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Abstract
Deep structure has been widely applied in a large
variety of fields for its excellence of representing
data. Attributes are a unique type of data descrip-
tions that have been successfully utilized in nu-
merous tasks to enhance performance. However,
to introduce attributes into deep structure is com-
plicated and challenging, because different layers
in deep structure accommodate features of differ-
ent abstraction levels, while different attributes may
naturally represent the data in different abstraction
levels. This demands adaptively and jointly mod-
eling of attributes and deep structure by carefully
examining their relationship. Different from exist-
ing works that treat attributes straightforwardly as
the same level without considering their abstraction
levels, we can make better use of attributes in deep
structure by properly connecting them. In this pa-
per, we move forward along this new direction by
proposing a deep structure named Attribute Gated
Deep Belief Network (AG-DBN) that includes a
tunable attribute-layer gating mechanism and au-
tomatically learns the best way of connecting at-
tributes to appropriate hidden layers. Experimental
results on a manually-labeled subset of ImageNet,
a-Yahoo and a-Pascal data set justify the superior-
ity of AG-DBN against several baselines including
CNN model and other AG-DBN variants. Specif-
ically, it outperforms the CNN model, VGG19, by
significantly reducing the classification error from
26.70% to 13.56% on a-Pascal.

1 Introduction
Deep learning [Bengio, 2009; Deng, 2014] is well known for
its capability of better representing data when compared with
“shallow structures” (e.g., support vector machine (SVM)
etc.). It can extract features from raw data in different ab-
straction levels. Deep learning has been applied in a variety
of learning tasks such as speech recognition [Mohamed et al.,

∗The two authors contribute equally to this paper.

2012; Deng et al., 2013], image recognition [He et al., 2016],
and natural language processing [Collobert et al., 2011;
Bahdanau et al., 2014] etc.

Attributes are manually defined qualities, properties or
characteristics to describe an object [Farhadi et al., 2009].
They have been successfully used in fields such as com-
puter vision as additional information to help many tasks
[Wang and Ji, 2016; Wei and Pal, 2011; Lampert et al., 2009;
Wang and Mori, 2010; Hwang et al., 2011]. Unlike raw data,
attributes usually represent higher level abstractions of an ob-
ject. Moreover, different attributes may describe an object in
different abstraction levels. Specifically, the attributes (e.g.,
“engine” in Figure 1) that describe general or holistic prop-
erties of an object [Abdulnabi et al., 2015], represent higher
level abstraction; while others (e.g., “round” in Figure 1) that
describe specific object parts or localized properties, repre-
sent lower level abstraction.

However, things become complicated and nontrivial when
integrating attributes into deep structures to help target learn-
ing tasks. The great advantage of deep structure is to learn
transformation of the data with less redundancies and to make
it easier to extract useful information [Bengio, 2009]. In-
tuitively, different layers of deep structures represent differ-
ent abstraction levels of the raw data or features [LeCun et
al., 2015]. The motivation of this paper is that, unlike raw
features which are usually treated as flatten visible inputs
of deep structures, attributes are artificial descriptions in na-
ture and should be treated in different abstraction levels. In
other words, when integrating into deep structures, attributes
should be connected to different hidden layers regarding their
corresponding abstraction levels.

The performance of deep structure may be greatly hurt if
we connect attributes to incorrect hidden layers. Specifically,
a low abstraction level attribute will cause incomplete ab-
straction if it is connected to higher hidden layers; while a
high abstraction level attribute will cause over abstraction if
it is connected to lower hidden layers. Figure 1 is an ex-
ample from a-Yahoo dataset. Through simple experiments
on a two-layer neural network, it is observed that the test er-
ror rises up from 73.75% to 82.09% if the higher abstraction
level attribute “engine“ is connected to the lower hidden layer.
Meanwhile, the test error rises up from 66.77% to 78.45%
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if the lower abstraction level attribute “round“ is connected
to the higher hidden layer. The same situation also occurs
for high abstraction level attribute “wool“ and low abstrac-
tion level attribute “2D Boxy“. These phenomenons clearly
demonstrate the fact that attributes are in different abstraction
levels, and should be connected to correct hidden layers in
deep structure.

low hidden layer

high hidden layer

label

round engine

raw data low level

abstraction

high level

abstraction

2D 

Boxy
wool

Figure 1: An illustration of
connections between dif-
ferent attributes and corre-
sponding hidden layers

Figure 2: AG-DBN

In this paper, an innovative network named Attribute Gated
Deep Belief Network (AG-DBN) is proposed to automatically
and adaptively integrate attributes into deep structures at dif-
ferent hidden layers. In AG-DBN, attributes are no longer
treated as the same as raw features. Instead, each attribute
unit is directly connected to their appropriate hidden layers in
deep structure. To help determine appropriate connections for
each attribute, a learnable gating mechanism is proposed in a
probabilistic framework that allows training from potentially
connections to all hidden layers, and then can be normalized
to their appropriate ones.

The major contributions of this paper are summarized as
follows: (1) It proposes a principled method to exploit dif-
ferent abstraction levels in attributes, and establish direct
connections between attributes and corresponding appropri-
ate hidden layers in deep structure through learnable gating
mechanism. (2) It elaborates corresponding inference and
learning algorithm. (3) It evaluates the proposed method
on three real-world data sets and demonstrates its superior-
ity over six baseline methods through experimental results.
Specifically, the model proposed in this paper reduces er-
ror on a-ImageNet by 9.91% and on a-Yahoo by 12.88%
compared with baselines, and reduces error on a-Pascal by
13.14% compared with CNN model, VGG19.

2 Related Work
Attribute related tasks Existing works utilize attributes as
additional input data [Wang and Ji, 2016; Wei and Pal, 2011]
to enhance object recognition, middle level representation
[Lampert et al., 2009; Wang and Mori, 2010] for transfer
learning, or additional output labels [Hwang et al., 2011]
to build shared feature space. However, none of existing
methods is able to learn and utilize the attributes abstraction
level information. And in this paper, we mainly discuss the
case where attributes are regarded as input to enhance object

recognition or image classification task, rather than middle
level representation or output labels.
Deep structure Restricted Boltzmann Machine (RBM) [Hin-
ton, 2010] is an energy-based model, which can be repre-
sented by an undirected bipartite graph. Several variants of
RBM are proposed to enhance its modelling performance,
such as sparsity constraint[Wan et al., 2015] and conditional
parametrization [Mnih et al., 2012]. RBM can be stacked
to build Deep Belief Net (DBN) [Hinton, 2009] for provid-
ing hierarchical representation. DBN first initializes the net-
work with unsupervised layer-wise pre-training, and then fine
tunes the network parameters in supervised style. [Sohn et
al., 2013] proposed a point-wise gated Boltzmann machine
(PGBM) to learn useful high-level features when data con-
tains irrelevant patterns. Basically, PGBM performs unsu-
pervised RBM training and feature selection simultaneously.
The function of the introduced gating mechanism in this pa-
per is similar to that in PGBM, but the problem addressed, the
network structure and the learning algorithm are all different.
Skip layer connection Skip-layer connection is a common
pattern in deep structure [Bishop, 2006], where input data
contribute as the lowest features and, meanwhile, as the high-
est abstraction features for output label layer. Although skip-
layer connection and our method both suppose that it is not
necessary to feed input data to deep structure from the lowest
layer, skip-layer connection is a kind of human-specified con-
nection, whereas our method adaptively connects attributes to
different layers by learning from input data, rather than hu-
man knowledge. Two typical types of skip-layer connection
will be compared with our method in the experiment section.

3 Attribute Gated Deep Belief Network
The level of hidden layers in deep structures naturally indi-
cates the level of feature abstraction of the data. The higher
level a layer is in, the more abstract representation it offers.
Meanwhile, each attribute can be viewed as a description to
the target object(s) in a certain abstraction level. The At-
tribute Gated Deep Belief Network (AG-DBN) is proposed
by the motivation to automatically map the abstraction levels
of attributes to the appropriate deep structure inner abstrac-
tion levels.

3.1 Model
Figure 2 is a demonstration of the proposed AG-DBN. It con-
tains (1) a DBN constituted by raw feature layer v and hidden
layers hl and (2) a gating mechanism that connects attributes
a to the DBN. The connections between the attributes and the
hidden layers are controlled by a gate matrix G, where Gij is
a binary value indicating whether attribute unit aj connects to
hidden layer hi. For example, G11 = 1,G21 = 0,G12 = 0,
and G22 = 1 denote that attribute unit a1 connects to hidden
layer h1, and a2 connects to h2. gl or Gl· (the l-th row vector
of G) denotes the connections between the l-th hidden layer
and different attributes. Similarly, gj′ or G·j (the j-th col-
umn vector of G) denotes the connections between the j-th
attribute aj and different layers. By adjusting the values of
gate matrix, the hidden layers that the attribute units should
connect to are varied. For notations used in the rest of this
paper, please refer to Table 1 for their descriptions.
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Notation Description
G gate matrix (Nh ×Na)
Wl weight matrix between vl and hl
gi i-th row in G (Gi·)
Ul weight matrix between a and hl
gj′ j-th column in G (G·j)
bl bias of visible units in l-th layer
a attribute units
cl bias of hidden units in l-th layer
vl visible units in l-th layer
dl bias of attribute units when connected to l-th hidden layer
hl hidden units in l-th layer
N0 training iterations

L, Nh number of hidden layers
V visible units, input data {v1,v2, ...,vn}
A input attribute data {a1,a2, ..., an}
Na number of attribute

Table 1: Notation table

Although the attribute units connect to different hidden lay-
ers, the structure of AG-DBN can still be forwardly computed
in layer-wise, and then the values of gate matrix can be nor-
malized consequently. First, the joint probability of the l-th
layer network can be defined as(Z is the normalization fac-
tor):

P (vl,a,hl,gl) =
1

Z
exp(vT

l Wlhl + vT
l bl + hT

l cl

+ (a� gl)
TUlhl + (a� gl)

Tdl)
(1)

Based on Equation 1, the conditional probability of visible
unit vli , hidden unit hli , attribute unit ai, and gating value gli
can be easily obtained. Here we give the conditional proba-
bility of gli :

P (gli = 1|vl,hl,a) =P (gli = 1|hl, ai, dli)

=
exp(ai(Uli·hl + dli))∑
k exp(ai(Uki·hk + dli))

(2)

It can be inferred from Equation 2 that gate matrix prefers
to build connections between attributes and hidden layers
with strong interaction. The physical meaning of strong con-
nection can be illustrated as following: first, without the con-
sideration of the bias dli , for the same value of ai, if hl = 1,
which means that hidden units of l-th layer are activated (as
shown in Figure 3(b)), then the influence of attribute units
on hidden units exits. |Uli· |, under this condition, deter-
mines how much the influence is, and sign(Uli·) determines
whether the influence is positive or negative. Big positive
influence will lead to large probability value, while negative
influence will lead to small probability value or even near 0.
If hl = 0, which means that hidden units of l-th layer are not
activated (as shown in Figure 3(a)), then influence of attribute
units on hidden units can be regarded as non-existence. Uli· ,
under this condition, determines nothing. Second, on the ba-
sis of the analysis above, if we add bias dli back to Equation
2, it plays the role of adjusting the absolute magnitude of the
influence, and since function exp(·) is a concave function, dli
also has the effect of adjusting the gap between two different
value of Uli·hl.

3.2 Learning Algorithm
This section elaborates the learning algorithm of AG-DBN.
The overall learning algorithm is shown in Algorithm 1. It

(a) hl = 0 (b) hl = 1

Figure 3: Illustration of attribute-layer connection

iteratively runs two learning phases: to learn DBN parame-
ters (step 3 to step 5) by clipping gate matrix, and to learn
gate matrix(step 6 to step 9) by clipping DBN. Q(G) is the
probabilistic distribution of G. Specifically, each column
in Q(G) is a probabilistic distribution, which represents the
probability of an attribute connecting to a hidden layer. To
compute Q(G) in each iteration, the algorithm first accumu-
lates

∑
D P (G

(i)
j· |vj ,a,hj) against training data D, and then

normalizes Q(G(i)) in column direction.

Algorithm 1 Overall Learning Algorithm of AG-DBN
Input:

Training data D = (V,A),
Training iterationN0,
Number of layers L,
Learning rate η, Updating epochsNr , Batch size s.

Output:
The values of gate matrix G(N0).

1: InitializeQ(G(0))
2: for i = 1 toN0 do
3: for j = 1 to L do
4: updateRBM(D, Q(G(i−1)), η,Nr, s); // learning RBM parameters with

given gate matrix, see Algorithm 2
5: end for
6: for j = 1 to L do
7: Compute

∑
D P (G

(i)
j· |vj , a,hj)

8: end for
9: NormalizeQ(G(i))
10: end for

Algorithm 2 learns the l-th layer RBM parameters of AG-
DBN given the gate matrix G using CD [Hinton, 2002]. The
network is randomly initialized before starting a new itera-
tion, since we are using the new gate Q(G(i−1)). From line
4, we can also find that we sample Gl· for each batch in each
training iteration. So we learn the network with the expecta-
tion of Q(G) as long as the number of batches is big enough.

At last, we obtain G by sampling from distribution
Q(G(N0)) obtained after the last iteration. With G, we run
Algorithm 1 once again. But different from before, G is no
longer sampled in Algorithm 2, since it has been well learned.
The alternative process in Algorithm 1 ensures that gates are
updated to a better value, since RBM parameters are well-
learned on fixed gates, and gates are updated on the basis of
well-learned RBM parameters.

3.3 Analyzing Remarks
Parameter Settings In the learning algorithms of AG-DBN,
the training iteration number N0 and the batch size s are crit-
ical parameters and have to be appropriately determined. In
experiments, we found 15 iterations are enough to find the op-
timal values of gate matrix. The batch size s actually controls
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Algorithm 2 Learning the parameters of l-th RBM with given
gate matrix
Input:

Training data D,
Distribution of gate matrixQ(G(i−1)),
Training epochsNr ,
Learning rate η,
Batch size s.

Output:
The parameters of AG-DBN, Wl,Ul,bl, cl,dl,
P = (h|v, a,G(i−1)

l· ) as the input vl+1 of next layer.
1: Randomly initialize Wl,Ul,bl, cl,dl

2: for k = 1 toNr do
3: for each training batch B in training data D do
4: Sample G

(i−1)
l· ∼Q(G(i−1))

5: for each training instance (v
(0)
l , a(0)) in B do

6: Sample h
(0)
l ,v

(1)
l , a(1),h

(1)
l

7: Wl ← Wl − η(h
(0)
l (v

(0)
l )T − P (hli

=

1|v(1)
l , a(1),G

(i−1)
l· )(v

(1)
l )T)

8: Ul ← Ul − η(h
(0)
l (a(0) � G

(i−1)
l· )T − P (hli

=

1|v(1)
l , a(1),G

(i−1)
l· )(a(1) �G

(i−1)
l· )T)

9: bl ← bl − η(v(0)
l − v

(1)
l )

10: cl ← cl − η(h(0)
l − P (hli

= 1|v(1)
l , a(1),G

(i−1)
l· ))

11: dl ← dl − η(a(0) �G
(i−1)
l· − a(1) �G

(i−1)
l· )

12: end for
13: end for
14: end for

the number of sampling G. With a large batch size, it eas-
ily incurs occasionality for lacking enough sampling. While
with a small batch size, it results in long training time for the
parallelism issue. With enough observation in experiments,
the batch size s is finally set to 50.
Complexity Compared to the learning algorithm of DBN,
Algorithm 2 involves additional steps to learn Ul and d. For
convenience, assume that all hidden layers in AG-DBN con-
tain the same number of hidden units Nh, the extra computing
complexity to learn Ul and d is O(N0NrNaNh

|D|/s ), where Na is
the number of attribute units. The extra time complexity of
learning G is O(N0LNa).

The learning algorithm of AG-DBN can also be viewed
as searching for the optimal connections between attribute
units and corresponding hidden layers. An AG-DBN with
L hidden layers and Na attribute units needs to check among
LNa candidates for the optimal ones. Therefore, in theory,
the upper bound of time complexity of training AG-DBN is
O(LNa).
Extension Although the inference and training algorithms
introduced above are based on DBN, they can be easily ex-
tended and applied to CNN by the following two approaches.
First, [Lee et al., 2009] proposed the convolutional DBN
(CDBN), a hierarchical generative model which can be trans-
formed to CNN. The basic building blocks of CDBN are con-
volutional RBM and probabilistic max-pooling, where each
hidden layer can actually be represented by probabilistic in-
ference. This helps the so called Attribute Gated CDBN(AG-
CDBN) to inference the conditional probabilities of gate and
attribute units in the same way as that in AG-DBN. Alterna-
tively, we can extract features from pre-trained CNN models,
e.g., AlexNet[Krizhevsky et al., 2012], VGG[Simonyan and
Zisserman, 2014], and ResNet[He et al., 2016], etc., and di-

DBN(a) DBN DBN(b) T-DBN

Skip layer (attr only)

(c) Skip-a
Skip layer (data+attr

(d) Skip-ad

Figure 4: Baselines

rectly feed the features and the corresponding attributes to
our AG-DBN. The latter approach is not only restricted to
features from CNN, but also can utilize features from other
sophisticated models, which expands the application scope of
AG-DBN. So this approach is evaluated in the experiment
section, and the results show obvious improvements when
compared with the state-of-the-art CNN model.

4 Experiments
The major goal of experiments is to validate the idea of con-
necting attributes to appropriate hidden layers in deep struc-
tures, therefore, only those attribute enhanced deep structures
(see Figure 4) are involved to compare with proposed AG-
DBN and two simple variants of AG-DBN in experiments.
Meanwhile, two attribute-available data sets, i.e., a-ImageNet
and a-Yahoo, are used in experiments.
a-ImageNet ImageNet [Russakovsky et al., 2015] is a
widely used image data set. Among 1000 synsets, there are
25 available attributes for 400 popular synsets. In each synset,
some images are annotated with the attributes of four groups.
That is, (color) for black, blue, brown, gray, green, orange,
pink, red, violet, white and yellow; (pattern) for spotted
and striped; (shape) for long, round, rectangular and square;
(texture) for furry, smooth, rough, shiny, metallic, vegeta-
tion, wooden and wet. The value of each attribute can be 0
for no and 1 for yes.

In the original 400 synsets, only a small part of the images
are annotated with attributes. To make the experiments mean-
ingful, 10 synsets with totally 8309 images are randomly se-
lected in this experiments. Some images in the selected 10
synsets have been manually annotated. Due to the heavy hu-
man effort, the manually annotated data set is small compared
with the original one. The ratios of images with attributes
in each synset finally reach 14.30%, 14.94%, 1.98%, 4.33%,
10.34%, 2.67%, 2.38%, 2.82%, 99.64% and 78.77% respec-
tively. We name the selected 10 synsets together with the
manually annotated attributes a-ImageNet. 1

a-Yahoo a-Yahoo data set is collected by [Farhadi et al.,
2009] from the Yahoo image search. There are twelve dif-

1https://github.com/Tsinghua-IDE/a-ImageNet
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ferent objects targeted in this set, i.e., wolf, zebra, goat, don-
key, monkey, statue of people, centaur, bag, building, jet ski,
carriage, and mug. Each image contains an object and its cor-
responding values of 64 attributes, e.g., “has head”, “has leg”,
“is furry”, “is shiny”, etc. For the full attribute list please refer
to [Farhadi et al., 2009].

4.1 Experimental Settings
To evaluate the effectiveness of different models, object
recognitions are done on both a-ImageNet and a-Yahoo.
Models all consist of 2 hidden layers of size 500 and 300,
and an input layer accepting 50*50 gray scale raw image pix-
els. All experimental results are averaged over 5 independent
runs. We compare the AG-DBN with six baseline models:
four baseline models in Figure 4: standard DBN, Transfer
DBN (T-DBN), skip-layer with attribute (skip-a), and skip-
layer with attribute and data (skip-ad), and two simple vari-
ants of our AG-DBN (Manual AG-DBN and Random AG-
DBN). In order to do classification task, a softmax layer is
added on the top of all DBN based models, including T-DBN,
AG-DBN and its variants.

Standard DBN is trained only on raw features without con-
sidering any attribute information. T-DBN [Wei and Pal,
2011] is actually a special DBN whose visible units consist
of both raw features and attributes. Skip-a and skip-ad are
two similar models. Skip-a directly connects attribute units
to both the first hidden layer and the output layer. Skip-ad en-
hanced skip-a by adding connections from visible pixel units
to the output layer.

Manual AG-DBN is a special AG-DBN to verify the effec-
tiveness of connecting attribute units to hidden layers using
human prior knowledge. It presents one-hot values to G by
observation, and keeps G constant in model training. Manual
AG-DBN is only tested on a-ImageNet as its 25 attributes can
be easily grouped into lower-semantic and higher-semantic
as shown in Table 3. However, the 64 a-Yahoo attributes are
not clearly stratified in semantic thus Manual AG-DBN is not
tested. Random AG-DBN is designed to verify the idea in
Section 3.3. It is actually a naı̈ve method to randomly traverse
the whole space to reach the optimal G. The expectation of
traverse is LNa . Random AG-DBN differs from AG-DBN in
that it randomly generates G while not following Equation 2.
Validation data are used to help find the best G in N0 rounds.

4.2 Experimental Results
Table 2 shows the classification errors of all models. With-
out doubt, AG-DBN achieves the best performance both on
a-ImageNet and on a-Yahoo. Specifically, when using raw
pixels as input, AG-DBN reduces classification error on a-
ImageNet by 4.01% and on a-Yahoo by 3.29% compared with
the best baselines. Other observations include (1) The re-
sult shows that attributes can actually improve performance
as T-DBN outperforms DBN. (2) Meanwhile, Manual AG-
DBN performs better than T-DBN, skip-a, and skip-ad on a-
ImageNet, which indicates the prior knowledge of connection
does help. (3) Interestingly, skip-a and skip-ad perform close
to DBN and T-DBN on a-ImageNet, while much better on a-
Yahoo. Obviously, used as only visual inputs, the small ratio
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Figure 5: Classification error v.s. ratio of images with attributes

of a-ImageNet annotations helps little in improving perfor-
mance. While on a-Yahoo, fully available attributes helps a
lot. (4) Finally, AG-DBN performs better than Random AG-
DBN since the heuristic learning of G should be more effec-
tive than random searching.

DBN T-DBN Skip-ad Skip-a Manual
AG-DBN

Random
AG-DBN AG-DBN

a-ImageNet 0.8188 0.7912 0.7836 0.8304 0.7551 0.7246 0.6845
a-Yahoo 0.8489 0.5012 0.6554 0.3303 - 0.2344 0.2015

Table 2: Classification error of AG-DBN and baselines on a-
ImageNet and a-Yahoo.

Table 3 shows the optimal connections learned by AG-
DBN on a-ImageNet. In general, people would more like
to categorize the shape attributes rectangular, square, and
round into the same semantic level as that in Manual AG-
DBN. However, the learned G connects rectangular to the
second hidden layer and connects square and round to the
first hidden layer. This may due to the fact that the model
learns only from limited a-ImageNet data, while people con-
clude in more general style. Table 4 shows the optimal AG-
DBN connections learned on a-Yahoo. It is interesting that
the attributes of shape (e.g., 2D Boxy, 3D Boxy, Round) and
material (e.g. Plastic, Wood, Glass, Shiny) are categorized
as low-level concepts, while the attributes of body parts (e.g.,
Nose, Mouth, Face, and Head, Ear) are categorized into dif-
ferent levels.

Simple Concepts
(Lower Hidden Layers)

Complicated Concepts
(Higher Hidden Layers)

Manual
Setting

black,blue,brown,green
orange,pink,yellow,spotted,

violet,gray,red,white

furry,long,metallic,rough,shiny
smooth,striped,vegetation,wet

rectangular,square,round,wooden

Learned
Setting

black,furry,green,pink,white
wooden,rough,round,shiny

square,striped,vegetation,violet

blue,brown,gray,long,metallic
orange,rectangular,red,smooth

spotted,wet,yellow

Table 3: Setting of attributes on a-ImageNet

Influence of the Number of Data Annotated with
Attributes In order to further evaluate our model,
the data set are rebuilt to contain different ratios,
0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0, of annotated images. Ratio 0
means that none annotated image is included, while 1.0
means that all images are annotated. Here, N0 is set to be
30 so that Random AG-DBN is more likely to find a better
optimal G. Figure 5 shows that AG-DBN performs the best
in all ratios except 0. As the ratio goes up, the error of AG-
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Figure 6: Classification error with and without attribute generation

DBN decreases sharply. The error of Random AG-DBN also
falls down, however, in slower speed than AG-DBN. The er-
ror rates of Manual AG-DBN, T-DBN and skip-ad go down
when the ratio goes up from 0 to 0.5 and finally remain nearly
stable after ratio 0.5. The error of skip-a continues to de-
crease even after ratio 0.5. It performs better than skip-ad.
Such difference can be viewed as an evidence to prove that
attributes and raw images are of different abstraction levels
hence should be connected to different hidden layers. It can
also be found that Random AG-DBN performs better than
Manual AG-DBN and slightly worse than AG-DBN. This is
related to the fact that gates in Random AG-DBN are stochas-
tic, and the number of iteration to learn Random AG-DBN is
large (30 in this experiment). The reported results of Random
AG-DBN are the best results over 30 iterations using evalu-
ation data, while the reported results of AG-DBN are the re-
sults after the 30th iteration. As we explained in Section 3.3,
the best results found by Random AG-DBN will be better as
the number of iterations goes larger.

Simple Concepts (Lower Hidden Layers)
2D Boxy,3D Boxy,Round,Vert Cyl,Horiz Cyl,Occluded,Tail,Snout,Nose,Mouth,Text
Hair,Face,Eye,Torso,Hand,Arm,Leg,Foot/Shoe,Window,Row Wind,Exhaust,Skin,
Horn,Rein,Saddle,Handlebars,Metal,Plastic,Wood,Cloth,Glass,Clear,Shiny,Leather
Complicated Concepts (Higher Hidden Layers)
Beak,Head,Ear,Wing,Propeller,Engine,Jet engine,Wheel,Door,Headlight,Taillight
Side mirror,Pedal,Sail,Mast,Label,Furn. Leg,Furn. Back,Furn. Seat,Furn. Arm,
Leaf,Flower,Stem/Trunk,Pot,Screen,Furry,Feather,Wool,Vegetation

Table 4: Setting of attributes on a-Yahoo after learning

Generation of Missing Attributes In real world applica-
tions, attributes are not always available for all data instances,
and even if we can collect the attributes for the train set,
attributes may be missing in the test set. In this case, be-
cause our AG-DBN is a generative model, we can gener-
ate attributes from hidden layers’ representation to help en-
hance the classification performance. To verify the effective-
ness of attribute value generating, a test set is built to contain
90% annotated instances and 10% non-annotated instances.
Note that all models are trained on fully annotated instances
(ratio = 1).

Figure 6 shows the classification error with and without at-
tribute value generating. We can see that the classification
errors of almost all models decrease obviously with attribute
value generating. The errors of Random AG-DBN with at-
tribute value generating are even lower than AG-DBN with-
out generation. Nevertheless, AG-DBN with generation ob-
tains the lowest error. Note that, since only 90% of the test

data are annotated, the lowest errors here are higher than that
of ratio = 1 in the above experiment.

(a) Classification error of AG-DBN and baselines on a-Yahoo
data set (input = AlexNet feature).

AlexNet T-DBN Skip-ad Skip-a Random
AG-DBN AG-DBN

0.1878 0.1578 0.1582 0.1453 0.1340 0.1210

(b) Classification error of AG-DBN and baselines on a-Pascal data
set (input = VGG16 or VGG19 feature).

CNN T-DBN Skip-ad Skip-a Random
AG-DBN AG-DBN

VGG16 0.2590 0.1588 0.1644 0.1520 0.1470 0.1253
VGG19 0.2670 0.1547 0.1671 0.1578 0.1437 0.1356

Table 5: Classification error when using CNN feature.

Learning from CNN Feature In order to validate the exten-
sion method proposed in Section 3.3, we design an additional
experiment. In this experiment, all models use features from
the last pooling layer of CNN (AlexNet, VGG16, or VGG19)
pre-trained on the whole ImageNet data set. and 2 hidden lay-
ers are both of size 4096 to make the comparison fare. And
as an alternative to DBN in above experimental setting, we
fine-tune the CNN model as baseline.

Table 5 shows the test error of AG-DBN and baselines.
First, AG-DBN still achieves the best performance, and
specifically it reduces test error by 3.68% compared with
AlexNet on a-Yahoo, by 13.37% compared with VGG16, and
by 13.14% compared with VGG19 on a-Pascal (this data set
is also collected by [Farhadi et al., 2009], and attributes in
a-Pascal is the same as a-Yahoo). Second, the performances
of T-DBN, Skip-ad and Skip-a are very close. This dues to
that all the three models use robust and discriminative fea-
tures compared to raw image pixels, and that human defined
attribute-layer connections help little in this situation, while
with learned appropriate connections, AG-DBN can better
utilize attributes.

5 Conclusion and Future Work
This paper proposes a novel deep structure named AG-DBN
to better integrate attributes into deep learning. AG-DBN in-
troduces appropriate connections between attributes and hid-
den layers automatically through a learnable gating mech-
anism. Experimental results on a-ImageNet, a-Yahoo and
a-Pascal show that AG-DBN significantly outperforms the
baselines in term of classification error. Particularly, the pro-
posed AG-DBN also shows superiority against CNN model
like AlextNet, VGG. Besides, we also provide empirical anal-
ysis on the influence of attributes presented, and the method
for generating missing attributes in AG-DBN. In future, we
intent to integrate our technique into other sophisticated deep
structures, such as LSTM, etc., to improve their performance.
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