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Abstract
This paper focuses on the investigations in Wino-
grad Schema (WS), a challenging problem which
has been proposed for measuring progress in com-
monsense reasoning. Due to the lack of common-
sense knowledge and training data, very little work
has been reported on the WS problems. This pa-
per addresses a set of WS problems by propos-
ing a knowledge acquisition method and a gener-
al neural association model. To avoid the sparse-
ness issue, the knowledge we aim to collect is the
cause-effect relationships between a collection of
commonly used words. The knowledge acquisition
method supports us to extract hundreds of thou-
sands of cause-effect pairs from text corpora auto-
matically. Meanwhile, a neural association model
(NAM) is proposed to encode the association rela-
tionships between any two discrete events. Based
on the extracted knowledge and the NAM models,
we successfully build a system for solving a causal
subset of WS problems from scratch and achieve
70% accuracy. Most importantly, this paper pro-
vides a flexible framework to solve WS problem-
s based on event association and neural network
methods.

1 Introduction
In recent years, the rapid developments of machine learn-
ing, especially the deep learning and reinforcement learning
techniques, have brought significant improvements in many
research areas [Michalski et al., 2013; LeCun et al., 2015;
Mnih et al., 2015]. However, despite the successes in vari-
ous artificial intelligence (AI) applications, the research filed
of commonsense reasoning, a typical AI-complete problem,
still remains to be carefully investigated [Mueller, 2014;
Davis and Marcus, 2015]. In this paper, we pay our atten-
tions to a recently proposed AI task, i.e. Winograd Schema
(WS) [Levesque et al., 2011]. WS is a task designed for
measuring progress in commonsense reasoning, which has
been suggested as an alternative to the Turing Test [Morgen-
stern and Ortiz Jr, 2015; Marcus et al., 2016]. The core of
the WS task is to answer some manually designed corefer-
ence resolution problems. A typical WS example was pro-

posed in [Winograd, 1972], which defined a scenario “The
city councilmen refused the demonstrators a permit because
they feared violence.” and a corresponding question “Who
feared violence?”. Based on the commonsense, the answer
is obvious, i.e., the city councilmen since they tended to fear
violence. Meanwhile, if we change verb “feared” in this sce-
nario to “advocated”, the answer changes correspondingly.

Although human beings could answer WS problems very
easily, however, it is very difficult for machines to do that. To
the best of our knowledge, there are few methods that have
been proposed to work on the real WS problems1. In the
works of [Sharma, 2014; Sharma et al., 2015], they identi-
fied the knowledge needed to answer a challenge question,
hunted down that knowledge from text repositories, and then
made logic reasoning with them to output the answer. How-
ever, this approach relied on the WS test set to extract cor-
responding knowledge, which had very poor scalability. In
[Schüller, 2014], they proposed to tackle WS problems by
formalizing relevance theory in knowledge graphs. Their ex-
periments were performed using Answer Set Programming.
However, due to the complexity of the proposed method, they
just examined how to answer four WS questions in that work.

In this paper, we work on the real WS task in a typical
machine learning paradigm. Solving WS requires common-
sense knowledge, however, it is very hard to collect all the
commonsense knowledge in our daily life. Moreover, there is
no training data provided in the WS task. Therefore, this pa-
per proposes a method to extract commonsense knowledge.
We construct a vocabulary with a collection of most com-
monly used words and phrases. Based on it, the knowledge
acquisition method reads a large amount of texts, conducts
query searching and dependency parsing, and finally output-
s the cause-effect pairs. Meanwhile, this paper proposes a
neural association model (NAM) to encode the association
relationships between discrete events. In NAM, all symbolic
events are represented in vector spaces. Deep neural network-
s are used to model the association between any two events,
taking one event as input to compute a conditional probabili-
ty of the other event. By combining the extracted knowledge
and the NAM model, we successfully build a system to solve
WS problems from scratch. Experiments made on a causal

1http://www.cs.nyu.edu/faculty/davise/
papers/WinogradSchemas/WSCollection.xml.
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subset of WS problems have proved the effectiveness of this
work.

2 The Research Motivation
2.1 Winograd Schemas
Winograd schema evaluates a system’s commonsense reason-
ing ability based on a traditional natural language processing
(NLP) task: coreference resolution. All WS problems are
carefully designed to be a task that cannot be easily solved
without commonsense knowledge. The WS problems could
be disambiguated by human readers. Here are some typical
WS examples [Levesque et al., 2011].
• Joan made sure to thank Susan for all the help she had

given. Who had given the help?
– Answer A: Joan
– Answer B: Susan
– Correct Answer: B

• My meeting started at 4:00 and I needed to catch the
train at 4:30, so there wasn’t much time. Luckily, it was
short, so it worked out. Which was short?

– Answer A: The meeting
– Answer B: The train
– Correct Answer: A

A human who answers these questions correctly typical-
ly uses various types of commonsense knowledge, including
his abilities in morality, temporal, and his knowledge about
meetings, trains, to determine the correct answers. In the first
example, if we change verb “given” to “received”, the answer
changes to Joan. The commonsense is that a person who re-
ceives help should thanks the person who provides help to
him. Similarly, if we change the word “short” to “delayed” in
the second example, the answer changes as well.

An open WS test set is made available to the AI com-
munity for research purposes [Davis et al., 2016]. As de-
scribed in [Morgenstern et al., 2016], creating Winograd
schemas is difficult, requiring creativity and inspiration, and
too burdensome to do on a yearly or biennial basis. That’s
why there just have two hundreds of WS test problems in
this dataset. Due to the difficulties of solving WS prob-
lems, only a small number of approaches have been pro-
posed for the WS task [Schüller, 2014; Bailey et al., 2015;
Sharma et al., 2015]. These approaches use logic reasoning
methods and just solve quite few WS examples, which are out
of the scope of this paper.

There are two similar datasets in the NLP and AI commu-
nity. The first is a collection of pronoun disambiguation prob-
lems (PDP), which is used in the first round of WS challenge
[Davis et al., 2016]. The best performances on this dataset
is 66.7% [Liu et al., 2016]. The second is a definite pronoun
resolution dataset released by [Rahman and Ng, 2012]. Cor-
respondingly, some efforts have been made on this dataset
[Kruengkrai et al., 2014; Peng et al., 2015]. However, these
two datasets are more like coreference resolution tasks, all the
related works tend to use linguistic and coreference resolution
methods. Therefore, based on our motivation, we would not
use them and only use the real WS dataset.

2.2 Motivation
In this paper, we think some WS problems could be solved by
modeling the association relationships between key events.
Figure 1 shows a typical example. Given the sentence “The
man couldn’t lift his son because he was so heavy.”, the cor-
responding question is “Who was heavy?”. The answer is the
son. This question could be solved by employing the knowl-
edge: “a person who is heavy could not be lifted very easi-
ly”. If we can model the association between events heavy
and not lift, not be lifted correctly, i.e., Pr(not lift|heavy) <
Pr(not be lifted|heavy), then we can solve this WS problem.

The man couldn’t lift his son because he was so heavy.

Who was heavy?

man [not lift]

son [not be lifted]

man [heavy]

son [heavy]

Reasoning based on event association:

Pr(not lift | heavy) < Pr(not be lifted | heavy)

answer: son

Figure 1: The main motivation of this paper. A typical example
to indicate that some WS problems could be solved based on the
comparisons between event association probabilities.

Solving WS problems under this motivation is straightfor-
ward. We will first extract the key events for all the pronoun
and candidates. It is easy to do this work based on depen-
dency parsing results. To focus our attentions on knowledge
acquisition and model training, we will manually label al-
l the key events in the WS test set for experiments. The main
work of this paper is then straightforward, i.e., to collect com-
monsense knowledge and design models to solve WS prob-
lems. Figure 2 shows the main procedures to build systems
to solve WS problems. Ultilzing a set of text corpora, the
knowledge acquisition method extracts a so-called CauseC-
om knowledge base. Based on it, a neural association model
is used to train models for finally answering WS problems.

Knowledge 
AcquisitionTexts

CauseCom

Models
Neural 

Association 
Models

WS problems

testing

training

answers

mining

Figure 2: The overall system procedure of this work.
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3 Commonsense Knowledge Acquisition
There are some commonsense knowledge bases (KBs) in the
AI community, e.g. Cyc [Lenat, 1995] and ConcepNet [Liu
and Singh, 2004]. Cyc is a knowledge base contains every-
day commonsense knowledge. Typical pieces of knowledge
represented in Cyc are “every tree is a plant” and “plants die
eventually”. ConceptNet is a semantic network containing
lots of things computers should know about the world. It is
built from nodes representing words or short phrases of nat-
ural language, and relationships are labeled between them.
For example, the triple (learn, MotivatedByGoal, knowledge)
indicates that “we would learn because we want knowledge”.

These commonsense KBs are well constructed, howev-
er, the event space they defined is too large. In this paper,
we aim to extract commonsense knowledge by restricting
the event space. Figure 3 shows the framework of the pro-
posed knowledge acquisition method, which includes vocab-
ulary construction, query searching, dependency parsing and
subject-object matching modules.

Text corpus

Vocab Query Searching

Sentences

Results

Subject-Object
Matching

Dependency 
Parsing

Figure 3: Automatic knowledge acquisition method.

3.1 Vocabulary Construction
This paper constructs a vocabulary with 12,500 most com-
monly used words and phrases, which contains 5000 verbs,
5000 nouns and 2500 adjectives. The vocabulary construction
process starts by conducting part-of-speech tagging on a large
Wikipedia corpus. After it, we count the term frequencies
for all the words and phrases in different part-of-speech cate-
gories. Then, all the corpus based words and phrases would
be left after filtered by the vocabulary of WordNet [Miller,
1995] and ConceptNet [Liu and Singh, 2004].

3.2 Query Searching
We generate queries by pairing any two phrases. Typical
queries are “(rob, arrest)” and “(eat food, happy)”. In this
work, we define 4 patterns for each phrase based on two se-
mantic dimensions, i.e., positive-negative and active-passive
[Osgood, 1952]. Using word rob for example, it contains
active-positive pattern (rob), active-negative pattern (not rob),
passive-positive pattern (be robbed), and passive-negative
pattern (not be robbed). Therefore, each query has 16 dimen-
sions (see Figure 4). The task to mine the cause-effect pairs
is to get the occurrence numbers for all the possible links.

The goal of query searching is to find all the possible sen-
tences that may contain the input queries. Since the num-
ber of queries is very large, we structure all the queries as a
hashmap and conduct string matching during text scanning.
In detail, the searching program starts by conducting lemma-
tizing, part-of-speech tagging and dependency parsing on the

active, negative

Association Links

rob arrest

active, positive

passive, positive

passive, negative

active, negative

active, positive

passive, positive

passive, negative

Figure 4: The 16 dimensions for a search query.

source corpus. After it, we scan the corpus from the begining
to end. When dealing with each sentence, we will try to find
the matched phrases using the hashmap. This strategy help us
to reduce the complexity to be linear with the corpus size.

3.3 Subject-Object Matching
By conducting dependency parsing on the found sentences,
once we detect one phrase of a query, we check whether that
phrase is associated with a subject or an object. We also
record whether the phrase is positive or negative as well as
active or passive. To decide the cause-effect directions, we
check whether the phrase is linked with connectives (e.g., be-
cause) or not. To extract the cause-effect pairs, we design
a subject-object matching rule: 1) if the two phrases in one
query share the same subject, the relationship between them
is then straightforward; 2) if the subject of one phrase is the
object of the other phrase, then we apply the passive pattern
to the phrase related to object.

Using the query (arrest, rob) as an example. It appears in
“Tom was arrested because Tom robbed the man” (Figure 5).
Since arrest and rob share same subject, and the pattern for
arrest is passive, we will add the number of the specific asso-
ciation link, i.e. link from the (active,positive) pattern of rob
to the (passive,positive) pattern of arrest, by 1.

Figure 5: An example of the dependency parsing result.

4 Neural Association Model (NAM)
4.1 NAM in general
Figure 6 presents the framework of NAM for associating two
events, E1 and E2. In the NAM framework, events are pro-
jected into low-dimensional vector spaces. Deep neural net-
works with multi-layer nonlinearity are used to model how
likely these two events are to be associated. Neural networks
take the embedding of one event E1 as input and compute a
conditional probability Pr(E2|E1) of the other event E2. If
the event E2 is binary (true or false), the NAM models may
use a sigmoid node to compute Pr(E2|E1). If E2 takes mul-
tiple mutually exclusive values, we use a few softmax nodes
for Pr(E2|E1), where it may need to use multiple embed-
dings for E2 (one per value).
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Vector 
space

Event E1

Vector 
space

Event E2

Deep Neural Networks

Association in DNNs
Pr(E2|E1)

Figure 6: The NAM framework in general.

Learning NAMs
Assume we have a set of Nd observed examples (event pairs
{E1, E2}), D, each of which is denoted as xn. This training
set normally includes both positive and negative samples. We
denote all positive samples (E2 = true) as D+ and all neg-
ative samples (E2 = false) as D−. The likelihood function
of a NAM model is defined to be:

L(Θ) =
∑

x+
n∈D+

ln f(x+n ;Θ) +
∑

x−
n∈D−

ln(1− f(x−n ;Θ))

(1)
where f(xn;Θ) denotes a logistic score function derived by
the NAM for each xn. Stochastic gradient descent (SGD)
methods could be used to make a maximum likelihood esti-
mation (MLE). We design two NAM structures with a finite
number of output nodes to model Pr(E2|E1) for any pair of
events, where we have only a finite number of E2. The first
model is a typical DNN that associates antecedent event (E1)
at input and consequent event (E2) at output. The second
model is a relation-modulated neural network. In this work,
all the event pairs have 16 possible cause-effect relationships.

4.2 DNN for NAMs
The first NAM structure is a typical DNN shown in Figure 7.
Given a triple xn = (ei, rk, ej) and its corresponding label
yn (true or false), we cast E1 = (ei, rk) and E2 = ej to
compute Pr(E2|E1) as follows.

f

W(1)

W(2)

W(L) …

out: z(L)

In: a(L)

out: z(2)

In: a(2)

out: z(1)

In: a(1)

Tail entity vector

Association at here

relation vector Head entity vector

Figure 7: The DNN structure for NAMs.

Firstly, we represent head entity phrase ei and tail enti-
ty phrase ej by two embedding vectors v

(1)
i (∈ V(1)) and

v
(2)
j (∈ V(2)). Similarly, relation rk is also represented by

a low-dimensional vector ck ∈ C, which we call a relation
code hereafter. Secondly, we combine the embeddings of the

head entity ei and the relation rk to feed into an (L + 1)-
layer DNN as input. The DNN consists of L rectified linear
(ReLU) hidden layers [Nair and Hinton, 2010]. The input is
z(0) = [v

(1)
i , ck]. During the feedforward process, we have

a(`) = W(`)z(`−1) + b` (` = 1, · · · , L) (2)

z(`) = h
(
a(`)
)
= max

(
0,a(`)

)
(` = 1, · · · , L) (3)

where W(`) and b` represent the weight matrix and bias for
layer ` respectively.

Finally, we propose to calculate a sigmoid score for each
triple xn = (ei, rk, ej) as the association probability using
the last hidden layer’s output and the tail entity vector v

(2)
j :

f(xn;Θ) = σ
(
z(L) · v(2)

j

)
(4)

where σ(·) is the sigmoid function, i.e., σ(x) = 1/(1+ e−x).
All network parameters of this NAM structure, represented

as Θ = {W,V(1),V(2),C}, are jointly learned.

4.3 Relation-modulated Neural Networks (RMNN)
The framework of relation-modulated neural nets (RMNN),
which is very similar to the work of [Xue et al., 2014], is
shown in Figure 8.

Head entity vector

Tail entity vector

f Association at here

W(1)

W(2)

W(L) …

out: z(L)

In: a(L)

out: z(2)

In: a(2)

out: z(1)

In: a(1)

…

B(1)

B(2)

B(L)

B(L+1)

Relation vector

Figure 8: The relation-modulated neural networks (RMNN).

The RMNN uses the same operations as DNNs to project
all entities and relations into low-dimensional continuous s-
pace. In Figure 8, we connect the knowledge-specific relation
code c(k) to all hidden layers in the network. As shown later,
this structure is superior in knowledge transfer learning task.
Therefore, for each layer of RMNNs, instead of using eq.(2),
its linear activation signal is computed from the previous lay-
er z(`−1) and the relation code c(k) as follows:

a(`) = W(`)z(`−1) + B(`)c(k), (` = 1 · · ·L) (5)

where W(`) and B` represent the normal weight matrix and
the relation-specific weight matrix for layer `. At the top-
most layer, we calculate the final score for each triple xn =
(ei, rk, ej) using the relation code as:

f(xn;Θ) = σ
(
z(L) · v(2)

j + B(L+1) · c(k)
)
. (6)

In the same way, all RMNN parameters, including Θ =
{W,B,V(1),V(2),C}, can be jointly learned based on the
above maximum likelihood estimation.
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Schema texts Verb/Adjective 1 Verb/Adjective 2 Verb/Adjective 3
The man couldn’t lift his son because he was so weak weak not lift not be lifted
The man couldn’t lift his son because he was so heavy heavy not lift not be lifted
The fish ate the worm. it was tasty tasty eat be eaten
The fish ate the worm. it was hungry hungry eat be eaten
Mary tucked her daughter Anne into bed, so that she could sleep tuck into bed be tucked into bed sleep
Mary tucked her daughter Anne into bed, so that she could work tuck into bed be tucked into bed work
Tom threw his schoolbag down to ray after he reached the top of the stairs reach top throw down be thrown down
Tom threw his schoolbag down to ray after he reached the bottom of the stairs reach bottom throw down be thrown down
Jackson was greatly influenced by Arnold, though he lived two centuries earlier live earlier influence be influenced
Jackson was greatly influenced by Arnold, though he lived two centuries later live later influence be influenced

Table 1: Examples of the cause-effect WS problems labelled from the whole official WS test set.

5 Experiments
5.1 Dataset
In this paper, we manually selected 70 WS problems that re-
lies on cause-effect reasoning from the WS dataset2. Each
WS problem contains a pronoun (to be resolved) and two
main candidate noun phrases. We labeled all the possible
events linked to all of them. For instanecs, in the sentence
“The man couldn’t lift his son because he was so weak”, we
will identify weak, not lift and not be lifted for he, the man
and son respectively. The commonsense is that someone who
is weak would more likely to be associated to not lift rather
than not be lifted. Table 1 shows some more typical examples.

5.2 Knowledge Acquisition Results
Based on the knowledge acquisition method proposed in this
work, we conduct experiments on a set of corpora. Table 2
presents all the knowledge acquisition results. In this paper,
we named the extracted knowledge as CauseCom. We ex-
tract about 503,359 cause-effect pairs from different corpo-
ra. A typical example is “(rob, active-positive-Cause-passive-
positive, arrest)”, which indicates that a man who rob (i.e., ac-
tive and positive pattern of event “rob”) would cause a result:
be robbed (passive and positive pattern of event “arrest”). To
get better evidences for each associated cause-effect pairs,
this paper calculates pointwise mutual information (PMI) for
them. Figure 9 gives the typical PMI value distribution of the
extracted cause-effect pairs.

Corpus Size #Result pairs
Gigaword [Graff et al., 2003] 3.6B 283,430
Wikipedia 4.0B 105,071
Novels [Zhu et al., 2015] 984M 106,928
BNC [Consortium, 2007] 100M 7,930
CBTest [Hill et al., 2015] 319M 915

Table 2: Knowledge acquisition results on different corpora.

Validation On the Extracted Knowledge
Based on the motivation to design WS questions, there is no
obvious statistical test over text corpora that will reliably dis-
ambiguate WS problems correctly. Indeed, people would not

2http://www.cs.nyu.edu/faculty/davise/
papers/WinogradSchemas/WS.html.
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Dimen-4 (mean:2.6677,var:5.8094)

Figure 9: PMI value distribution of the extracted cause-effect pairs
(in typical 4th dimension).

speak commonsense explicitly. Therefore, to check whether
can we directly extract the exact knowledge for the WS test
set, we make a straightforward validation for the extracted
knowledge. We try to search and compare the statistical val-
ues between the two event pairs of each WS, e.g., “(heavy,
not lift)” and “(heavy, not be lifted)” to answer WS prob-
lems, however, the hit result is 0 out of 70 problems. This
indicates that we cannot answer WS test problems by explic-
itly utilizing the extracted knowledge with searching strategy.
Therefore, the NAM models proposed based on distributed
representation and neural network methods are then used to
answer these WS test set problems.

5.3 Neural Association Model Setup
This paper treats all the 16 dimensions shown in Figure 4 as
distinct relations. So there are 16 relation vectors in the cor-
responding NAM models. Using the extracted cause-effect
pairs, training the NAM models is straightforward. Since
there doesn’t have training and development set for the WS
task, we propose to get the common experimental settings
by making experiments on a self-built development set. We
randomly split 10,000 cause-effect pairs from the extracted
knowledge to be a development set. We then conduct a typ-
ical triple classification experiment, i.e., to answer whether
there is a cause-effect relationship between two events or not.

Relying on the development experiments, this paper find-
s the common experimental settings as follows: 1) for enti-
ty representations, we represent entities by composing from
their word vectors using bag-of-words method. The dimen-
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sions for all word vectors are set to be 100. 2) the dimensions
of all relation codes are set to be 50; 3) for network structures,
we use 3 hidden layers and ReLU as the nonlinear activation
function. Dropout [Hinton et al., 2012] is adopted during
training; 4) during the learning process of NAMs, negative
samples are generated by randomly perturbing positive KB
triples as D− = {(ei, rk, e`)|e` 6= ej ∧ (ei, rk, ej) ∈ D+}.
In our experiments, the number of negative samples is set to
5 for each positive instance; 5) all models are trained using
the SGD algorithm while the learning rate is set to be 0.1.

5.4 Results
Based on the common parameter settings, all the NAM mod-
els, i.e., DNN and RMNN are trained using the extracted
cause-effect pairs. After the training process is finished, we
apply the trained models to answer WS questions directly.
Due to the test set is very small, we make significance test
and report the corresponding p-value for all the experimental
results. Before reporting the results, we need to know that an-
swer accuracy of random guessing is 50% for the WS dataset.

Overall Results
The overall results achieved in this paper are shown in Table
3. From the result, we find the DNN model achieves 65.71%
accuracy with a p-value of 0.006, which is significantly better
than random guessing. At the same time, the RMNN model
achieves 70% accuracy. To the best of our knowledge, this is
the first open result achieved on the WS task (with at least 70
WS questions).

Model Accuracy (%) p-value
Random guessing 50.00 0.284

DNN 65.71 0.006
RMNN 70.00 0.001

Table 3: WS answer accuracy with significance test results.

Detailed Results
To make clear the performances of the NAM models on solv-
ing WS problems, we list a set of detailed results in Table 4.
For all the accuracy numbers of DNN and RMNN, we given
the significance test results with respect to random guessing
correspondingly. From the results, we find all the accuracies
achieved in this paper are larger than 60%. Meanwhile, the
p-values of significance test are all smaller than 0.05, which
means that those results have significant differences with ran-
dom guessing. Moreover, using 3 hidden layers helps the
models perform best.

Network size DNN RMNN
Acc p-val Acc p-val

100-[100*1]-100 60.00 0.021 61.43 0.015
100-[100*2]-100 62.86 0.013 65.71 0.007
100-[100*3]-100 65.71 0.006 70.00 0.001
100-[100*4]-100 61.43 0.017 64.29 0.010

Table 4: Results with different network sizes. For the network size,
100-[100*1]-100 represents that we set 1 hidden layer.

5.5 Final Remarks
Solving WS problems is challenging. We think this work is
a reasonable start. Since the WS task is designed to mea-
sure the progresses in commonsense reasoning, it is possible
to employ logic reasoning methods to build a problem solv-
ing system for it. However, those traditional methods have
very poor scalability and would fail in many real situations.
That’s why all the existing works that employed logic reason-
ing methods to solve WS problems, just solved quite few WS
examples [Schüller, 2014; Bailey et al., 2015]. Meanwhile,
it is too slow to use logic reasoning methods and the perfor-
mance is poor. Besides, they are limited by the corresponding
background commonsense knowledge. On the other hand, in
most cases, we are not expected to extract knowledge online
from the Internet, like the work of [Sharma et al., 2015].

In this work, we relax the problem from complex logic rea-
soning to event association modeling. Modeling the associa-
tion relationships between large number of discrete events is
a fundamental work for AI. To support our motivation, this
paper proposes a knowledge acquisition method to extract as-
sociated cause-effect pairs from text corpora. The knowledge
we constructed in this paper covers a set of common words,
which avoids the data sparseness problem. At the same time,
the NAM model is built based on the distributed representa-
tion and neural network approaches, which has better scal-
ability than traditional logic reasoning methods. Definitely,
NAM is not the only choice for solving WS problems based
on the extracted cause-effect knowledge. However, it pro-
vides us a flexible framework to model the association rela-
tionships between discrete events.

6 Conclusions
This paper focuses on the investigations in the novel Wino-
grad Schema (WS) task. We have started this work to address
the challenge that no usable commonsense knowledge or any
training data exists for the WS task. We propose to address a
set of WS problems by using a knowledge acquisition method
and a general neural association model. To avoid the data s-
parseness issue, the knowledge we aim to collect is the cause-
effect relationships between a collection of most commonly
used words and phrases. Using the proposed method, we ex-
tract large number of cause-effect pairs from various text cor-
pora. The extracted knowledge is then used to train a neu-
ral association model (NAM), which is proposed to encode
the association relationships between any two discrete events.
Based on these, we have successfully built a system for solv-
ing WS problem. This paper were supported by the Strate-
gic Priority Research Program of the CAS (XDB02070006),
the Science and Technology Development of Anhui Province
(2014z02006), and the Fundamental Research Funds for the
Central Universities (WK2350000001).
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