight of a model is often factorized into
weights of assignments to individual variables. The WMC
formulation has recently emerged as an assembly language
for probabilistic reasoning, offering a basic formalism for en-
coding various inference problems. State-of-the-art reasoning
algorithms for Bayesian networks [Chavira and Darwiche,
2008], their relational extensions [Chavira et al., 2006], and
factor graphs [Choi et al., 2013]. Exact WMC solvers are
based on knowledge compilation [Darwiche, 2004; Muise et
al., 2012] or exhaustive DPLL search [Sang et al., 2005].
(Approximate WMC algorithms use local search [Wei and
Selman, 2005] or sampling [Chakraborty et al., 2014; Ermon
etal., 2014].)

The popularity of WMC can be explained as follows. Its
formulation elegantly decouples the logical or symbolic rep-
resentation from the statistical or numeric representation,
which is encapsulated in the weight function. This is a sepa-

4086

ration of concerns that is quite familiar in Al:

Prob. Distribution = Qualitative + Quantitative
Bayesian network = DAG + CPTs
Factor Graph = Bipartite Graph + Potentials

Weighted model counting takes this to another level, where
any logical language can now specify the qualitative struc-
tural properties of what constitutes a model. Independently,
the weight function quantifies how probable each model is in
the probability space.

Prob. Distribution = Logic Sentence + Weights
WMC = SAT Formula 4 Weights

Formally, we have the following.

Definition 1 (Weighted Model Count). The WMC of
— a sentence A in propositional logic over literals £, and

— aweight function w : L — R,
is defined as WMC(A, w) = 3° o A []e, W(D)-

One benefit of this approach is that it leverages decades of
work on formal semantics and logical reasoning. When build-
ing solvers, this allows us to reason about logical equivalence
and reuse solver technology (such as constraint propagation
and clause learning). WMC also naturally reasons about de-
terministic, hard constraints in a probabilistic context.

First-Order Generalizations of Model Counting

The model counting philosophy has recently transformed sev-
eral areas of uncertainty reasoning.

First-Order Logic Within statistical relational learn-
ing [Getoor and Taskar, 2007], lifted inference algorithms
aim for efficient probabilistic inference in relational mod-
els [Poole, 2003], in particular for Markov logic net-
works (MLNs) [Richardson and Domingos, 2006]. State-
of-the art lifted inference algorithms reduce the problem to
a weighted first-order model counting (WFOMC) problem,
where the models (satisfying assignments) are defined by a
sentence in finite-domain first-order logic [Van den Broeck et
al., 2011; Gogate and Domingos, 2011].

WFOMC = First-Order Sentence + Weights

A classical example is the first-order sentence
Vx,Vy, Smokes(z) A Friends(z,y) = Smokes(y).

over a finite domain of n people. First-order model counting
asks how many friendship and smokes relations exist that sat-
isfy the formula. WFOMC additionally assigns a weight to
each of these models to represent a distribution over them.

Logic Programs In the closely-related field of probabilistic
programming, the goal is to augment programming languages
with the ability to represent probability distributions. One
prominent approach augments logic programming languages
with probabilities. In their purest form, these representations
express the distribution as the models of a logic program, with
associated weights [Fierens e al., 2015].

Problog = Logic Program + Weights
Consider for example, the following inductive definition.

Smokes(x) :- Stress(y).
Smokes(x):-Friends(z,y), Smokes(y).

The program defines a set of models (in a higher-order logic).
By assigning weights, for example to express the probability
that people have stress and are friends, we can capture prob-
abilistic spread of influence through a social network. This
view of probabilistic programming has indeed spurred the de-
velopment of probabilistic inference algorithms that use ad-
vanced logical reasoning techniques [Vlasselaer et al., 2015].

Databases Another form of first-order model counting can
be found in the probabilistic database community [Suciu et
al., 2011]. Here, the database query is a sentence in first-
order logic (usually a monotone DNF sentence, called UCQ).
The goal is to compute the probability of the query given a
database that assigns probabilities to tuples.

Prob. Database = First-Order Query + Tuple Weights

Within this field, the model counting perspective has shown
to be fruitful, for identifying logical transformations that em-
power the probabilistic reasoning system. For example, first-
order resolution on the query can turn hard queries into easy
ones [Gribkoff et al., 2014]. Moreover, efficient first-order
solvers can significantly speed up querying of real-world
knowledge graphs [Ceylan et al., 2016].

SMT One limitation of the WMC approaches above is
that they operate on discrete distributions. This limita-
tion is addressed in Belle et al.; Chistikov et al. [2015a;
2015]. The notion of weighted model integration (WMI) is
based on satisfiability modulo theories (SMT), which enable
us to, for example, reason about the satisfiability of linear
constraints over the rationals (LR.A). The WMI task is de-
fined on the models of an SMT theory A, containing mixtures
of Boolean and continuous variables.

WMI = SMT(LR.A) + Weights

For every assignment to the Boolean and continuous vari-
ables, the WMI problem defines a weight, for example as a

4087

polynomial density. The total WMI is computed by integrat-
ing these weights over the domain of solutions of A, which
is a mixed discrete-continuous space. Consider, for exam-
ple, the special case when A has no Boolean variables, and
the weight of every model is 1. Then, the WMI simplifies to
computing the volume of the polytope encoded in A.

For example, the following SMT theory from Belle et
al. [2015a] talks about travel times j; on various road seg-
ments, and how they relate to the time of day. Three Boolean
features f; are defined. Their weight, together with a density
on the continuous variables, defines a probability distribution.

fie [morn = ji + j2 + js < 800]
fos [aft = avg(s1, $2,83) > 80|
f3e [morn V eve = 700 < (41 + j2 + j3) < 900]

Overall, weighted SMT theories admit a natural encoding of
hybrid Markov and Bayesian networks, analogous to the en-
codings of discrete graphical networks using WMC.

Again, these encodings empower the probabilistic reason-
ing algorithms with the semantics and solvers for the logic at
hand. For example, Belle et al. [2015b] use a highly efficient
SMT solver to sample possible worlds from this distribution.

2 A First-Order Reasoning Tutorial

The give a flavor for the reasoning that is required in first-
order model counting, we will go through simple examples
and identify the necessary principles. Algorithmic details can
be found in Van den Broeck [2013]. For the sake of simplic-
ity, the examples are non-weighted.

Exponentiation Consider A to be
Stress(A) = Smokes(A). ()

Assuming a finite domain D {A}, every assignment
to Stress(A) and Smokes(A) satisfies A, except when
Stress(A) is true and Smokes(A) is false. Therefore, the
model count is 3. Now let A be

Vx, Stress(z) = Smokes(z). (2)

Without changing D, the model count is still 3. When we
expand D to n people, we get n independent copies of For-
mula 1. For each person z, Stress(x) and Smokes(x) can
take 3 values, and the total model count is 3".

This example already demonstrates the benefits of first-
order counting. A propositional model counter on Formula 2
would detect that all n clauses are independent, recompute for
every clause that it has 3 models, and multiply these counts n
times. Propositional model counters have no elementary op-
eration for exponentiation. A first-order model counter reads
from the first-order structure that it suffices to compute the
model count of a single ground clause, and then knows to ex-
ponentiate. It never actually grounds the formula, and given
the size of D, it runs in logarithmic time. This gives an ex-
ponential speedup over propositional counting, which runs in
linear time.

These first-order counting techniques can interplay with
propositional ones. Take for example A to be

Vy, Parent0f(y) A Female = MotherOf(y). (3)

This sentence is about a specific individual who may be fe-
male, depending on the proposition Female. We can sepa-
rately count the models in either case. When Female is false,
A 1is satisfied, and the Parent0Of and MotherOf atoms can
take any value. This gives 4" models. When Female is true,
A is structurally identical to Formula 2, and has 3™ models.
The total model count is then 3™ 4 4™.

These concepts can be applied recursively to count more
complicated formulas. Take for example

Vx,Vy, Parent0f(z,y) A Female(x) = Mother0f(z,y).

There is now a partition of the ground clauses into n indepen-
dent sets of n clauses, for values of x The formula for each
specific x is structurally identical to Formula 3 and has count
3™ + 4™. The total model count is then (3™ + 4™)™.

Counting The most impressive improvements are attained
when propositional model counters run in time exponential in
n, yet first-order model counters run in polynomial time. To
consider an example where this comes up, let A be

Va,Vy, Smokes(z) A Friends(zx,y) = Smokes(y). (4)

This time, the clauses in the grounding of A are no longer
independent, and it would be wrong to exponentiate. Let us
first assume we know that k people smoke, and that we know
their identities. Then, how many models are there? Formula 4
encodes that a smoker cannot be friends with a non-smoker.
Hence, out of n? Friends atoms, k(n — k) have to be false,
and the others can take either truth value. Thus, the number
of models is 27" ~k("—k) Second, we know that there are

(Z) ways to choose k£ smokers, and k can range from 0 to n.

This results in the total model countof - (}) gn’—k(n—k),
Evaluating this formula is polynomial in n. On the other
hand, propositional algorithms require time exponential in n.

Skolemization The theories so far had only universal quan-
tifiers. Skolemization is the procedure of eliminating existen-
tial quantifiers from a theory. Van den Broeck er al. [2013]
introduce a Skolemization procedure that is sound for the
WFOMC task. Suppose that we are eliminating the existen-
tial quantifier in the following sentence.

Vp, dc, Card(p, ¢)

We can do so without changing the model count. First, intro-
duce a new relation S and replace the sentence by

Vp, Ve, Card(p, c) = S(p)

Second, extend the weight function w with w(S(y))
and w(—S(y)) = —1forally.

We can verify this transformation as follows. For a fixed
position p, consider two cases: Je, Card(p, ¢) is either true
or false. If it is true, then so is S(p). All models of the
Skolemized sentence are also models of the original sentence,
and the models have the same weight. If 3¢, Card(p,c) is
false, then this does not correspond to any model of the orig-
inal sentence. However, the Skolemized sentence is satis-
fied, and S(p) can be true or false. Yet, for every model
with weight w where S(p) is true, there is also a model with
weight —w where S(p) is false. These weights cancel out in
the WFOMC, and the transformation is sound.

1

4088

Figure 1: Graphical model for a shuffled deck of 13 cards

3 Why First-Order Model Counters?

Consider a randomly shuffled deck of 52 playing cards. Sup-
pose that we are dealt the top card, and we want to answer:
what is the probability that we get hearts? When the dealer
reveals that the bottom card is black, how does our probability
change? Basic statistics says it increases from 1/4 to 13/51.

To represent the distribution over all shuffled decks with a
probabilistic graphical model, a natural choice is to have 52
random variables, one for every card. Each variable can take
any of 52 values, one for every position in the deck. When
the queen of hearts takes the top position, none of the other
random variables are allowed to take that position. Such con-
straints are enforced by adding a factor between every pair of
variables, setting the probability to zero that two cards are in
the same position. Figure 1 depicts the graphical model for a
small deck of 13 cards.

The graphical model for this problem is a completely con-
nected. This means that classical inference algorithms will
require time and space that is exponential in the number of
playing cards. Indeed, for a full deck of cards, they will
build a table with 5252 rows. The underlying reason for this
poor performance is that the distribution has no conditional
or contextual independencies. Our belief about the top card
is affected by any new observation on the remaining cards.
The reason why humans can still answer the above queries
efficiently is different: the distribution exhibits exchangeabil-
ity [Niepert and Van den Broeck, 2014]. In fact, Van den
Broeck [2015] show that this distribution is intractable for
any reasoning system that does not make the symmetries in
this distribution explicit. More generally, Beame et al. [2015]
study the complexity of first-order model counting.

The problem with this reasoning task is not one of rep-
resentation. Many statistical relational languages, including
Markov logic, can express the distribution concisely. It can
even be written in classical first-order logic as

Vp,dc, Card(p,c) Ve, 3p, Card(p,c)

Vp, Ve, Ve, ~Card(p, c) V —~Card(p,c) Ve=<c, (5

where Card(p, ¢) denotes that position p contains card c. Us-
ing first-order model counting, it can be solved efficiently as

HSAT = kznjzo (Z) (7) (I + 1)F(=1)2"F—L = p

This expression is evaluated in time polynomial in the number
of cards n. It shows that lifted inference is strictly more pow-
erful than propositional reasoning. The key difference is that
WFOMC can assume certain symmetries that propositional
techniques cannot take into account.

n

>

=0

4 Conclusions

First-order model counting is an approach to probabilistic
reasoning that has recenlty been applied to many represen-
tations of uncertainty, each time leading to highly efficient
solvers. It presents a synthesis of ideas from various subfields
of Al, for graphical models to knowledge representation and
reasoning, and connects to fields outside of Al, in verification,
databases, and theory.

References

[Beame er al., 2015] Paul Beame, Guy Van den Broeck, Eric
Gribkoff, and Dan Suciu. Symmetric weighted first-order
model counting. In Proceedings PODS, 2015.

[Belle et al., 2015a] Vaishak Belle, Andrea Passerini, and
Guy Van den Broeck. Probabilistic inference in hybrid
domains by weighted model integration. In IJCAI, 2015.

[Belle et al., 2015b] Vaishak Belle, Guy Van den Broeck,
and Andrea Passerini. Hashing-based approximate proba-
bilistic inference in hybrid domains. In UAI, 2015.

[Ceylan et al., 2016] Ismail Ilkan Ceylan, Adnan Darwiche,
and Guy Van den Broeck. Open-world probabilistic
databases. In Proceedings of KR, 2016.

[Chakraborty et al., 2014] Supratik Chakraborty, Daniel J
Fremont, Kuldeep S Meel, Sanjit A Seshia, and Moshe Y
Vardi. Distribution-aware sampling and weighted model
counting for sat. Proceedings of AAAL, 2014.

[Chavira and Darwiche, 2008] Mark Chavira and Adnan
Darwiche. On probabilistic inference by weighted model
counting. Artificial Intelligence, 2008.

[Chavira et al., 2006] Mark Chavira, Adnan Darwiche, and
Manfred Jaeger. Compiling relational Bayesian networks
for exact inference. IJAR, 42(1-2):4-20, May 2006.

[Chistikov et al., 2015] Dmitry Chistikov, Rayna Dimitrova,
and Rupak Majumdar. Approximate counting in smt and
value estimation for probabilistic programs. In Tools and
Algorithms for the Construction and Analysis of Systems,
volume 9035 of Lecture Notes in Computer Science, pages
320-334. Springer Berlin Heidelberg, 2015.

[Choi et al., 2013] Arthur Choi, Doga Kisa, and Adnan Dar-
wiche. Compiling probabilistic graphical models using
sentential decision diagrams. In ECSQARU. 2013.

[Darwiche, 2004] A. Darwiche. New advances in compiling
CNF to decomposable negation normal form. In Proceed-
ings of ECAI, pages 328-332, 2004.

[Ermon et al., 2014] Stefano Ermon, Carla P. Gomes, Ashish
Sabharwal, and Bart Selman. Low-density parity con-
straints for hashing-based discrete integration. In Proceed-
ings ICML, pages 271-279, 2014.

[Fierens ef al., 2015] Daan Fierens, Guy Van den Broeck,
Joris Renkens, Dimitar Shterionov, Bernd Gutmann, Ingo
Thon, Gerda Janssens, and Luc De Raedt. Inference and
learning in probabilistic logic programs using weighted
Boolean formulas. TPLP, 2015.

4089

[Getoor and Taskar, 2007] L. Getoor and B. Taskar, editors.
An Introduction to Statistical Relational Learning. MIT
Press, 2007.

[Gogate and Domingos, 2011] Vibhav Gogate and Pedro
Domingos. Probabilistic theorem proving. In Proceedings
of UAI, pages 256-265, 2011.

[Gomes et al., 2009] Carla P Gomes, Ashish Sabharwal, and
Bart Selman. Model counting. Handbook of Satisfiability,
185:633-654, 2009.

[Gribkoff et al., 2014] Eric Gribkoff, Dan Suciu, and Guy
Van den Broeck. Lifted probabilistic inference: A guide
for the database researcher. Bulletin of the Technical Com-
mittee on Data Engineering, 2014.

[Muise et al., 2012] Christian Muise, Sheila A Mcllraith,
J Christopher Beck, and Eric I Hsu. Dsharp: fast d-dnnf
compilation with sharpsat. In Advances in Artificial Intel-
ligence, pages 356-361. Springer, 2012.

[Niepert and Van den Broeck, 2014] Mathias Niepert and
Guy Van den Broeck. Tractability through exchangeabil-
ity: A new perspective on efficient probabilistic inference.
Proceedings of AAAI 2014.

[Poole, 2003] David Poole. First-order probabilistic infer-
ence. In Proc. IJCAI, 2003.

[Richardson and Domingos, 2006] Matthew Richardson and
Pedro Domingos. Markov logic networks. Machine learn-
ing, 62(1-2):107-136, 2006.

[Sang et al., 2005] Tian Sang, Paul Beame, and Henry A
Kautz. Performing bayesian inference by weighted model
counting. In AAAI volume 5, pages 475-481, 2005.

[Suciu er al., 2011] Dan Suciu, Dan Olteanu, Christopher
Ré, and Christoph Koch. Probabilistic databases. Syn-
thesis Lectures on Data Management, 3(2):1-180, 2011.

[Van den Broeck ef al., 2011] Guy Van den Broeck, Nima
Taghipour, Wannes Meert, Jesse Davis, and Luc De Raedt.
Lifted probabilistic inference by first-order knowledge
compilation. In Proceedings of IJCAI, pages 2178-2185,
2011.

[Van den Broeck er al., 2013] Guy Van den Broeck, Wannes
Meert, and Adnan Darwiche. Skolemization for weighted
first-order model counting. Proceedings of UAI, 2013.

[Van den Broeck, 2013] Guy Van den Broeck. Lifted Infer-
ence and Learning in Statistical Relational Models. PhD
thesis, KU Leuven, January 2013.

[Van den Broeck, 2015] Guy Van den Broeck. Towards
high-level probabilistic reasoning with lifted inference. In
Proceedings of KRR, 2015.

[Vlasselaer et al., 2015] Jonas Vlasselaer, Guy Van den
Broeck, Angelika Kimmig, Wannes Meert, and Luc De
Raedt. Anytime inference in probabilistic logic programs
with Tp-compilation. In Proceedings of IJCAI, 2015.

[Wei and Selman, 2005] W. Wei and B. Selman. A new ap-
proach to model counting. In Theory and Applications of
Satisfiability Testing, pages 96-97. Springer, 2005.

