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Abstract
Existing efforts mainly use empirical analysis to
evaluate the effectiveness of crowdsourcing meth-
ods, which is often unreliable across experimental
settings. Consequently, it is of great importance
to study theoretical methods. This work, for the
first time, defines the cost complexity of crowd-
sourcing, and presents two theorems to compute the
cost complexity. Our theorems provide a general
theoretical method to model the trade-off between
costs and quality, which can be used to evaluate
and design crowdsourcing algorithms, and charac-
terize the complexity of crowdsourcing problems.
Moreover, following our theorems, we prove a set
of corollaries that can obtain existing theoretical re-
sults for special cases. We have verified our work
theoretically and empirically.

1 Introduction
Crowdsourcing provides an effective means for solving many
real-world problems, e.g. labeling training data for ma-
chine learning. As crowdsourcing workers are normally non-
experts, the individual contributions from one worker can be
unreliable. In practice, task redundancy is commonly used to
amortize the unreliability in crowdsourcing with extra costs.

Many efforts [Ho et al., 2013; Roy et al., 2015; Yu et al.,
2017; Tran-Thanh et al., 2013] have been made to obtain high
quality results with as few costs as possible, where the qual-
ity is often measured with the result error rate and the costs
are evaluated with the times of querying humans. To evalu-
ate the effectiveness of the proposed methods, prior works
mainly employ experimental analysis. However, the same
methods often exhibit contradicting results in different exper-
iments [Liu et al., 2012; Zhou et al., 2015; Li and Liu, 2015].
For instance, [Zhou et al., 2012] shows that the Dawid &
Skene (DS) model [Dawid and Skene, 1979] outperforms ma-
jority voting (MV) in terms of result accuracy while [Han et
al., 2016] presents exactly reverse results in tasks for acquir-
ing specific knowledge. [Liu et al., 2012] demonstrates that
the homogeneous DS (HDS) model [Raykar et al., 2010] is
better than MV in bluebird dataset while MV is better than
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HDS in rte and temp. Therefore, empirical analysis is not a
reliable means to evaluate crowdsourcing methods for gen-
eral cases, which calls for theoretical research to overcome
such limitations. In this regard, the NSF computing division
[Wing, 2008] considers the development of theoretical tools
for systems involving human computation as one of the five
major challenges that today’s computing faces.

Inspired by the theorectical computer science, some ef-
forts [Shahaf and Amir, 2007; Kulkarni, 2011] concern the
theoretical models involving humans in computation. [Sha-
haf and Amir, 2007] presents a Human-Assisted Turing Ma-
chine (HTM) that models the hybrid computation paradigm
with machines and humans. Basing on HTM, the authors
discuss how to measure human efforts such as the times and
size of human input so as to define the algorithm and prob-
lem complexity, but they do not consider the unreliability
of workers or the trade-off of costs and quality in crowd-
sourcing. Furthermore, [Kulkarni, 2011] discusses the im-
portance of building a theoretical model of computation in-
volving humans in terms of algorithm evaluation, algorithm
comparison and cost quantification. Another line of theoreti-
cal research efforts [Li and Liu, 2015; Wang and Zhou, 2016;
Gao and Zhou, 2016; Gao et al., 2016] focus on estimat-
ing the upper bound on the mean error rate of specific al-
gorithms. [Li and Liu, 2015] gives the upper bound on
the mean error rate with weighted majority voting (WMV).
[Wang and Zhou, 2016] theoretically analyzes the costs and
the result error rate of MV. And [Gao and Zhou, 2016;
Gao et al., 2016] theoretically studies the performance of
the DS model, but ignores the parameter learning that can
greatly affects the result accuracy. [Nushi et al., 2015;
Venanzi et al., 2014] addresses the parameter learning issue
in the context of data sparsity, which is helpful for better al-
gorithm designing. In summary, although existing efforts rec-
ognize the importance of theoretical models in human partic-
ipant computation systems like crowdsourcing, few provide
general theoretical methods for crowdsourcing.

In this work, motivated by the classical computational
complexity, the sample complexity and the PAC theory in ma-
chine learning [Balcan et al., 2010], we study a general the-
oretical approach to understanding the complexity of crowd-
sourcing that is affected by multiple interplaying factors such
as number of workers, worker ability and aggregation meth-
ods. Specifically, we propose the cost complexity of crowd-
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Figure 1: The framework of a crowdsourcing workflow.

sourcing to theoretically address the trade-off of costs and
quality in crowdsourcing. We argue that like computational
complexity, the cost complexity of crowdsourcing is useful
for evaluating, comparing and designing of algorithms, mea-
suring the complexity of crowdsourcing problems and etc.

Our major contributions are as follows:
• We define the cost complexity of crowdsourcing, which

measures how many costs are needed to meet certain
quality requirements. To the best of our knowledge, this
is the first effort to give a formal definition of the crowd-
sourcing complexity that relates costs with quality.
• We give two theorems that can derive the cost complex-

ity of general crowdsourcing. For a specific crowdsourc-
ing algorithm, our method not only can give the theoreti-
cal upper bound on the mean error rate, but can estimate
how many workers to hire for achieving a certain quality
objective. Following the theorems, we also obtain a set
of corollaries that have been verified in existing work.
• Through a set of case studies, we have verified our

method through theoretical analysis and experimen-
tal evaluation on real-world datasets. The outcome
explains the contradicting results in previous work.
For instance, when each worker completes more than

1
(ηMV−ηHDS)2

ln 2|H|
δ ) tasks, HDS will outperform MV;

otherwise, MV is better.

2 Overview of Crowdsourcing Workflows
Fig.1 shows the general framework of crowdsourcing work-
flows consisting of task allocation and result inference.

2.1 Task Allocation
Task allocation involves worker pool construction and task
assignment. First, a high-quality worker pool can be built
by filtering out low-ability workers with qualification tests
[AMT, 2017; Ipeirotis and Gabrilovich, 2014; Marcus et al.,
2015] or by analyzing historical logs [Jung, 2014; Ambati et
al., 2011]. Then the distribution of the workers in worker pool
over ability can be obtained through qualification tests or log
analysis by statistical methods. For instance, Quizz [Ipeiro-
tis and Gabrilovich, 2014] obtains the Beta distribution of
worker ability with qualification tests. Next, in task assign-
ment, a task is assigned to a certain number of workers se-
lected from the work pool with a specific strategy. Then with
the constructed worker pool and the adopted task assignment
strategy, we can obtain the distribution of participating work-
ers over ability (denoted by W) in task processing. And for
result inference,W can be considered the prior knowledge.

Assume that there are m workers and n tasks. We denote
the ground truth set by Y = {yj |0 < j < n}, and the truth
answer to task j by yj that takes on a value in a candidate an-
swer setA = {0, · · · ,K − 1}. Let X = {xij |i ≤ m, j ≤ n}
be the answer set of n tasks from m workers, xij be the an-
swer given by worker i to task j, and Xj denote the answer
set of task j. We use the confusion matrix in (1) to character-
ize workers’ abilities.

πijkl = P(xij = l|yj = k), (1)

which satisfies
∑L
l=1 π

ij
kl = 1. Given yj = k, xij is generated

by a multinomial distribution with πijk∗ = (πijk1, · · · , π
ij
kL).

Thus the three-dimensional matrix π(i) = [πijkl] denotes the
abilities of worker i in all tasks. After task allocation, we
may not know π, but we can know its distributionW .

2.2 Result Inference
Result inference is to infer the truth result of a task by aggre-
gating the answers. There are mainly two lines of work. 1)
Voting. Majority voting, as the simplest voting method, infers
the final result by simply counting the votes for each alter-
native answer [Snow et al., 2008; Ipeirotis and Gabrilovich,
2014]. Though simple, it suffers from being error-prone
due to the ignorance of the difference of workers’ abili-
ties and other parameters. In light of this, weighted ma-
jority voting [Li and Liu, 2015] incorporates workers’ abil-
ities into majority voting. Specifically, it assigns different
weights to votes according to workers’ abilities that are un-
known parameters. 2) Probabilistic approach. Probabilis-
tic generative models containing unknown parameters (e.g.
worker ability) are employed to specify workers’ perfor-
mance on tasks, and then the parameters are estimated (pa-
rameter learning), finally the answers are aggregated through
model inference, e.g. inferring the final result by using EM
algorithm for parameter estimation of probabilistic genera-
tive models [Dawid and Skene, 1979; Raykar et al., 2010;
Salek et al., 2013].

Without loss of generality, we define a unified aggregation
function f : A|Xj | → A as follows:

f(Xj) = argmax
k∈A

m∑

i=1

Asj(i, k, xij), (2)

where Asj(i, k, xij) is the aggregation score when worker i
gives answer xij ∈ A to task j the ground truth of which is
k ∈ A. (2) is a universal representation of result inference.
For majority voting, we have Asj(i, k, xij) = I(xij = k),
where I(·) is an indicator function; and for weighted majority
voting, Asj(i, k, xij) = viI(xij = k), where vi is the weight
of worker i which can be obtained with machine learning. In
probabilistic methods (e.g. DS model), Asj(i, k, l) = log πijkl
(we use l to mark xij), where πijkl ∈ π(i) denotes the worker
ability that needs to be estimated with machine learning.

LetD denote the distribution of the ground truth among the
candidate answers. We define the loss function to measure the
mean error rate of f as follows:

L(D,W,Y)(f) =
1

n

n∑

j=1

P{f(Xj) 6= yj}. (3)
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However, to evaluate the effectiveness of f , we first need
to learn the unknown parameters in f . Straightforwardly, the
more workers’ answers we have, the better we can learn the
parameters of f , which is exactly what sample complexity ad-
dresses. In computational learning theory, probably approxi-
mately correct (PAC) learning is a framework for mathemat-
ical analysis of the sample complexity of machine learning
algorithms. H is a set of answer aggregation functions with
different parameters, the input and output of which areX and
Y respectively. H is called the hypothesis class and every
member inH is called a hypothesis. f is an unknown answer
aggregation function f : A|Xj | → A. For simplicity, it is as-
sumed that f ∈ H, which is called the realizability assump-
tion. A learner is given access to an oracle EX(D,W, f),
which outputs aggregated answers one at a time randomly
and independently according to D, W and f . The goal is to
learn f from H so that the corresponding parameters can be
correctly learned.
S = (X1, X2, · · ·Xn) is a finite sequence of answers set

for all tasks. This is the learner’s input and is generated by n
calls to EX(D,W, f). The learner’s output is h ∈ H, h is
the answer aggregation function with the estimated value of
parameters. To measure the effectiveness of the learner, we
define the error of a function h as follows:

L(D,W,f)(h) = P(D,W){h(Xj) 6= f(Xj)}. (4)
(4) denotes the probability that h disagrees with f on distribu-
tion D andW . Ideally, h agrees with f in the whole domain,
namely, L(D,W,f)(h) = 0. That is to say the unknown pa-
rameters are accurately learned, and the final error rate only
depends on answer aggregation function. For instance, ma-
jority voting can be viewed as such a special case, where all
parameters are known in f .

3 The Cost Complexity of Crowdsourcing
We use the terminology, cost complexity, to denote the costs
of solving a crowdsourcing task. Specifically, it measures the
number of task requests for human workers. Different from
the traditional computational complexity, the cost complexity
of crowdsourcing is closely related to the quality requirement
and workers’ abilities. This section introduces two formal
definitions of the cost complexity of crowdsourcing given a
certain quality constraint on the mean error rate and the dis-
tribution over workers’ abilities.

Let U denote the set of workers selected by task allocation.
Definition 1. If there is a learning algorithm A(m′, n′, δ)
that outputs an aggregation function h and three values
ηU ∈ R, εn′ ∈ R, ηm′ ∈ R after making at most c
(c = m′ × n′) task requests, such that for any answer ag-
gregation function f ∈ H, ε ∈ (0, 1/2), η ∈ (0, 1/2),
δ ∈ (0, 1/4), for any m′ ≥ 0, any worker set U , we have
P{L(D,W,f)(h) ≤ εn′} ≥ 1 − δ and L(D,W,Y)(f) ≤ ηU ;
and for any ηm′ = exp(EW(ln(ηU )) and c ≥ OW(ε, δ, f, η),
we have {

P{L(D,W,f)(h) ≤ εn′ ≤ ε} ≥ 1− δ,
L(D,W,Y)(f) ≤ ηU and ηm′ ≤ η. (5)

Then we call OW(ε, η, δ, f) the cost complexity of crowd-
sourcing with worker distributionW over abilities.

EssentiallyOW measures how many answers should be so-
licited from workers for learning an aggregation function and
infering the final crowdsourcing results accurately. εn′ and
ηm′ respectively specify the error rate bounds of the parame-
ter learning of the aggregation function f and the aggregated
results. ηU is the error rate bound of the aggregated results
determined by the worker set U and is related to ηm′ . Ac-
tually OW borrows the concept of sample complexity from
machine learning. OW depends on m′, the total number of
workers, and n′, the number of tasks a worker completes.

A special case of Definition 1 is when all workers exhibit
the same abilityw, which is not unusual because many micro-
tasks do not require much expertise and all workers can fulfill
the tasks. For this case, we define Ow as follows:
Definition 2. If there is a learning algorithm A(m′, n′, δ)
that outputs an aggregation function h and two values ηm′ ∈
R, εn′ ∈ R after making at most c (c = m′ × n′) task re-
quests, such that for any answer aggregation function f ∈ H,
ε ∈ (0, 1/2), η ∈ (0, 1/2), δ ∈ (0, 1/4), for any m′ ≥ 0,
n′ ≥ 0, we have P{L(D,w,f)(h) ≤ εn′} ≥ 1 − δ, and
L(D,w,Y)(f) ≤ ηm′ ; and for any c ≥ Ow(ε, δ, f, η), we have

{
P{L(D,w,f)(h) ≤ εn′ ≤ ε} ≥ 1− δ,
L(D,w,Y)(f) ≤ ηm′ ≤ η. (6)

Then we call Ow(ε, η, δ, f) the cost complexity of crowd-
sourcing with identical workers’ ability w.

From Definition 2, we know that ηm′ and εn′ only de-
pends on m′ and n′ respectively. A simple scenario is
when f has no unknown parameters (e.g., MV), which means
L(D,w,f)(h) = 0 always hold. In that case, c only depends on
m′, and OW only depends on ηm′ .

Note that our cost complexity specifies the max number of
workers needed to achieve an error rate bound. In other word,
c is at least OW , but we do not require workers complete the
same number of tasks. n′ can be regarded as the min number
of tasks a worker must complete. In reality, if a worker com-
pletes over n′ tasks, the practical cost is less than that given
by the cost complexity for a quality constraint.

4 Main Results
The cost complexity is closely related to the quality require-
ments measured by error rate ηm′ and εn′ . This section first
presents Theorem 1 and Theorem 2 to compute OW and the
upper bound on the error rate respectively, which are the main
contributions of this work.
Theorem 1. Given a task j (1 ≤ j ≤ n) processed by m
workers, we can obtain an answer set Xj = {xij |i ≤ m}.
For simplicity, we use l to mark xij . Worker i has ability
πij = [πijkl] when processing task j, πijkl is the performance
when worker i processes task j the truth answer of which is
k ∈ A. Let f(Xj) denote the aggregation method. Then the
complexity OW can be computed as follows:

OW(ε, η, δ, f) =− 2

ε2(1− 2η)2
ln(

2|H|
δ

)

×
2(ln η

K−1 )(a− b)2 − DW(µi)

E2
W(µi)

, (7)
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where µi =
∑
l π

ij
kl(Asj(i, g, l)−Asj(i, k, l)) is a value

specific to worker i, Asj(i, g, l) ∈ [a, b], and g represents
any alternative answer other than the truth (i.e. g 6= k), and
DW(µi) and EW(µi) are the variance and expectation of µi
respectively.

Remarks. This theorem provides a theoretical means to
estimate how many queries of human workers should be made
for meeting certain quality requirements. Its benefits are
three-fold. First, given a set of workers with distribution W
of workers over ability, Theorem 1 can be used to compare
the performance of two result aggregation functions. Second,
given a result aggregation function, Theorem 1 helps evaluate
the performance of different task allocation methods. Third,
when both task allocation and result aggregation methods are
given, Theorem 1 can estimate how many workers should be
hired. In all, Theorem 1 provides a fundamental tool for de-
signing and evaluating general crowdsourcing solutions.
OW depends on the error rate bounds ( ηU and εn′ ) of re-

sult inference and the parameter learning of the aggregation
function. To prove Theorem 1, we first give Theorem 2 that
analyzes the error rate bound of result inference.
Theorem 2. For the crowdsourcing tasks described in Theo-
rem 1, the error rate of the aggregated results can be upper-
bounded as follows:

L(D,W,Y)(f) ≤ (K − 1) exp (− (
∑m
i=1 µi)

2

2m(a− b)2 ), (8)

where K is the size of the answer set A.

Proof. First, we give a general function to denote an aggre-
gation process.

f(Xj) = argmax
k∈A

m∑

i=1

Asj(i, k, xij).

Let Asj(i, k, l) ∈ [a, b], Zgki = Asj(i, g, l)−Asj(i, k, l),
then Zgki ∈ [a − b, b − a] and the expectation is µi =∑
l π

ij
kl(Asj(i, g, l)−Asj(i, k, l)). First we apply the union

bound to get (9) and obtain (10) with Hoeffding’s inequality.
We get the error rate bound as follows:

L(D,W,Y)(f) = P{g 6= k,
m∑

i

Zgki ≥ 0}

≤
g 6=k∑

g∈A
P{

m∑

i

Zgki ≥ 0} (9)

≤
g 6=k∑

g∈A
exp (−

(El
m∑
i=1

(Asj(i, g, l)−Asj(i, k, l)))2

2
m∑
i=1

(a− b)2
) (10)

=

g 6=k∑

g∈A
exp (−

(
m∑
i=1

∑
l

πijkl(Asj(i, g, l)−Asj(i, k, l)))2

2m(a− b)2 )

≤(K − 1) exp (− (
∑m
i=1 µi)

2

2m(a− b)2 ).

Thus, L(D,W,Y)(f) ≤ (K − 1) exp (− (
∑m
i=1 µi)

2

2m(a−b)2 ).

Theorem 2 provides a general method to compute the up-
per bounds of error rates ηU in an aggregation function with
the worker set U . Except for result inference, task allocation
determines worker distribution W and can greatly affect the
crowdsourcing results, and this is what Theorem 1 addresses
on the basis of Theorem 2.

For identical worker abilities, we can generalize Theorem
2 to obtain Corollary 1 given in [Wang and Zhou, 2016].
Corollary 1. Given m′ workers whose abilities are i.i.d. ac-
cording to parameters q = [q0, q1, · · · , qK−1], the ground-
truth label i∗ ∈ {0, 1, · · · ,K − 1} and γ = mini6=i∗(qi∗ −
qi) > 0. For the error rate of the aggregated results to be
upper-bounded by η, it is sufficient that

m′ ≥ 2

γ2
ln(

K − 1

η
). (11)

We can further generalize Theorem 2 by using the
weighted majority voting (WMV) with weight Kŵi − 1 as
the aggregation function. Then we can obtain Corollary 2
that is given in [Li and Liu, 2015].
Corollary 2. For a set of m workers U , using the weighted
majority voting with weights Kŵi − 1, aggregation result ŷj
of task j. And an unbiased estimator of the workers’ ability
E(ŵi) = wi that satisfies {wi}i≤K−1. If the workers’ la-
bels are generated independently according to the following
probability:

πij =




wi
1−wi
K−1 · · · 1−wi

K−1
1−wi
K−1 wi · · · 1−wi

K−1
· · · · · · · · · · · ·
1−wi
K−1

1−wi
K−1 · · · wi


 . (12)

Then we have

1

n

m∑

j=1

P{ŷj 6= yj} ≤ exp(−
2F (U)2

K2(K − 1)2
+ ln(K − 1)),

where F (U) = 1√
m

∑
i≤m(Lwi−1)2 .

With Corollary 2, we can learn that weighted majority vot-
ing can achieve the same error rate as majority voting if the
weight (worker ability) is a constant value.

However, if workers’ abilities are unknown, analyzing the
weighted majority voting entails considering the parameter
learning process. In practice, the parameter learning is indis-
pensable for many aggregation methods. And it is difficult
to learn the unknown parameters 100% accurately due to the
limitation of dataset and machine learning algorithms.

Regarding Definition 1, OW involves parameter learning
which also affects the error rates of aggregation method with
estimated value of unknown parameters. Thus, we use PAC
learnability to analyze the mean error rate of aggregation
methods. First, we formulate the error rate of inferred results
by considering parameter learning.

err(h) = L(f,Y)(1− L(h,f)) + (1− L(f,Y))L(h,f)

= (1− 2L(h,f))L(f,Y) + L(h,f), (13)
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where L(f,Y) and L(h,f) are the abbreviations of
L(D,W,Y)(f) and L(D,W,f)(h) respectively. In some
special cases, some aggregation methods, such as majority
voting, do not entail parameter learning due to the absence of
parameters in their aggregation rules. In this case, err(h) is
identical to L(f,Y).

To prove Theorem 1, we still need to introduce the Valiant’s
PAC (Lemma 1) to compute n′ for achieving the error rate εn′
of parameter learning.
Lemma 1. [Angluin and Laird, 1988] Let H be a finite hy-
pothesic class, let δ, ε ∈ (0, 1), η ∈ (0, 12 ) and let n′ be an
integer that satisfies

n′ ≥ 2

ε2(1− 2η)2
ln(

2|H|
δ

). (14)

Then, for any f andD, for which the realizability assumption
holds, given a sequence S of size n′, if a hypothesis h ∈ H
minimizes err(h), we have

P{L(D,W,f)(h) ≥ ε} ≤ δ. (15)

Although the parameter space can be infinite, the hypothe-
sis space H is finite. For instance, given n tasks, m workers
and answer set A(|A| = K), a hypothesis h ∈ H is actually
a mapping from workers’ answer set to a set of truth answers.
Thus the size of the hypothesis space is |K|n at most. Then
we can use VC theory [McAllester, 1998] to obtain |H|.

As for crowdsourcing tasks, the result aggregation method
can be viewed as a process of machine Learning. The error
rate is η, if the parameters are accurately learned. In particu-
lar, err(h) is affected by the error rate of aggregation rule η
(i.e. err(h) = L(f,Y)) when the parameter learning process
generates no error, i.e. err (Lh,f) = 0). Most existing litera-
tures analyze the result aggregation rule with the impractical
assumption that L(D,W,f)(h) = 0.

When each worker has the identical ability (i.e., w1 =

w2, · · · , wm), for task j, more than (b−a)2
2µ2
i

ln |L|−1η

workers can generate the error rate less than η with
the respect to the aggregation rule, where µi =∑L
l=1 π

ij
kl(Asj(i, g, l)−Asj(i, k, l)).

Next we employ PAC learnability to prove Theorem 1.

Proof of Theorem 1. Basing on Theorem 2, we set µi =∑
l π

ij
kl(Asj(i, g, l)−Asj(i, k, l)). Workers’ abilities vary

with different workers in Definition 1. We can obtain

L(f,Y) ≤ (K − 1) exp (− (
∑m′

i=1 µi)
2

2m′(a− b)2 ) = ηU .

Since ηm′ = exp(EW(ln(ηU )) and ηm′ ≤ η in Definition 2,
we can obtain

EW(
m∑

i=1

µi)
2 ≥ −2m′(ln η

K − 1
)(a− b)2.

Based on the property of variance EW(
∑m
i=1 µi)

2 −
E2
W(
∑m
i=1 µi) = DW(

∑m
i=1 µi), we get

E2
W(

m′∑

i=1

µi) + DW(
m′∑

i=1

µi) ≥ −2m(ln
η

K − 1
)(a− b)2.

Since all workers come from the same worker pool following
a certain distributionW over ability. Meanwhile, all EW(µi)s
are equal, all DW(µi)s are fixed, and workers are independent
of each other. Then we can get

m′
2E2
W(µi) +m′DW(µi) ≥ −2m′(ln

η

K − 1
)(a− b)2.

It can be simplified as

m′ ≥ −
2(ln η

K−1 )(a− b)2 − DW(µi)

E2
W(µi)

.

Since the aggregation function contains parameters, we need
parameter learning. Then based on Lemma 1, we get

n′ ≥ 2

ε2(1− 2ηb)2
ln(

2|H|
δ

).

As c = m′n′ in Definition 1, we can derive OW
− 2
ε2(1−2η)2 ln(

2|H|
δ )

2(ln η
K−1 )(a−b)2−DW(µi)

E2
W(µi)

.

Corollary 3. Let f(Xj) be the aggregation function of
crowdsourcing for each task j (Asj(i, g, l) ∈ [a, b]), suppose
all workers have identical ability π, then the cost complexity
of crowdsourcing Ow can be computed as follows:

Ow(ε, η, δ, f) = 2

ε2(1− 2η)2
ln(

2|H|
δ

)

× (b− a)2
2w2

ln
K − 1

η
, (16)

where w =
∑
l π

ij
kl(Asj(i, g, l)−Asj(i, k, l)) is the same

for all workers.

This section mainly gives a general method to compute the
cost complexity of crowdsourcing, which is determined by
the distribution of worker over ability, the parameter learn-
ing and answer aggregation in result inference. Theorem 1
and 2, the major contributions of this work, provide a method
to compute the cost complexity and the upper bound on the
mean error rate respectively for general crowdsourcing work-
flows. Corollary 1-3 give some interesting results that are
obtained by generalizing the two theorems to special cases.

Due to space limitation, the proofs of Corollary 1-3 are
shared on the web 1.

5 Case Studies
In this section, we aim at verifying the effectiveness of The-
orem 1 through applying it to three representative result ag-
gregation algorithms, including MV, WMV and HDS. Specif-
ically, we conducted case studies both theoretically and em-
pirically.

5.1 Theoretical Analysis
First, for MV, all parameters with f are known. In other
words, h is equal to f . Then, we have Corollary 4.

1Link to the proofs of Corollary 1-3: https://goo.gl/ZhKddo
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5.1 Theoretical analysis
With HDS model, the workers’ abilities are represented as
Equation (12). Then, as for MV, there is no unknown param-
eters with f . In other words, h is equal to f , and there is
no parameter learning process in the result inference. More-
over, c in Definition 1 depends onm′ (c = m′), andOW only
depends on η. Then, we have Corollary 4.
Corollary 4. Let µi = 1−2wi, then the cost complexityOW
with MV f = argmaxk

∑m
i=1 I(xij = k) can be computed

as follows:

OW(ε,η, δ, f) = −
(2 ln η

K−1 )− DW(µi)

E2
W(µi)

. (17)

Similarly, based on aggregation method
argmaxk

∑
i wiI(Zij = k) of WMV, we can obtain

Corollary 5:
Corollary 5. Let µi = wi(1− 2wi), then the cost complexity
OW with WMV (f = argmaxk

∑m
i=1 wiI(xij = k)) can be

computed as follows:

OW(ε, η, δ, f) =− 2

ε2(1− 2η)2
ln(

2|H|
δ

)

×
2(ln η

K−1 )− DW(µi)

E2
W(µi)

. (18)

Furthermore, for HDS, we have Corollary 6:
Corollary 6. Let µi mark ln wi

1−wi (1− 2wi), f(Xj) be the
aggregation function of HDS, then the cost complexity of
crowdsourcing (OW ) can be computed as follows.

OW(ε, η, δ, f) =− 2

ε2(1− 2η)2
ln(

2|H|
δ

)

×
2(ln η

K−1 )− DW(µi)

E2
W(µi)

. (19)

In Equation (13), there involve the two types of error rate
including parameter learning and answer aggregation. Sup-
pose we fix the number of workers processing one task, then
we can obtain the the upper bound of error rate in answer
aggregation function. As shown in Fig.2, we plot the up-
per bound on the mean error rate obtained theoretically from
the three algorithms including MV, WMV and HDS. We can
observe that the upper bound on the mean error rate in MV
is stable (i.e. the error rate upper bound is ηMV) varying

with the number of tasks processed by each worker. While
the the error rate upper bound with WMV/HDS decreases as
number of tasks grows, and WMV outperforms HDS. When
the number of tasks processed by each worker is less than

1
(ηMV−ηWMV)2 ln

2|H|
δ ( 1

(ηMV−ηHDS)2
ln 2|H|

δ ), MV outperforms
WMV/HDS, which well explains the contradicting results in
existing experimental results [Zhou et al., 2012] and [Han et
al., 2016].

Note: as Corollary 4-6 can be proved by simply substitut-
ing the expectation and variance of the worker distribution
over ability (i.e., (12) into Theorem 1, we omit the proofs.

5.2 Experimental Analysis
Here we present the experimental analysis of error rates with
two real-world crowdsourcing datasets: dog [Zhou et al.,
2012] and temp [Snow et al., 2008]. The maximum numbers
of tasks processed by a worker are 345 and 462 respectively
for the two datasets. For each dataset, we first divided the
answers into subsets according to worker IDs, then varied the
number of tasks that a worker processes. Next we inferred the
results with three algorithms including MV, WMV and HDS,
and we computed the corresponding error rate. The results are
plotted in Fig.3 and Fig.4, which demonstrate similar trends
to our theoretical analysis shown in Fig.2.

6 Conclusion
In this work, we study the computational complexity of gen-
eral crowdsourcing workflows in terms of costs that are mea-
sured by the times of querying human workers. We first
present an overview of general crowdsourcing workflows that
mainly involve two steps including task allocation and result
inference. Then borrowing the sample complexity from ma-
chine learning, we give two definitions of the cost complex-
ity of crowdsourcing, i.e. OW and Ow, for different worker
distribution over workers’ abilities. Third, we present two
theorems to provide a theoretical method to compute the cost
complexity and the upper bound on the mean error rate re-
spectively for general crowdsourcing workflows. We further
generalize our theoretical results to special cases and obtain
a set of corollaries that have been given in existing work. Fi-
nally, to verify the effectiveness of our methods, we present a
set of case studies for three representative answer aggregation
methods both theoretically and empirically, and the outcome
explains the existing contradicting experimental results. In
summary, our work benefits crowdsourcing in terms of de-
signing and evaluating crowdsourcing solutions.
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5.1 Theoretical analysis
With HDS model, the workers’ abilities are represented as
Equation (12). Then, as for MV, there is no unknown param-
eters with f . In other words, h is equal to f , and there is
no parameter learning process in the result inference. More-
over, c in Definition 1 depends onm′ (c = m′), andOW only
depends on η. Then, we have Corollary 4.
Corollary 4. Let µi = 1−2wi, then the cost complexityOW
with MV f = argmaxk

∑m
i=1 I(xij = k) can be computed

as follows:

OW(ε,η, δ, f) = −
(2 ln η

K−1 )− DW(µi)

E2
W(µi)

. (17)

Similarly, based on aggregation method
argmaxk

∑
i wiI(Zij = k) of WMV, we can obtain

Corollary 5:
Corollary 5. Let µi = wi(1− 2wi), then the cost complexity
OW with WMV (f = argmaxk

∑m
i=1 wiI(xij = k)) can be

computed as follows:

OW(ε, η, δ, f) =− 2

ε2(1− 2η)2
ln(

2|H|
δ

)

×
2(ln η

K−1 )− DW(µi)

E2
W(µi)

. (18)

Furthermore, for HDS, we have Corollary 6:
Corollary 6. Let µi mark ln wi

1−wi (1− 2wi), f(Xj) be the
aggregation function of HDS, then the cost complexity of
crowdsourcing (OW ) can be computed as follows.

OW(ε, η, δ, f) =− 2

ε2(1− 2η)2
ln(

2|H|
δ

)

×
2(ln η

K−1 )− DW(µi)
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. (19)

In Equation (13), there involve the two types of error rate
including parameter learning and answer aggregation. Sup-
pose we fix the number of workers processing one task, then
we can obtain the the upper bound of error rate in answer
aggregation function. As shown in Fig.2, we plot the up-
per bound on the mean error rate obtained theoretically from
the three algorithms including MV, WMV and HDS. We can
observe that the upper bound on the mean error rate in MV
is stable (i.e. the error rate upper bound is ηMV) varying

with the number of tasks processed by each worker. While
the the error rate upper bound with WMV/HDS decreases as
number of tasks grows, and WMV outperforms HDS. When
the number of tasks processed by each worker is less than

1
(ηMV−ηWMV)2 ln

2|H|
δ ( 1

(ηMV−ηHDS)2
ln 2|H|

δ ), MV outperforms
WMV/HDS, which well explains the contradicting results in
existing experimental results [Zhou et al., 2012] and [Han et
al., 2016].

Note: as Corollary 4-6 can be proved by simply substitut-
ing the expectation and variance of the worker distribution
over ability (i.e., (12) into Theorem 1, we omit the proofs.

5.2 Experimental Analysis
Here we present the experimental analysis of error rates with
two real-world crowdsourcing datasets: dog [Zhou et al.,
2012] and temp [Snow et al., 2008]. The maximum numbers
of tasks processed by a worker are 345 and 462 respectively
for the two datasets. For each dataset, we first divided the
answers into subsets according to worker IDs, then varied the
number of tasks that a worker processes. Next we inferred the
results with three algorithms including MV, WMV and HDS,
and we computed the corresponding error rate. The results are
plotted in Fig.3 and Fig.4, which demonstrate similar trends
to our theoretical analysis shown in Fig.2.

6 Conclusion
In this work, we study the computational complexity of gen-
eral crowdsourcing workflows in terms of costs that are mea-
sured by the times of querying human workers. We first
present an overview of general crowdsourcing workflows that
mainly involve two steps including task allocation and result
inference. Then borrowing the sample complexity from ma-
chine learning, we give two definitions of the cost complex-
ity of crowdsourcing, i.e. OW and Ow, for different worker
distribution over workers’ abilities. Third, we present two
theorems to provide a theoretical method to compute the cost
complexity and the upper bound on the mean error rate re-
spectively for general crowdsourcing workflows. We further
generalize our theoretical results to special cases and obtain
a set of corollaries that have been given in existing work. Fi-
nally, to verify the effectiveness of our methods, we present a
set of case studies for three representative answer aggregation
methods both theoretically and empirically, and the outcome
explains the existing contradicting experimental results. In
summary, our work benefits crowdsourcing in terms of de-
signing and evaluating crowdsourcing solutions.
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5.1 Theoretical analysis
With HDS model, the workers’ abilities are represented as
Equation (12). Then, as for MV, there is no unknown param-
eters with f . In other words, h is equal to f , and there is
no parameter learning process in the result inference. More-
over, c in Definition 1 depends onm′ (c = m′), andOW only
depends on η. Then, we have Corollary 4.
Corollary 4. Let µi = 1−2wi, then the cost complexityOW
with MV f = argmaxk

∑m
i=1 I(xij = k) can be computed

as follows:

OW(ε,η, δ, f) = −
(2 ln η

K−1 )− DW(µi)

E2
W(µi)

. (17)

Similarly, based on aggregation method
argmaxk

∑
i wiI(Zij = k) of WMV, we can obtain

Corollary 5:
Corollary 5. Let µi = wi(1− 2wi), then the cost complexity
OW with WMV (f = argmaxk

∑m
i=1 wiI(xij = k)) can be

computed as follows:

OW(ε, η, δ, f) =− 2

ε2(1− 2η)2
ln(

2|H|
δ

)

×
2(ln η

K−1 )− DW(µi)

E2
W(µi)

. (18)

Furthermore, for HDS, we have Corollary 6:
Corollary 6. Let µi mark ln wi

1−wi (1− 2wi), f(Xj) be the
aggregation function of HDS, then the cost complexity of
crowdsourcing (OW ) can be computed as follows.

OW(ε, η, δ, f) =− 2

ε2(1− 2η)2
ln(

2|H|
δ

)

×
2(ln η

K−1 )− DW(µi)

E2
W(µi)
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In Equation (13), there involve the two types of error rate
including parameter learning and answer aggregation. Sup-
pose we fix the number of workers processing one task, then
we can obtain the the upper bound of error rate in answer
aggregation function. As shown in Fig.2, we plot the up-
per bound on the mean error rate obtained theoretically from
the three algorithms including MV, WMV and HDS. We can
observe that the upper bound on the mean error rate in MV
is stable (i.e. the error rate upper bound is ηMV) varying

with the number of tasks processed by each worker. While
the the error rate upper bound with WMV/HDS decreases as
number of tasks grows, and WMV outperforms HDS. When
the number of tasks processed by each worker is less than

1
(ηMV−ηWMV)2 ln

2|H|
δ ( 1

(ηMV−ηHDS)2
ln 2|H|

δ ), MV outperforms
WMV/HDS, which well explains the contradicting results in
existing experimental results [Zhou et al., 2012] and [Han et
al., 2016].

Note: as Corollary 4-6 can be proved by simply substitut-
ing the expectation and variance of the worker distribution
over ability (i.e., (12) into Theorem 1, we omit the proofs.

5.2 Experimental Analysis
Here we present the experimental analysis of error rates with
two real-world crowdsourcing datasets: dog [Zhou et al.,
2012] and temp [Snow et al., 2008]. The maximum numbers
of tasks processed by a worker are 345 and 462 respectively
for the two datasets. For each dataset, we first divided the
answers into subsets according to worker IDs, then varied the
number of tasks that a worker processes. Next we inferred the
results with three algorithms including MV, WMV and HDS,
and we computed the corresponding error rate. The results are
plotted in Fig.3 and Fig.4, which demonstrate similar trends
to our theoretical analysis shown in Fig.2.

6 Conclusion
In this work, we study the computational complexity of gen-
eral crowdsourcing workflows in terms of costs that are mea-
sured by the times of querying human workers. We first
present an overview of general crowdsourcing workflows that
mainly involve two steps including task allocation and result
inference. Then borrowing the sample complexity from ma-
chine learning, we give two definitions of the cost complex-
ity of crowdsourcing, i.e. OW and Ow, for different worker
distribution over workers’ abilities. Third, we present two
theorems to provide a theoretical method to compute the cost
complexity and the upper bound on the mean error rate re-
spectively for general crowdsourcing workflows. We further
generalize our theoretical results to special cases and obtain
a set of corollaries that have been given in existing work. Fi-
nally, to verify the effectiveness of our methods, we present a
set of case studies for three representative answer aggregation
methods both theoretically and empirically, and the outcome
explains the existing contradicting experimental results. In
summary, our work benefits crowdsourcing in terms of de-
signing and evaluating crowdsourcing solutions.
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Corollary 4. Let µi = 1 − 2wi, then OW for MV f =
argmaxk

∑m
i=1 I(xij = k) is computed as follows:

OW(ε,η, δ, f) = −
(2 ln η

K−1 )− DW(µi)

E2
W(µi)

. (17)

Similarly, we can obtain Corollary 5 for WMV:

Corollary 5. Let µi = wi(1− 2wi), then OW for WMV
(f = argmaxk

∑m
i=1 wiI(xij = k)) is as follows:

OW(ε, η, δ, f) =− 2

ε2(1− 2η)2
ln(

2|H|
δ

)

×
2(ln η

K−1 )− DW(µi)

E2
W(µi)

. (18)

Furthermore, for HDS, we have Corollary 6:

Corollary 6. Let µi mark ln wi
1−wi (1− 2wi), f(Xj) be the

aggregation function of HDS, then OW is as below:

OW(ε, η, δ, f) =− 2

ε2(1− 2η)2
ln(

2|H|
δ

)

×
2(ln η

K−1 )− DW(µi)

E2
W(µi)

. (19)

In Equation (13), there involve two types of error rate in-
cluding parameter learning and answer aggregation. Suppose
we fix the number of workers processing one task, then we
can obtain the upper bound of error rate in answer aggrega-
tion function. As shown in Fig.2, we plot the upper bound on
the mean error rate obtained theoretically from the three algo-
rithms including MV, WMV and HDS. We can observe that
the upper bound on the mean error rate in MV is stable (i.e.
the error rate upper bound is ηMV) varying with the number of
tasks processed by each worker. While the the error rate upper
bound with WMV/HDS decreases as number of tasks grows,
and WMV outperforms HDS. When the number of tasks
processed by each worker is less than 1

(ηMV−ηWMV)2 ln
2|H|
δ

( 1
(ηMV−ηHDS)2

ln 2|H|
δ ), MV outperforms WMV/HDS, which

well explains the contradicting results in existing work [Zhou
et al., 2012] and [Han et al., 2016].

Note: as Corollary 4-6 can be proved by simply substitut-
ing the expectation and variance of the worker distribution
over ability (i.e., (12)) into Theorem 1, we omit the proofs.

5.2 Emprical Analysis
Here we present the experimental analysis of error rates with
two real-world crowdsourcing datasets: dog [Zhou et al.,
2012] and temp [Snow et al., 2008]. The maximum number
of tasks processed by a worker are 345 and 462 respectively
for the two datasets. For each dataset, we first grouped the
answers into subsets according to worker IDs, then varied the
number of tasks that a worker processes. Next we inferred the
results with three algorithms including MV, WMV and HDS,
and we computed the corresponding error rate. The results
are plotted in Fig.3 and Fig.4. As the results presented here
are about error rate instead of the upper bound on the error
rate shown in Fig.2, the plots fluctuate with the increase of
task amount, but they demonstrate similar trends to our theo-
retical analysis shown in Fig.2.

Note in our experiments, for a specific number of tasks x, if
a worker finishes over x′ (x′ > x) tasks, we will replace that
worker with a group of simulated workers. Each simulated
worker finishes x or (x′ mod x) tasks and the total number
of tasks they finish is exactly x′. For instance, for x = 10, if a
worker finishes 23 tasks in reality, three workers who finishe
10, 10 and 3 tasks respectively will be generated.

6 Conclusion
This work studies the computational complexity of general
crowdsourcing workflows. We first give two definitions of
the cost complexity of crowdsourcing, i.e. OW and Ow, for
different distribution over workers’ abilities. Then we present
two theorems to compute the cost complexity and the upper
bound on the mean error rate respectively for general crowd-
sourcing workflows. We further generalize our theoretical re-
sults to special cases and obtain a set of corollaries that have
been verified in existing work. Finally, to verify the effective-
ness of our methods, we present a set of case studies for three
representative answer aggregation methods both theoretically
and empirically, which explains the existing contradicting ex-
perimental results. In all, our work benefits crowdsourcing in
designing and evaluating crowdsourcing algorithms.
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