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Abstract

Deep neural networks (DNNs) have achieved great
success, but the applications to mobile devices are
limited due to their huge model size and low infer-
ence speed. Much effort thus has been devoted to
pruning DNNs. Layer-wise neuron pruning meth-
ods have shown their effectiveness, which min-
imize the reconstruction error of linear response
with a limited number of neurons in each single
layer pruning. In this paper, we propose a new
layer-wise neuron pruning approach by minimizing
the reconstruction error of nonlinear units, which
might be more reasonable since the error before and
after activation can change significantly. An itera-
tive optimization procedure combining greedy se-
lection with gradient decent is proposed for single
layer pruning. Experimental results on benchmark
DNN models show the superiority of the proposed
approach. Particularly, for VGGNet, the proposed
approach can compress its disk space by 13.6×
and bring a speedup of 3.7×; for AlexNet, it can
achieve a compression rate of 4.1× and a speedup
of 2.2×, respectively.

1 Introduction
In recent years, deep neural networks (DNNs) have made
great success in many areas. However, DNNs usually have
large storage overhead and low inference speed, which hin-
der their application to resource-limited devices, e.g., mobile
phones. Many methods thus have been proposed to com-
press and accelerate DNN models, such as tensor decom-
position [Jaderberg et al., 2014; Zhang et al., 2015], weight
quantization [Courbariaux et al., 2016], weight pruning [Han
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et al., 2015; Guo et al., 2016; Dong et al., 2017] and neu-
ron pruning [Wen et al., 2016; Alvarez and Salzmann, 2016;
Li et al., 2016; Liu et al., 2017; He et al., 2017; Luo et al.,
2017]. The proposed method falls into the class of neuron
pruning.

Different from weight pruning, which produces irregu-
lar sparsity by setting unimportant weights to zeros, neuron
pruning directly removes redundant neurons (or channels for
CNN) and produces a more compact structure. The advan-
tages of neuron pruning mainly include: a) both disk usage
and runtime memory are reduced; b) the pruned model can
be accelerated without the need of extra sparse matrix library
or custom hardware; c) neuron pruning can be combined with
other techniques like tensor decomposition or weight quanti-
zation to further reduce computational cost [He et al., 2017].

Existing neuron pruning methods usually first prune neu-
rons according to some criterion, and then retrain the pruned
model by minimizing some loss function. They can be di-
vided into two classes according to the difference of the em-
ployed loss function. The first class considers the loss of the
entire model, and thus directly prunes all the neurons. For
example, Li et al. [2016] first prune neurons with small abso-
lute sum of incoming weights and then fine-tune the pruned
model to regain accuracy. Some works combine the prun-
ing and the retraining into one framework by adding reg-
ularization terms (which penalize unimportant neurons) to
the loss function, such as group lasso in [Wen et al., 2016;
Alvarez and Salzmann, 2016] and L1 regularization of batch
normalization scaling factor in network slimming [Liu et
al., 2017]. The second class considers the layer-wise loss
and thus prunes neurons layer by layer. Previous works
are mainly to minimize layer-wise linear reconstruction er-
ror (LRE), which is the Euclidean distance between linear
activation (namely values before nonlinear activation func-
tions) of the unpruned model and that of the pruned model.
For example, in the pruning of each layer, He et al. [2017]
use lasso regression to choose informative neurons and Luo
et al. [2017] use a simple greedy step to select important neu-
rons; then both methods use the ordinary least squares ap-
proach to minimize LRE.
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Figure 1: Schematic illustration of our proposed method. We prune
neurons in a layer-wise manner. For each single layer pruning, a
corresponding 3-layer subnetwork (dashed red box) is extracted, and
we prune neurons in the hidden layer by minimizing NRE of the
output layer. After pruning a subnetwork, we move to the next one
like a sliding window.

Layer-wise pruning has been shown more efficient than
pruning all the neurons directly [He et al., 2017; Luo et al.,
2017]. LRE considers the Euclidean distance in the input
space of nonlinear activation functions, which, however, does
not truly reflect the distance in the output space well. Tak-
ing the widely used activation function ReLU [Nair and Hin-
ton, 2010] r(x) = max(0, x) as an example, the Euclidean
distance can be large between two negative input values, but
would become 0 after activation. Thus, nonlinear reconstruc-
tion error (NRE), which computes the Euclidean distance be-
tween nonlinear activation values of the unpruned model and
those of the pruned model, can be a more reasonable metric
than LRE when performing layer-wise pruning.

In this paper, we propose to optimize NRE in layer-wise
neuron pruning. Specifically, we extract a corresponding 3-
layer subnetwork when pruning each single layer as shown
in Figure 1. In this subnetwork, we adopt an iterative pro-
cedure to prune neurons of the hidden layer and minimize
NRE of the output layer. Within each iteration, a greedy se-
lection algorithm is employed to prune unimportant neurons
and a modified gradient descent is used to minimize NRE.
Empirical results on several DNN benchmark models show
that the proposed method can prune more neurons than sev-
eral state-of-the-art neuron pruning methods under the almost
same level of accuracy drop.

The rest of the paper is organized as follows. Section 2
presents the proposed approach. In Section 3, we conduct
experiments. Section 4 finally concludes the paper.

2 The Proposed Approach
In this section, we first present the whole framework of the
proposed approach, then formulate the NRE objective func-
tion and present our method to prune one single layer, and
finally discuss the hyperparameter tuning. Note that although
we demonstrate our approach with fully-connected neural
networks, it can be easily generalized to other types of DNNs.

2.1 Framework
We summarize our neuron pruning method in Algorithm 1.
The core of the algorithm consists of two nested loops. The
outer loop is designed to prune a pre-trained DNN model
from bottom layer to top layer. The inner loop concentrates
on single layer pruning. We solve single layer pruning by
modeling a 3-layer subnetwork. Such modeling enables us
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Figure 2: Notations of a 3-layer subnetwork. Suppose that neuron i
is to be pruned, and there are d neurons in layer l.

to directly utilize off-the-shelf deep learning frameworks as
well as GPUs.

Fine-tuning is helpful to regain the original accuracy. In
order to save time, we do not use fine-tuning after single layer
pruning but only fine-tune the model after pruning all layers.

Although sharing the similar framework, there are two
major differences between the proposed method and previ-
ous layer-wise pruning methods [He et al., 2017; Luo et al.,
2017]: 1) we propose to minimize layer-wise NRE, which is
more reasonable than previously used LRE; 2) to prune neu-
rons of one layer, we present an iterative algorithm and each
iteration includes neuron selection and weights optimization,
which is significantly different from previously used opti-
mization methods.

2.2 Formulation
In this subsection, we introduce the formulation of optimiz-
ing NRE with a limited number of neurons in one single
layer pruning. A DNN model with L layers is represented
as {W (l) : 1 ≤ l ≤ L}, where W (l) denotes the weight
matrix of layer l. We use a(l) to denote nonlinear response in
layer l, and m(l) to denote a binary mask in which its entries
indicate whether a neuron is pruned (value 0) or not (value
1), thus a pruned model can be represented as {W (l),m(l) :
1 ≤ l ≤ L}. Suppose that there are d neurons in layer l, then
we have a(l),m(l) ∈ Rd. We also use W (l)

i to denote the
ith row or the ith column in W (l), which actually indicates
incoming weights or outgoing weights of a neuron. The con-
nection between neuron i in layer l and neuron h in layer l−1
is denoted as W (l)

ih . The notations are illustrated in Figure 2.
For pruning layer l, a 3-layer subnetwork {W (l),W (l+1)}

is extracted. When pruning neurons in layer l, W (l) and
W (l+1) are optimized by minimizing NRE of layer l + 1,
which in fact is the Euclidean distance between two nonlin-
ear outputs:

El+1 =
λ

2N
‖o(l+1) − a(l+1)‖22, (1)

where o(l+1) denotes the nonlinear output of layer l+1 from
the pre-trained model, N is the number of neurons in layer
l + 1, λ is a scaling factor and ‖ · ‖2 denotes `2-norm. Note
that a(l+1) is calculated from W (l+1) and a(l), and neuron
pruning in layer l can be represented by the mask vectorm(l).
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Thus, the optimization problem can be formulated as:

min
m(l),W (l),

W (l+1)

λ

2N
‖o(l+1) − r(W (l+1)(a(l) �m(l)))‖22

s.t. ‖m(l)‖0 ≤ kl,

(2)

where a(l) = r(W (l)(a(l−1) �m(l−1))), r(·) is a nonlinear
activation function, kl is the constraint on neuron numbers
in layer l, � means element-wise multiplication and ‖ · ‖0
denotes the number of nonzeros.

2.3 Optimization
Due to the cardinality constraint kl and the nonlinear function
r(·), Eq. (2) is generally NP-hard, thus we adopt an iterative
greedy selection procedure to optimize Eq. (2). Within each
iteration, the most important kl neurons are first selected to
satisfy the cardinality constraint, after which a modified gra-
dient descent step is used to minimize the NRE. These two
steps are alternatively taken until convergence or halting con-
ditions are satisfied.

Greedy Selection
To measure the importance of neurons, we first analyze the
sensitivity of NRE with respect to each neuron. Unlike previ-
ous works [Li et al., 2016; He et al., 2017] that only consider
a neuron’s incoming or outgoing weights, we take both into
consideration. Concretely, the sensitivity of neuron i in layer
l is computed as:

δ
(l)
i = (a

(l)
i )

2
·
∑

j
(W

(l+1)
ji )

2
, (3)

which indicates the influence to the next layer if pruning neu-
ron i. Note that a(l)i is calculated from a(l−1) and W (l)

i ,
in which a(l−1) is data-dependent, thus the exact calcula-
tion of a(l)i needs to traverse the entire dataset and is time-
consuming. Inspired by [Li et al., 2016], we adopt a heuristic
rule that a(l)i can be approximately determined by its incom-

ing weights, namely
∑

h (W
(l)
ih )

2
. Therefore, the computa-

tion of δ(l)i is updated as:

δ
(l)
i ≈

∑
h
(W

(l)
ih )

2
·
∑

j
(W

(l+1)
ji )

2
, (4)

which is the quadratic sum of incoming weights multiply-
ing the quadratic sum of outgoing weights of neuron i. Af-
ter computing each neuron’s sensitivity, neurons with the kl
largest sensitivity values are selected. We denote the kl-th
largest value in δ(l) as δkl

, then the mask m(l) can be up-
dated by:

m
(l)
i =

{
1 δ

(l)
i ≥ δkl

0 δ
(l)
i < δkl

. (5)

Gradient Descent
Given the binary maskm(l), perhaps the easiest way of prun-
ing neurons is to replace a(l) by a(l)�m(l) in forward prop-
agation. This will make weights connected to pruned neu-
rons keep unchanged, thus cause pruned neurons always to

Algorithm 1 The Proposed Approach

Input: {Ŵ (l), kl : 1 ≤ l ≤ L}: the pre-trained model and
the cardinality constraints on the neurons of each layer.

Output: {W (l),m(l) : 1 ≤ l ≤ L}: weights and neuron
masks of the pruned model

1: Initialize: W (l) ← Ŵ (l),m(l) ← 1, for ∀1 ≤ l ≤ L
2: for l = 1 to L− 1 do
3: Extract a 3-layer subnetwork {W (l),W (l+1)} from

the pruned model
4: repeat
5: Compute sensitivities of neurons by Eq. (4)
6: Updatem(l) by Eq. (5) with ‖m(l)‖0 = kl
7: Forward propagation and compute El+1 by Eq. (7)
8: UpdateW (l+1),W (l) by Eqs. (8) and (9)
9: iter ← iter + 1

10: until converged or iter = itermax

11: end for
12: Fine-tuning

be pruned in the following iterations, since the remaining
weights will probably get larger which results in even larger
sensitivities of the unpruned neurons.

However, it is possible that the above greedy selection
step selects wrong neurons or some selected neurons become
unimportant after a few iterations. So it is desirable to main-
tain a dynamic network structure by making the pruned neu-
rons have chance to come back according to their changing
sensitivities. Inspired by [Guo et al., 2016], which made ef-
ficient weight pruning by incorporating weight splicing, we
modify standard gradient descent as follows:

1) Forward and Backward Propagation. In these two steps,
a masked version ofW (l+1) is used, that is defined as:

m(l) ⊗W (l+1) := {m(l)
i ·W

(l+1)
i : i = 1, · · · , d}, (6)

which in fact sets weights connected to pruned neurons to
zeros. It should be noticed that the unmasked W (l+1) is also
preserved to be used in the gradient update step. Thus, the
NRE in layer l + 1 is computed as:

El+1 =
λ

2N
‖o(l+1) − r(m(l) ⊗W (l+1) · a(l))‖22. (7)

In fact, using masked W (l+1) has the same effect as using
a(l) �m(l), since both of them perform neuron pruning in
forward propagation. However, with masked W (l+1), the
pruned neurons have non-zero activation values in a(l). Thus,
their weights in masked W (l+1) have non-zero gradients, al-
though being zeros themselves.

2) Gradient Update. In this step, an unmasked version of
W (l+1) is used and updated by:

W (l+1) ←W (l+1) − η ∂El+1

∂(m(l) ⊗W (l+1))
, (8)

where η is the learning rate. Note that W (l) is also updated
by a gradient descent step:

W (l) ←W (l) − η ∂El+1

∂W (l)
. (9)
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After updatingW (l+1) andW (l), this iteration is finished.
In the next iteration, the sensitivity of neurons will be recal-
culated and their masks will be updated.

2.4 Hyperparameter Tuning
The cardinality constraint kl plays an important role in sin-
gle layer pruning. Instead of performing exhaustive search,
kl is determined by employing a similar strategy as in [Han et
al., 2015]. First, neurons are sorted by their sensitivities, and
then a trade-off curve is plotted between the accuracy and the
number of pruned neurons. After that, the value of kl is em-
pirically determined when the curve begins to drop quickly.

The scaling factor λ is adopted to rescale the NRE to a de-
sirable range, so that the gradients do not explode or become
too small to minimize NRE efficiently. In order to avoid intro-
ducing extra layer-wise parameters, we use a uniform scaling
factor across all layers of a model.

3 Experiment
In this section, the proposed approach is empirically eval-
uated on three benchmark data sets: MNIST [LeCun et
al., 1998], CIFAR-10 [Krizhevsky and Hinton, 2009] and
ILSVRC2012 [Russakovsky et al., 2015]. We compare
it with four state-of-the-art neuron pruning methods, i.e.,
Weight Sum [Li et al., 2016], Group Lasso [Wen et
al., 2016], Network Slimming [Liu et al., 2017] and
ThiNet [Luo et al., 2017]. Note that ThiNet is also a layer-
wise pruning method as ours. The proposed approach is im-
plemented with the Caffe framework [Jia et al., 2014].

3.1 Experimental Setup
Datasets and DNN Models
For MNIST, a 4-layer MLP with neurons 784-500-300-10 is
used as in [Wen et al., 2016]. For CIFAR-10, we use a VG-
GNet variant [Li et al., 2016] which has 13 convolutional
layers. ILSVRC2012 is a subset of the huge ImageNet data
set and contains over 1.2 million images. For ILSVRC2012,
we use AlexNet with batch normalization [Ioffe and Szegedy,
2015] which has 5 convolutional layers and 3 fully-connected
layers. We train these DNNs from scratch as the baseline
models. The MLP baseline is trained with 18,000 iterations
and an initial learning rate of 0.1 which is multiplied by 0.1
after 1/3 and 2/3 fraction of training iterations. The VGGNet
baseline is trained with 64,000 iterations, and also with an
initial learning rate of 0.1 which is multiplied by 0.1 after 1/2
and 3/4 fraction of training iterations. The AlexNet baseline
is trained using the standard protocol in Caffe. All the base-
line training uses a batchsize of 128, a momentum of 0.9 and
a weight decay of 0.0005.

Implementation Details
The proposed pruning method computes NRE on 5,000 im-
ages randomly selected from the training data set as in [He
et al., 2017]. For single layer pruning, the proposed method
uses 1,500, 400 and 3,000 iterations to minimize NRE for
MLP, VGGNet and AlexNet, respectively. The number of
iterations only takes 1/12, 1/160 and 1/300 of the original
baseline training, respectively. The scaling factor λ takes 512
for all the three DNN models. The neuron masks will not
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Figure 3: Demonstration of the pruned channels per layer of the
proposed method on (a) VGGNet and (b) AlexNet.

be updated in the second half iterations to get a more sta-
ble performance. Fine-tuning is also used to regain accuracy.
We fine-tune the pruned MLP, VGGNet, AlexNet with an ini-
tial learning rate of 0.1, 0.01, 0.001 and with 12,000, 32,000,
45,000 iterations, respectively. For fine-tuning, the batchsize,
momentum, weight decay and learning rate decay policy are
the same as baseline training. Experiments are conducted on
NVIDIA TITAN X (Pascal) graphics card. The speedup is
measured on a single-thread Intel Xeon E5-2683 CPU.

Evaluation Metrics
For MNIST and CIFAR-10, the accuracy on the test set is
reported. For ILSVRC2012, the top-1 accuracy on center
224×224 crop of the validation set is reported. We also report
the actual compression rate and speedup, where the former is
defined as the disk usage of the unpruned model divided by
that of the pruned model, and the latter is defined as actual
inference time of the unpruned model divided by that of the
pruned model. Note that the results of the proposed method
are averaged over 5 independent runs to reduce randomness,
except for AlexNet due to time limit.

3.2 Overall Comparison Results
First of all, we report the performance of the proposed method
and four compared methods after pruning and fine-tuning all
layers of a model. The overall comparison results on three
DNN models are shown in Table 1. Note that all methods use
the same fine-tuning strategy for fair comparison.

For MLP, it can be observed that the proposed method
achieves the best performance in all evaluation metrics. It
can prune the neurons of MLP’s two hidden layers from (500,
300) to (90, 40), which results in a compression rate of 7.0×
and a speedup of 4.3×. Under the same accuracy drop, the
proposed method can prune more neurons and reduce more
computational cost than other methods. Note that the com-
putational cost is measured by the ratio of pruned float point
operations (FLOPs), which is equal to the ratio of pruned pa-
rameters for fully-connected DNNs because both of them are
directly determined by the dimension of weight matrix.

For VGGNet, the proposed method can compress its disk
usage by 13.6× (from 57MB to 4.2MB) and reach a speedup
of 3.7×, both of which are better than the compared meth-
ods, although the accuracy of Network Slimming is slightly
better than ours. The layer-wise comparison of the number of
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Models Methods Acc (%) Parameters
pruned (%) FLOPs pruned (%) Disk usage Comp. rate Speedup

MLP
(on MNIST)

Baseline 98.6 0.0 0.0 2.1MB 1.0 1.0
Weight Sum 98.5 79.5 79.5 0.44MB 4.8 2.9

Group Lasso† 98.5 83.5 83.5 – – –
Network Slimming∗ 98.5 84.4 84.4 0.34MB 6.2 4.1

ThiNet 98.5 80.8 80.8 0.41MB 5.1 3.9
Ours 98.5 86.3 86.3 0.30MB 7.0 4.3

VGGNet
(on CIFAR-10)

Baseline 93.46 0.0 0.0 57MB 1.0 1.0
Weight Sum‡ 93.40 64.0 34.2 21MB 2.7 1.8
Group Lasso 93.41 88.8 52.3 6.4MB 8.9 2.8

Network Slimming∗ 93.80 88.5 51.0 – 8.7 –
ThiNet 93.41 91.9 60.6 4.6MB 12.4 3.1
Ours 93.40 92.7 67.6 4.2MB 13.6 3.7

AlexNet
(on ILSVRC2012)

Baseline 58.30 0.0 0.0 239MB 1.0 1.0
Weight Sum 54.99 73.3 43.8 64MB 3.7 1.6
Group Lasso 54.31 67.4 51.4 78MB 3.1 1.8

Network Slimming 53.87 70.5 46.9 71MB 3.4 1.7
ThiNet 53.67 75.6 55.9 59MB 4.1 1.9
Ours 54.63 76.1 63.7 58MB 4.1 2.2

Table 1: Overall comparison results. Note that “†” denotes that the results are from [Wen et al., 2016], “∗” denotes that the results are
from [Liu et al., 2017], “‡” denotes that the results are from [Li et al., 2016], and “–” means that there is no report of that value in the
corresponding paper.
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Figure 4: Single layer pruning performance of different methods on VGGNet, measured by drop in accuracy (the smaller the better).

channels between the baseline model and our pruned model
can be found in Figure 3(a). We can see that the proposed
method can prune much more neurons in layers from conv3 3
to conv5 3 than in other layers, which indicates that the last
several layers of VGGNet are more redundant. Note that in
addition to the proposed method, ThiNet also performs well,
which verifies the effectiveness of layer-wise neuron pruning
schemes.

Regarding AlexNet, similar with previous results, the pro-
posed method can prune more parameters and FLOPs than
the compared methods under the same level of accuracy drop.
Concretely, our approach can compress its disk space from
239MB to 58MB, which mainly results from pruning the
neurons of two fully-connected layers from (4096, 4096)
to (1280, 2000) because the fully-connected layers take the

most part (∼96%) of overall parameters for AlexNet. The
proposed method can also accelerate the inference time of
AlexNet by 2.2×, which mainly comes from pruning the
channels of convolutional layers (Figure 3(b)) because the
convolutional layers account for a great proportion (∼93%)
of overall FLOPs. Note that although ThiNet has comparable
compression rate as ours, its accuracy is much worse.

3.3 Analysis of the Proposed Approach

Note that we prune a DNN model in a layer-wise manner by
minimizing NRE, thus in this subsection we analyze the pro-
posed approach in the following aspects: the effectiveness of
single layer pruning, the convergence of the proposed method
and the validity of using NRE as the optimization objective.
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Figure 5: Visualization of filters in conv1 of our pruned AlexNet. Filters connected to pruned channels are shown with black boxes. Note that
the 24 filters with black boxes contain very little information, which indicates that the proposed method prunes the least important channels.
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Figure 6: Demonstration of the convergence of the proposed method
on VGGNet.

Single Layer Pruning
Recall that we adopt an iterative algorithm to minimize NRE
within a 3-layer subnetwork when performing single layer
pruning. It should be noticed that given a 3-layer subnetwork,
there are also other methods which can minimize NRE, such
as Group Lasso and Network Slimming, thus we compare the
proposed method with these two approaches. To demonstrate
the effectiveness of NRE, we also compare with a variant of
the proposed method in which NRE is replaced with LRE,
and we call it LRE for simplicity. Note that only neurons of
one layer are pruned and the other layers remain the same as
baseline model. All methods use the same number of itera-
tions (400), the same learning rate (0.01) and no fine-tuning
is used. We measure the accuracy drop of different meth-
ods by varying the ratio of pruned channels which is defined
as the total number of channels in this layer divided by the
number of selected channels. Figure 4 shows the results on
6 convolutional layers of VGGNet. Firstly, we can see that
conv2 1, conv3 1 and conv3 2 suffer from much more accu-
racy drop than conv4 1 and conv5 1 under the same pruning
ratio, which implies that different layers have different redun-
dancy and less redundant layers are more sensitive to chan-
nel pruning. Secondly, it can be observed that the proposed
method is consistently better than Group Lasso and Network
Slimming, which might be due to the fast convergence rate of
the proposed method. For layers with high redundancy like
conv4 1 and conv5 1, the proposed method and LRE have
comparable performance. However, for layers that are more
sensitive to pruning like conv2 1, conv3 1 and conv3 2, the
proposed method is much more competitive than LRE, espe-
cially when the ratio of pruned channels is high; this clearly
shows that minimizing NRE is better than minimizing LRE.
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Figure 7: Correlation between the entire loss and the NRE of each
layer on VGGNet.

Convergence
We provide empirical evidences on the convergence of the
proposed method in Figure 6. Because NRE is the optimiza-
tion objective when pruning single layer, we plot the NRE
curves with respect to iterations in all layers except for the
last one of VGGNet. It can be observed from Figure 6 that
all the NRE curves become flatten after 400 iterations. In
conv5 1 and conv5 2, the NRE curves do not drop even after
dozens of iterations. These evidences show that our algorithm
can converge very fast.

Next we explore whether the selected channels are really
important after convergence. To this end, we visualize all
96 filters in the first convolutional layer (conv1) of AlexNet,
which is pruned by the proposed method as shown in Fig-
ure 5. Note that a filter is a collection of all incoming weights
of a channel and the proposed method can prune 24 channels
in conv1. The filters connected to 24 pruned channels are
shown with black boxes. We can see that filters with black
boxes contain very little information, which indicates that the
proposed method prunes the least important channels.

Validity of NRE
We also explore the correlation between the layer-wise NRE
and the entire loss (i.e., the loss from output layer), which is
important to the validity of layer-wise pruning and is rarely
explored in previous works. For this purpose, we randomly
delete channels in one layer of the baseline VGGNet model,
and record the NRE of the next layer as well as the increase
of the entire loss. Then, we plot the increase curves of the
entire loss with respect to the NRE in all layers except for the
last one of VGGNet in Figure 7. Unsurprisingly, these two
variables show a strong positive correlation, and the correla-
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tion coefficient is even larger than 0.9 in some layers (e.g.,
conv1 1 and conv5 2). These facts demonstrate that minimiz-
ing the layer-wise NRE is reasonable.

4 Conclusion
In this paper, we propose a new layer-wise neuron prun-
ing method to accelerate the deep models and reduce their
memory usage. By extracting a 3-layer subnetwork, the pro-
posed method formulates one single layer neuron pruning as a
constrained optimization problem, i.e., minimizing the layer-
wise nonlinear reconstruction error with a limited number of
neurons, and then solves it by adopting an iterative greedy
selection algorithm. Experiments on benchmark DNN mod-
els show that the proposed method can reach state-of-the-art
compression rate and speedup with an acceptable loss of ac-
curacy. In the future, we will generalize the proposed method
to multi-branch convolutional neural networks like ResNet or
other types of neural networks like RNN.
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