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Abstract

We present a novel approach to enrich classifica-
tion trees with the representation learning ability of
deep (neural) networks within an end-to-end train-
able architecture. We combine these two worlds via
a stochastic and differentiable decision tree model,
which steers the formation of latent representations
within the hidden layers of a deep network. The
proposed model differs from conventional deep net-
works in that a decision forest provides the final
predictions and it differs from conventional deci-
sion forests by introducing a principled, joint and
global optimization of split and leaf node param-
eters. Our approach compares favourably to other
state-of-the-art deep models on a large-scale image
classification task like ImageNet.

1 Introduction

Random forests [Amit and Geman, 1997; Breiman, 2001;
Criminisi and Shotton, 2013] have found successfull appli-
cation in machine learning in general and the computer vi-
sion community in particular. They empirically outperform
most state-of-the-art learners on high dimensional data prob-
lems [Caruana et al., 2008], they are inherently able to deal
with multi-class problems and are easily distributable on par-
allel hardware architectures. Moreover, they are consid-
ered to be close to an ideal learner [Hastie et al., 2009].
These facts and many (computationally) appealing proper-
ties make them attractive for various research areas and com-
mercial products [Bosch et al., 2007; Brostow et al., 2008;
Shotton et al., 2013]. On the downside, random forests lack
a machanism to efficiently learn internal representations that
help to capture the main factors of variation in the data [Ben-
gio et al., 2010].

One of the consolidated findings of modern, deep learn-
ing approaches [Krizhevsky et al., 2012; Lin et al., 2013;
Szegedy et al., 2014] is that their joint and unified way of
learning internal data representations along with the classi-
fiers greatly outperforms conventional feature descriptor &
classifier pipelines on different tasks, given enough training
data and computation capabilities (see e.g.

[He et al., 2015]
for image classification, [Yu and Deng, 2014] for speech
recognition, [Fei-Fei, 2015] for image description).

An interesting open question, which has received little at-
tention in the literature so far, is how to endow random forests
with the ability of learning proper internal representations of
the input data in order to improve on the generalization ca-
pacity of the final classifier. Notable but limited exceptions
are [Kontschieder et al., 2013; Montillo et al., 2013] where
random forests were trained in an entangled setting, stacking
intermediate classifier outputs with the original input data.
The approach in [Rota Bulò and Kontschieder, 2014] intro-
duced a way to integrate multi-layer perceptrons as split func-
tions, however, representations were learned only locally at
split node level and independently among split nodes. While
these attempts can be considered early forms of representa-
tion learning in random forests, their prediction accuracies
remained below the state-of-the-art.

In this work we present Deep Neural Decision Forests –
a novel approach to unify appealing properties from repre-
sentation learning as known from deep architectures with the
divide-and-conquer principle of decision trees. We introduce
a stochastic, differentiable, and therefore back-propagation
compatible version of decision trees, guiding the represen-
tation learning in hidden layers of deep networks. Thus, the
task for representation learning is to reduce the uncertainty
on the routing decisions of a sample taken at the split nodes,
such that a globally-defined loss function is minimized. Ad-
ditionally, for given split node parameters we obtain optimal
predictions for all leaves of our trees by minimizing a con-
vex objective, and we provide an optimization algorithm for
it that does not depend on tedious step-size selection. Con-
sequently, we can take the optimal decision for a test sample
ending up in the leaves, with respect to all the training data
and the current state of the network. We show the efficacy of
our approach on the challenging ImageNet dataset for large-
scale image classification, where we obtain state-of-the-art
results with no data augmentation.

2 Decision Trees with Stochastic Routing

Decision trees can be used to tackle a wide range of learn-
ing problems [Criminisi and Shotton, 2013] including clas-
sification, which will be the focus of this work. Consider a
classification problem with input and (finite) output spaces
given by X and Y , respectively. A decision tree is a classifier
consisting of decision (or split) nodes and prediction (or leaf)
nodes organized into a tree structure. Decision nodes indexed
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Figure 1: Routing of sample x along a decision tree to leaf
`4. Each node n 2 N along the path steers the sample to the
left with probability d

n

(x) and to the right with probability
¯

d

n

(x) = 1 � d

n

(x). So, the probability of reaching `4 is
µ

`4(x) = d1(x)
¯

d2(x)
¯

d5(x) and the related prediction is ⇡
`4 .

by N are internal nodes of the tree, while prediction nodes
indexed by L are the terminal nodes of the tree. A decision
tree classifies a sample by routing it through the tree to a leaf
node ` 2 L, where the prediction takes place via a proba-
bility distribution ⇡

`

over Y . The routing along the tree is
determined through decision functions d

n

(·;⇥) : X ! [0, 1]

parametrized by ⇥ and located in each decision node n 2 N ,
which locally indicate the path to follow. When a sample
x 2 X reaches a decision node n it will be sent to the left
or right subtree based on the output of d

n

(x;⇥). In standard
decision forests, d

n

is binary and the routing is deterministic.
In this paper we will consider instead a probabilistic routing,
i.e. the routing direction is the output of a Bernoulli random
variable with mean d

n

(x;⇥). Once a sample ends in a leaf
node `, the related tree prediction is given by the class-label
distribution ⇡

`

(see Fig. 1 for an illustration). In the case
of stochastic routings, the leaf predictions will be weighted
by the probability of reaching the leaf. Accordingly, the fi-
nal prediction for sample x from tree T with decision nodes
parametrized by ⇥ is given by

P
T

[y|x,⇥,⇡] =

X

`2L
⇡

`y

µ

`

(x|⇥) , (1)

where ⇡ = (⇡

`

)

`2L and ⇡

`y

denotes the probability of a sam-
ple reaching leaf ` to take on class y, while µ

`

(x|⇥) is re-
garded as the routing function providing the probability that
sample x will reach leaf `. Clearly,

P
`

µ

`

(x|⇥) = 1 for all
x 2 X . To provide an explicit form for the routing function
we introduce the following binary relations that depend on
the tree’s structure: ` . n, which is true if ` belongs to the
left subtree of node n, and n & `, which is true if ` belongs
to the right subtree of node n. These relations allow us to
express µ

`

as follows:

µ

`

(x|⇥) =

Y

n2N
d

n

(x;⇥)

1`.n
¯

d

n

(x;⇥)

1n&`
, (2)

where ¯

d

n

(x;⇥) = 1�d

n

(x;⇥), and 1
P

is an indicator func-
tion conditioned on the argument P . Although the product in
(2) runs over all nodes, only decision nodes along the path
from the root to the leaf ` contribute to µ

`

(assuming 0

0
= 1),

because for all other nodes 1
`.n

and 1
n&`

will be both 0.

Decision nodes. We consider decision trees having deci-
sion functions of the following form to deliver stochastic rout-
ings:

d

n

(x;⇥) = �(f

n

(x;⇥)) , (3)
where �(x) = (1 + e

�x

)

�1 is the sigmoid function, and
f

n

(·;⇥) : X ! R is a real-valued function depending
on the sample and the parametrization ⇥. The outcome of
d

n

(x;⇥) 2 [0, 1] represents the probability of sample x to
be steered left in node n 2 N . Further details about the func-
tions f

n

can be found in Sec. 4, but intuitively depending on
how we choose these functions we can model trees having
shallow decisions (e.g. such as in oblique forests [Heath et

al., 1993]) as well as deep ones.

Forests of decision trees. A forest is an ensemble of deci-
sion trees F = {T1, . . . , Tk}, which delivers a prediction for
sample x by averaging the output of each tree, i.e.

PF [y|x] =
1

k

kX

h=1

P
Th [y|x] , (4)

omitting the tree parameters for notational convenience.

3 Learning Trees by Back-Propagation

In order to learn a decision tree defined as per Sec. 2, we need
to estimate both, the decision node parametrization ⇥ and the
leaf predictions ⇡. To carry out the estimation we follow the
minimum empirical risk principle with respect to a given data
set T ⇢ X ⇥ Y under log-loss, i.e. we pursue minimizers of
the following risk term:

R(⇥,⇡; T ) =

1

|T |
X

(x,y)2T

L(⇥,⇡;x, y) , (5)

where L(⇥,⇡;x, y) is the log-loss term for the training sam-
ple (x, y) 2 T , which is given by

L(⇥,⇡;x, y) = � log(P
T

[y|x,⇥,⇡]) , (6)

and P
T

is defined as in (1). We use a two-step optimization
strategy, described in the rest of this section, alternating up-
dates of ⇥ with updates of ⇡ in a way to minimize (5).

Learning Decision Nodes. All decision functions depend
on a common parameter ⇥, which in turn parametrizes each
function f

n

in (3). The minimization of the empirical risk
with respect to ⇥ for a given ⇡ is, in general, a difficult and
large-scale optimization problem, since no assumption has
been made about the structure of f

n

. As an example, ⇥ could
absorb all the parameters of a deep neural network having f

n

as one of its output units. For this reason, we will employ a
Stochastic Gradient Descent (SGD) approach to minimize (5)
with respect to ⇥, as commonly done in the context of deep
neural networks:

⇥

(t+1)
= ⇥

(t) � ⌘

@R

@⇥

(⇥

(t)
,⇡;B)

= ⇥

(t) � ⌘

|B|
X

(x,y)2B

@L

@⇥

(⇥

(t)
,⇡;x, y) .

(7)
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Here, ⌘ > 0 is the learning rate and B ✓ T is a random subset
(a.k.a. mini-batch) of samples from the training set. Although
not shown explicitly, we additionally consider a momentum
term to smooth out the variations of the gradients. The gradi-
ent of the loss L with respect to ⇥ can be decomposed by the
chain rule as follows

@L

@⇥

(⇥,⇡;x, y) =

X

n2N

@L(⇥,⇡;x, y)

@f

n

(x;⇥)

@f

n

(x;⇥)

@⇥

. (8)

Here, the gradient term that depends on the decision tree is

@L(⇥,⇡;x, y)

@f

n

(x;⇥)

= d

n

(x;⇥)A

nr � ¯

d

n

(x;⇥)A

nl , (9)

where n

l

and n

r

indicate the left and right child of node n,
respectively, and we define A

m

for a generic node m 2 N as

A

m

=

P
`2Lm

⇡

`y

µ

`

(x|⇥)

P
T

[y|x,⇥,⇡]

,

where L
m

✓ L denotes the set of leaves held by the subtree
rooted in node m. The actual computation of the gradient
term in Eq. (9) can be carried out by traversing the tree twice
[Kontschieder et al., 2015].

Learning prediction nodes. We consider now the mini-
mization of (5) with respect to ⇡ when ⇥ is fixed, i.e.

min

⇡

R(⇥,⇡; T ) . (10)

This is a convex optimization problem and a global solution
can be easily recovered. A similar problem has been en-
countered in the context of decision trees in [Rota Bulò and
Kontschieder, 2014], but only at the level of a single node. In
our case, however, the whole tree is taken into account, and
we are jointly estimating all the leaf predictions.

In order to compute a global minimizer of (10) we propose
the following iterative scheme:

⇡

(t+1)
`y

=

1

Z

(t)
`

X

(x,y0)2T

1
y=y

0
⇡

(t)
`y

µ

`

(x|⇥)

P
T

[y|x,⇥,⇡

(t)
]

, (11)

for all ` 2 L and y 2 Y , where Z

(t)
`

is a normalizing factor
ensuring that

P
y

⇡

(t+1)
`y

= 1. The starting point ⇡(0) can
be arbitrary as long as every element is positive. A typical
choice is to start from the uniform distribution in all leaves,
i.e. ⇡

(0)
`y

= |Y|�1. It is interesting to note that the update
rule in (11) is step-size free and it guarantees a strict de-
crease of the risk at each update until a fixed-point is reached
[Kontschieder et al., 2015].

Learning a forest. So far we have dealt with a single deci-
sion tree setting. Now, we consider an ensemble of trees F ,
where all trees can possibly share the same parameters in ⇥,
but each tree can have a different structure with a different set
of decision functions (still defined as in (3)), and independent
leaf predictions ⇡. Since each tree in the forest F has its own
set of leaf parameters ⇡, we can update the prediction nodes

of each tree independently via the update rule (11), given the
current estimate of ⇥. As for ⇥, instead, we randomly select
a tree in F for each mini-batch and then we proceed with the
SGD update in (7), assuming that its leaf nodes’ parameters ⇡
are fixed. This strategy somewhat resembles the basic idea of
Dropout [Srivastava et al., 2014], where each SGD update is
potentially applied to a different network topology, which is
sampled according to a specific distribution. In addition, up-
dating individual trees instead of the entire forest reduces the
computational load during training. At test time we average
over tree predictions to produce the final outcome,(4).

4 Deep Decision Nodes

We have defined decision functions d
n

in terms of real-valued
functions f

n

(·;⇥), which are not necessarily independent,
but coupled through the shared parametrization ⇥. Our in-
tention is to endow the trees with feature learning capabil-
ities by embedding functions f

n

within a deep neural net-
work with parameters ⇥. To this end, we regard each func-
tion f

n

as a linear output unit of a deep network that will be
turned into a probabilistic routing decision by the action of
d

n

, which applies a sigmoid activation to obtain a response
in the [0, 1] range. Fig. 2 provides a schematic illustration
of this idea. The number of split nodes is determined by
the number of output nodes of the preceding fully-connected
layer. Under the proposed construction, the output units of
the deep network are therefore not directly delivering the fi-
nal predictions, e.g. through a Softmax layer, but each unit
is responsible for driving the decision of a node in the forest.
Indeed, during the forward pass through the deep network, a
data sample x produces soft activations of the routing deci-
sions of the tree that induce via the routing function a mixture
of leaf predictions as per (1), which will form the final output.

5 Experiments on ImageNet

ImageNet [Russakovsky et al., 2014] is a benchmark for
large-scale image recognition tasks and its images are as-
signed to one out of 1000 possible ground truth labels. The
dataset contains ⇡1.2M training images, 50.000 validation
images and 100.000 test images with average dimensionality
of 482x415 pixels. Training and validation data are publicly
available and we followed the commonly agreed protocol by
reporting Top5-Errors on validation data. The GoogLeNet ar-
chitecture [Szegedy et al., 2014], which has a reported Top5-
Error of 10.07% when used in a single-model, single-crop
setting (see first row in Tab. 3 in [Szegedy et al., 2014]),
served as basis for our experiments. As opposed to conven-
tional architectures, GoogLeNet uses 3 Softmax layers at dif-
ferent stages of the network to encourage the construction of
informative features, due to its very deep architecture.

In order to obtain a Deep Neural Decision Forest architec-
ture coined dNDF.NET, we have replaced each Softmax layer
from GoogLeNet with a forest consisting of 10 trees (each
fixed to depth 15), resulting in a total number of 30 trees.
We refer to the individual forests as dNDF0 (closest to raw
input), dNDF1 (replacing middle loss layer in GoogLeNet)
and dNDF2 (as terminal layer). Further details about our
dNDF.NET architecture are provided in [Kontschieder et al.,
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Figure 2: Illustration how to implement a deep neural decision forest (dNDF). Top: Deep neural network with variable number
of layers, represented via parameters ⇥. FC block: Fully Connected layer used to provide functions f

n

(·;⇥) (here: inner
products), described in Eq. (3). Each output of f

n

is brought in correspondence with a split node in a tree, eventually producing
the routing (split) decisions d

n

(x) = �(f

n

(x)). The order of the assignments of output units to decision nodes can be arbitrary
(the one we show allows a simple visualization). The circles at the bottom correspond to leaf nodes, holding probability
distributions ⇡

`

as a result of solving the convex optimization problem defined in Eq. (10).

GoogLeNet [Szegedy et al., 2014] dNDF.NET dNDF0 dNDF1 dNDF2

#models/#crops 1/1 1/10 1/144 7/1 7/10 7/144 1/1 1/10 7/1 1/1

Top5-Errors 10.07% 9.15% 7.89% 8.09% 7.62% 6.67% 7.84% 7.08% 6.38% 9.26% 8.49% 7.92%

Table 1: Top5-Errors obtained on ImageNet validation data, comparing our dNDF.NET to GoogLeNet.

2015]. Following the implementation guideline for decision
nodes in Section 4, we randomly selected 500 output dimen-
sions of the respectively preceding layers in GoogLeNet for
each decision function f

n

. We trained the network for 1000
epochs using (mini-) batches composed of 100.000 images
(which was feasible due to distribution of the computational
load to a cluster of 52 CPUs and 12 hosts, where each host is
equipped with a NVIDIA Tesla K40 GPU).

As for the posterior learning, we only update the leaf node
predictions of the tree that also receives split node parame-
ter updates, i.e. the randomly selected one as described in
Section 3. To improve computational efficiency, we consider
only the samples of the current mini-batch for posterior learn-
ing, while all the training data could be used in principle.
However, since we use mini-batches composed of 100.000
samples, we can approximate the training set sufficiently well
and, at the same time, introduce a positive, regularizing effect.

Tab. 1 provides a summary of Top5-Errors on validation
data for our proposed dNDF.NET against GoogLeNet. We
ascribe the improvements on the single crop, single model
setting (Top5-Error of only 7.84%) to our proposed approach,
as the only architectural difference to GoogLeNet is deploy-
ing our dNDFs. By using an ensemble of 7 dNDF.NETs (still
single crop inputs), we can reduce the error further and ob-
tain a Top5-Error of 6.38%, which is better than the best re-
sult of 6.67%, obtained with 7 GoogLeNets using 144 crops
per image [Szegedy et al., 2014]. In the last three columns

of Tab. 1, we report also the performance of each individ-
ual forest dNDF

x

(x = 0, 1, 2) within the architecture. As
expected, dNDF0 (closest to the input layer) performs worse
than dNDF2, which is the final layer of dNDF.NET, but only
by 1.34%. Averaging over all three dNDF forest outputs
yields the lowest Top5-Error of 7.84%.

6 Conclusions

In this paper we have shown how to model and train stochas-
tic, differentiable decision trees, usable as alternative clas-
sifiers for end-to-end learning in (deep) convolutional net-
works. Prevailing approaches for decision tree training typ-
ically operate in a greedy and local manner, making repre-
sentation learning impossible. To overcome this problem, we
introduced stochastic routing for decision trees, enabling split
node parameter learning via back-propagation. Moreover, we
showed how to populate leaf nodes with their optimal predic-
tors, given the current state of the tree/underlying network.
We have successfully validated our new decision forest model
on ImageNet and surpassed state-of-the-art when integrating
it in the GoogLeNet architecture, without any form of dataset
augmentation, further detailed in [Kontschieder et al., 2015].
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forests. In (ICCV), 2015.

[Krizhevsky et al., 2012] Alex Krizhevsky, Ilya Sutskever,
and Geoff Hinton. Imagenet classification with deep con-
volutional neural networks. In (NIPS), 2012.

[Lin et al., 2013] Min Lin, Qiang Chen, and Shuicheng Yan.
Network in network. CoRR, abs/1312.4400, 2013.

[Montillo et al., 2013] A. Montillo, J. Tu, J. Shotton,
J. Winn, J. E. Iglesias, D. N. Metaxas, and A. Crimin-
isi. Entangled forests and differentiable information gain
maximization. In Decision Forests in Computer Vision and

Medical Image Analysis. Springer, 2013.
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