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Abstract
Positive and Unlabeled learning (PU learning) aim-
s to train a binary classifier based on only positive
and unlabeled examples, where the unlabeled ex-
amples could be either positive or negative. The
state-of-the-art algorithms usually cast PU learn-
ing as a cost-sensitive learning problem and impose
distinct weights to different training examples via
a manual or automatic way. However, such weight
adjustment or estimation can be inaccurate and thus
often lead to unsatisfactory performance. There-
fore, this paper regards all unlabeled examples as
negative, which means that some of the original
positive data are mistakenly labeled as negative. By
doing so, we convert PU learning into the risk min-
imization problem in the presence of false negative
label noise, and propose a novel PU learning algo-
rithm termed “Loss Decomposition and Centroid
Estimation” (LDCE). By decomposing the hinge
loss function into two parts, we show that only the
second part is influenced by label noise, of which
the adverse effect can be reduced by estimating the
centroid of negative examples. We intensively vali-
date our approach on synthetic dataset, UCI bench-
mark datasets and real-world datasets, and the ex-
perimental results firmly demonstrate the effective-
ness of our approach when compared with other
state-of-the-art PU learning methodologies.

1 Introduction
Traditional supervised machine learning methods usually as-
sume that the negative training data are readily available, and
a classifier can be established on both positive and negative
training examples. However, in many cases the negative ex-
amples are missing, and manually labelling negative data is
far more expensive than directly collecting the unlabeled da-
ta. To handle such situations, Positive and Unlabeled learning
(PU learning) is proposed, of which the target is to accurately
train a binary classifier by using positive data and unlabeled
data. Here the unlabeled data might be positive or negative,
however their groundtruth labels are unknown to the learn-
ing algorithm. Some preliminary researches on PU learning
can be dated back to [Denis, 1998; De Comité et al., 1999;

Nigam et al., 1998], which have shown that unlabeled data
are helpful in building an accurate classifier. Recently, PU
learning has attracted a great deal of attention due to its prac-
tical value and has been applied to solving various problems,
such as information retrieval [Latulippe et al., 2013], outlier
detection [Scott and Blanchard, 2009], text classification [Liu
et al., 2003], and so on.

According to how the unlabeled data are handled, exist-
ing PU learning methods can be attributed to three main
categories. The first category follows the two-step strategy
which firstly identifies the reliable negative data from unla-
beled data, and then invokes an ordinary classifier to perfor-
m traditional supervised learning. [Liu et al., 2003; 2002;
Li and Liu, 2003] are representative works belonging to this
category. However, the identification of negative examples
can be inaccurate, which may severely degrade the final mod-
el performance and lead to poor classification. Therefore, the
methods belonging to the second category directly treat all
unlabeled examples as negative and formulate PU learning as
a cost-sensitive learning problem. By reweighting the train-
ing examples, the inaccurate data distribution carried by the
observed training set can be calibrated to the potential correct
one and thus the ideal data distribution can be approximat-
ed. For example, weighted Logistic regression [Lee and Liu,
2003] and weighted SVM [Elkan and Noto, 2008] adjust the
data weights by imposing different regularization parameters
on labeled and unlabeled examples. However, manually ad-
justing the regularization parameters could be rather empir-
ical and is very likely to bring about unsatisfactory perfor-
mance. To avoid tuning the parameters, several recent works
focus on designing various unbiased risk estimators, which
achieve the state-of-the-art performance. Specifically, [Du P-
lessis et al., 2014] develops a non-convex ramp loss to amend
the data bias caused by the missing of negative examples.
To overcome the defect brought by the non-convexity, a con-
vex unbiased loss is presented in [Du Plessis et al., 2015], of
which the key idea is to use a weighted ordinary convex loss
function for unlabeled data and a weighted composite convex
loss function for positive data. Similar to the second cate-
gory, the last category also regards the unlabeled example as
negative, however, with label noise [Yu et al., 2017a; 2017b;
Cheng et al., 2017]. In other words, the potential positive ex-
amples in the unlabeled set are mislabeled as negative, and
thus PU learning can be transformed into a noisy label learn-
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ing problem. For example, biased SVM [Liu et al., 2003] de-
ploys two trade-off parameters C+ and C− to weight positive
errors and negative errors during training, respectively. Nev-
ertheless, this method only utilizes free parameters to roughly
control the noise rate and does not build specific model to deal
with the label noise, so its performance is heavily dependent
on the selection of C+ and C−.

Considering that the third category that treats unlabeled set
as noisy is more straightforward and more easily to imple-
ment than the first two categories, in this paper we formulate
PU learning as a noisy label learning problem and propose
a novel PU learning algorithm dubbed “Loss Decomposition
and Centroid Estimation” (LDCE). To be specific, we take
the labels of available positive training data as reliable and
view the unlabeled examples as noisy negative data. Differ-
ent from [Liu et al., 2003], in LDCE we explicitly model the
label noise in negative set (i.e. the original unlabeled set) and
convert PU learning into a risk minimization problem in the
presence of negative label noise. First of all, we adopt dif-
ferent loss functions for positive examples and noisy nega-
tive examples. Secondly, we decompose the empirical loss
on negative data into two parts, where only the second part is
affected by the noisy data. Furthermore, according to [Gao et
al., 2016], the risk minimization in the presence of label noise
can be converted to the estimation of the centroid of the statis-
tic labeled examples. Therefore, our problem is turned into
the estimation of the centroid of noisy negative data. Thor-
ough experiments on various synthetic and practical datasets
demonstrate that the proposed approach is superior to the ex-
isting state-of-art methods on PU learning.

2 Problem Description
Suppose that we have n training examples Sn =
{(x1, y1),. . ., (xk, yk), (xk+1, yk+1),. . ., (xn, yn)} identical-
ly and independently drawn from some distribution D over
X × Y , where xi denotes the input vector in feature space
X and yi is the corresponding class label in output space
Y = {+1,−1}. In Sn, the first k examples are positive
(denoted as SP ), while the rest are unlabeled examples that
might be positive or negative. Then the target of PU learning
is to train a binary classifier h : X ×Y on Sn, such that h can
assign accurate label sgn(h(x)) to the unseen test example
x.

As mentioned in Section 1, this paper treats all unla-
beled examples as negative, in which the real positive ex-
amples are deemed as mislabeled. Therefore, we use S̃N =
{(xk+1, ỹk+1), ..., (xn, ỹn)} to denote the corrupted negative
set in which the notation “ ∼ ” means that the corresponding
labels yi =−1(i= k + 1,. . ., n) might be incorrect. Conse-
quently, the entire training set for model training is formed
by S̃n=SP ∪S̃N , and the clean version of S̃N is recorded by
SN , in which all examples are correctly labeled. As a result,
PU learning here is converted to the problem of learning un-
der label noise. Note that in the studied case no noisy labels
appear in the positive set SP while they only exist in S̃N . Be-
sides, we use η to denote the prior of label noise rate in S̃N ,
which can be estimated via cross-validation [Natarajan et al.,
2013] or other advanced methods [Liu and Tao, 2016]. Based

on above notations, we have the following fact
Pr[ỹi = −1|yi = 1] = η, Pr[ỹi = 1|yi = −1] = 0, (1)

where Pr[·] denotes probability. Given yi as the true label
corresponding to the observed corrupted label ỹi, we have
Pr[ỹi=1]

=Pr[ỹi=1|yi=1]Pr[yi=1]+Pr[ỹi=1|yi=−1]Pr[yi=−1]

=Pr[ỹi=1|yi=1]Pr[yi=1]+0× Pr[ỹi=−1]

=Pr[ỹi=1|yi=1]Pr[yi=1].
(2)

In (2), Pr[ỹi = 1] is the prior of observed positive class that
equals to k/n, then we can get the prior probability of true
positive example as

p = Pr[yi = 1] =
Pr[ỹi = 1]

Pr[ỹi = 1|yi = 1]
=

k

n(1− η)
, (3)

which is denoted by p for simplicity. Different from other
works that estimate the class prior by cross-validation, the
positive class prior Pr[yi = 1] in our work can be directly
computed by (3).

3 Loss Decomposition
Suppose h is an obtained classifier and the loss function is
` : Y × R → R, which penalizes the deviation from the pre-
dicted value h(x) and the groundtruth label y. In our case,
the risk of classifier h (i.e. R(h, Sn)) on Sn is composed of
two parts, where the first part is the loss on the clean posi-
tive examples and the second part is the loss on the corrupted
negative examples, namely

R(h, Sn) =
1

n
[

k∑
i=1

`(yi, h(xi)) +

n∑
i=k+1

`(yi, h(xi))]

= RP (h, SP ) +RN (h, SN ).

(4)

Note that the first term RP (h, SP ) in (4) can be easily com-
puted as all the labels in SP are correct. However, the re-
al value of second term RN (h, SN ) is not accessible as
the groundtruth labels of the examples in SN are unknown.
Therefore, what follows is studying how to get the unbiased
estimation of the second term.

In this paper, we use hinge loss as the loss `, so according
to [Patrini et al., 2016], we can further decompose the hinge
loss ` on the contaminated negative examples into two parts,
which reaches
`(z)=[1−z]+

1
=

1

2
([1−z]++[1 + z]+)+

1

2
([1−z]+−[1+z]+)

2
=

1

2
([1−z]++[1 + z]+)+

1

4
(−2z+|1−z|−|1+z|),

(5)
where z is variable and the equation 2 holds due to an arith-
metic trick of max(a, b) = (a + b)/2 + |b − a|/2. Since for
any z, we have

|1− z| 6 |z|+ 1, |1 + z| > |z| − 1. (6)
Eq. (5) can be further derived as

`(z) 6
1

2
([1− z]+ + [1 + z]+) +

1

2
(1− z). (7)

In this formulation, the term in the first bracket is an even
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function that is not affected by noise, and the second term
1
2 (1 − z) is an odd function that is affected by noise. Con-
sequently, only the second term in (7) reflects the impact of
label noise which will be further studied in Section 4. Ac-
cording to (7), the upper bound of RN (h, SN ) is formulated
as

RN (h, SN )=
1

n

n∑
i=k+1

1

2
([1− yih(xi)]+ + [1 + yih(xi)]+)

+
1

2
(1− yih(xi)).

(8)
Therefore, the upper boundRN is employed to replace the o-
riginalRN and it is simply denoted byRN in the subsequent
explanations with a little abuse of notation.

4 Analysis of Noisy Negative Examples
In this section, we analyze the classification risk on the cor-
rupted negative examples S̃N . Section 3 has shown that
RN (h, SN ) can be divided into two parts, where the first part
is label independent but the second part is influenced by the
erroneous negative labels. Hence, we investigate the influ-
ence of noisy negative examples on the second term. Assume
the linear classifier is hw(xi) = 〈w,xi〉, where w is the mod-
el parameter, then according to (8), we have

RN (h, SN )=
1

n

n∑
i=k+1

1

2
([1− yih(xi)]+ + [1 + yih(xi)]+)

+
1

2
(1− yih(xi))

=
1

n

n∑
i=k+1

1

2
([1− yih(xi)]+ + [1 + yih(xi)]+)

+
1

n

n∑
i=k+1

1

2
− 1

2
〈w, 1

n

n∑
i=k+1

yixi〉.

(9)

Noise only exists in negative examples, hence the only
thing we need to consider carefully is the corrupted neg-
ative examples. From the explanation of Eq. (7) in Sec-
tion 3, we know that we only need to focus on the third
term of Eq. (9) for dealing with label noise. Moreover, we
also introduce the notion of negative example centroid that
concerns the unlabeled examples in SN with true labels and
true distribution D, namely µ(SN ) = 1

n−k
∑n
i=k+1 yixi and

µ(D) = E(x,y)∼D[x,y].
Similarly, we also define the unlabeled example centroid

µ(S̃N ) = 1
n−k

∑n
i=k+1 ỹixi and µ(Dη) = E(x,ỹ)∼D[x,ỹ] on

the corrupted negative set S̃N and corrupted distribution Dη ,
respectively. By substituting µ(SN ) into RN (h, SN ) and ig-
noring the constant term, (9) is transformed to

RN (h, SN )=
1

2n

n∑
i=k+1

([1−yi〈w,xi〉]++[1+yi〈w,xi〉]+)

− n− k
2n
〈w, µ(SN )〉.

(10)
Since we can only observe the corrupted S̃N supported by
Dη rather than the true SN supported byD. The key for com-
puting (10) lies in the estimation of µ(SN ). To this end, we

provide the following theorem:

Theorem 1. Given η as the prior of label noise rate in S̃N
and p as the prior probability of true positive example de-
fined in (3), the means of true distribution D and the corrupt-
ed distribution Dη satisfy µ(Dη) = (1 − 2pη)µ(D). Simi-
larly, the example centroid of the real SN and the corrupted
negative set S̃N have the relationship Eỹ1,...,ỹn [µ(S̃N )] =
(1− 2pη)µ(SN ).

Proof. It is straightforward that
Eỹ[ỹx|(x, y)]

= pEỹ[ỹx|(x, y)] + (1− p)Eỹ[ỹx|(x, y)]

= p(1− 2η)yx + (1− p)yx
= (1− 2pη)yx.

(11)

From Eỹ[x|(x, y)], we have
µ(Dη) = E(x,ỹ)∼Dη [ỹx]

= E(x,y)∼D[Eỹ[ỹx|(x, y)]]

= E(x,y)∼D[(1− 2pη)yx]

= (1− 2pη)µ(D),

(12)

and
E[µ(S̃N )] = (1− 2pη)µ(SN ). (13)

Theorem 1 informs us that µ(S̃N )/(1 − 2pη) is an unbi-
ased estimation of µ(SN ). Besides, [Gao et al., 2016] shows
that the random noise increases the covariance of yx, and
may result in heavy-tailed distributions. Hence, we derive
the covariance matrix Σ(µ(S̃N )) of negative instance cen-
troid µ(S̃N ), which is given in the following theorem.

Theorem 2. Given S̃N as the corrupted negative example,
the empirical covariance matrix Σ̂(µ(S̃N )) is

Σ̂[µ(S̃N )]=
n∑

i=k+1

x>i xi
n− k

− 1

n− k

n∑
i=k+1

x>i ỹi
n− k

n∑
i=k+1

xiỹi
n− k

.

(14)

Proof. The definition of covariance matrix is

Σ(µ(S̃N ))=E[[µ(S̃N )]>µ(S̃N )]−[E[µ(S̃N )]]>E[µ(S̃N )].
(15)

Besides, since

E[[µ(S̃N )]>µ(S̃N )]

= E[[
1

n− k

n∑
i=k+1

ỹixi]
> 1

n− k

n∑
i=k+1

ỹixi]

=
1

(n− k)2
(

n∑
i=k+1

E[x>i xi] +
∑
i6=j

E[ỹiỹjx
>
i xj ]),

(16)

and

E[ỹiỹjx
>
i xj ]= E[

n∑
i=k+1

xiỹi
n− k

]>E[
n∑

i=k+1

xiỹi
n− k

]. (17)

We may easily get the covariance matrix by substituting (16)
and (17) into (15). As a good approximation of (15), we can
define the empirical covariance as (14) [Gao et al., 2016].
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Algorithm 1 Median-of-means estimator of corrupted nega-
tive mean

Input: The corrupted negative sample, S̃N ; the number of
groups g, g ≥ 1;

Output: The median-of-means estimator, µ̂(S̃N );
1: Randomly divide S̃N into g groups

{S̃N
[1]
, S̃N

[2]
, . . . , S̃N

[g]
} with almost equal size;

2: Calculate the standard empirical mean µ(S̃N
[i]

) for each

i ∈ [g] and each group S̃N
[i]

;

3: Calculate ri = median{µ(S̃N
[i]

) − µ(S̃N
[j]

)} for each
i ∈ [g], and then set i∗ = arg mini∈[g] ri;

4: return µ̂(S̃N ).

5 The LDCE Algorithm

Section 4 shows that we can estimate the true unlabeled ex-
ample centroid µ(SN ), which is significant to handle PU
problem, by estimating the corrupted negative example cen-
troid µ(S̃N ). In this paper, we adopt the recent generalized
median-of-means estimator [Hsu and Sabato, 2014] to esti-
mate µ(S̃N ). The basic idea is to randomly divide the cor-
rupted negative set S̃N into g groups with almost equal size,
and then return the generalized median of sample means for
each group under `2-norm metric. Algorithm 1 presents the
detailed description about this process.

Due to the influence of noise on the covariance of yx , that
has been discussed in Section 4, here we impose a constraint
on µ(S̃N ), which is

(µ− µ̂(S̃N ))>Σ̂(µ̂(S̃N ))(µ− µ̂(S̃N )) ≤ β, (18)

where µ̂(S̃N ) is the output of Algorithm 1, Σ̂(µ̂(S̃N ))
is shown in Eq. (15), and β can be estimated by cross-
validation. Therefore, our PU learning model is formalized
as

min
w,µ

1

n

k∑
i=1

`(yi〈w,xi〉) +
1

2n

n∑
i=k+1

ϕ(yi, 〈w,xi〉)

+
c

1− 2pη
〈w, µ〉+ λ‖w‖2

s.t. (µ− µ̂(S̃N ))>Σ̂(µ̂(S̃N ))(µ− µ̂(S̃N )) ≤ β,

(19)

where `(yi〈w,xi〉) = max(0, 1 − yi〈w,xi〉), c = −(n −
k)/2n, ϕ(yi, 〈w,xi〉) = [1−yi〈w,xi〉]++[1+yi〈w,xi〉]+,
p = k/n(1 − η), and λ‖w‖2 is the regularization term to
avoid overfitting.

In this work, we use the Alternative Convex Search method
to solve the optimization problem (19). Specially, after fixing
µ, we can simply use the gradient descent algorithm to solve
the minimization problem on w, which is

min
w

1

n

k∑
i=1

`(yi〈w,xi〉) +
1

2n

n∑
i=k+1

ϕ(yi, 〈w,xi〉)

+
c

1− 2pη
〈w, µ〉+ λ‖w‖2.

(20)

Algorithm 2 Loss Decomposition and Centroid Estimation
(LDCE) algorithm for PU learning

Input: The corrupted sample S̃n =
{(x1, y1), . . . , (xk, yk), (xk+1, ỹk+1), . . . , (xn, ỹn)},
the noisy parameter η, the regularization parameter λ,
the approximation β;

Output: The optimal classifier parameter w;
1: Call Algorithm 1 to give an estimation of µ̂ = µ̂(S̃N );
2: Calculate Σ̂ = Σ̂(µ̂(S̃N )) by Eq. (14);
3: Initialize t = 0 and w0;
4: repeat

5: Calculate µ= µ̂+Σ̂−1w

√
β/(w>Σ̂−1w);

6: Use gradient descent method to solve

wt=arg min
w

1

n

k∑
i=1

`(yi〈w,xi〉)+
1

2n

n∑
i=k+1

ϕ(yi, 〈w,xi〉)

+
c

1− 2pη
〈w, µ〉+ λ‖w‖2;

7: t = t+ 1;
8: until convergence;
9: return The converged w.

For fixed w, after ignoring some constant terms, the opti-
mization problem regarding µ is

min
µ

c〈w, µ〉

s.t. (µ− µ̂(S̃N ))>Σ̂(µ̂(S̃N ))(µ− µ̂(S̃N )) ≤ β.
(21)

To deal with this constrained optimization problem, we can
introduce a Lagrange variable ρ, and thus

L(µ, β)=c〈w, µ〉−ρ(µ−µ̂(S̃N ))>Σ̂(µ̂(S̃N ))(µ−µ̂(S̃N ))

+ρβ.
(22)

By setting ∂L(µ,β)
∂µ = 0, we obtain

µ =
c

2ρ
(Σ̂(µ̂(S̃N )))−1w + µ̂(S̃N ). (23)

By plugging Eq. (23) into Eq. (21), we have

min
ρ

c

2ρ
w>(Σ̂(µ̂(S̃N )))−1w

s.t.
c2

4ρ2
w>(Σ̂(µ̂(S̃N )))−1w ≤ β,

(24)

of which the solution is ρ = − c
2

√
w>(Σ̂(µ̂(S̃N )))−1w/β.

By further plugging it into Eq. (23), we derive the solution of
Eq. (23) as

µ= µ̂(S̃N )+(Σ̂(µ̂(S̃N )))−1w

√
β/(w>(Σ̂(µ̂(S̃N )))−1w).

(25)
Algorithm 2 shows the detailed procedure of our algorithm.

6 Experiments
In this section, we perform exhaustive experiments on
one synthetic dataset, seven publicly available benchmark
datasets and two real-world datasets. We compare our pro-
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posed method (dubbed as “LDCE”) with state-of-the-art PU
learning methods such as Weighted SVM (W-SVM) [Elka-
n and Noto, 2008], Unbiased PU (UPU) [Du Plessis et al.,
2015] and Non-Negative PU (NNPU) [Kiryo et al., 2017].
Besides, LDCE is also compared with the traditional Linear
SVM (L-SVM) for which the unlabeled examples are naively
treated as negative.

6.1 Synthetic Dataset

Firstly, we create a two-dimensional dataset consisted of t-
wo Gaussians as shown in Figure 1 (a). The dataset contains
500 positive examples and 500 negative examples, and each
class corresponds to a Gaussian. We make 20% (η = 0.2)
of the original positive examples and all negative examples
to be unlabeled (see Figure 1 (b)), and examine whether d-
ifferent PU learning methods can accurately find the proper
decision boundary for separating positive and negative exam-
ples. The results of various compared methods are shown
in Figure 1 (c)∼(f), revealing that only our LDCE achieves
100% classification accuracy, which is higher than 99.8%,
99.7% and 94% obtained by W-SVM, UPU and L-SVM, re-
spectively. Note that NNPU is not compared as this method
does not output explicit decision function. Specifically, we
see that many negative examples are classified as positive by
the traditional L-SVM, so directly treating all unlabeled ex-
amples as negative is inappropriate for PU learning. Besides,
although the performances of W-SVM and UPU are better
than L-SVM, they fail to distinguish the ambiguous examples
near the potentially correct decision boundary. Therefore, the
superiority of LDCE to other existing models are demonstrat-
ed.

6.2 UCI Benchmark Dataset

To demonstrate the effectiveness of our proposed method, we
also conducted extensive experiments on seven datasets from
UCI machine learning repository [Merz and Murphy, 1998].
The size of training set n and the feature dimensionality d
for each dataset is presented in Table 1. All data features
are normalized to [−1, 1] in advance. For each of the dataset
illustrated in Table 1, we randomly pick 80% of the data for
training and the rest 20% examples are used for testing. Then,
we randomly select 20%, 30%, 40% ( i.e. η ∈ {0.2, 0.3, 0.4})
positive training examples and combine them with original
negative set to compose the unlabeled set. Note that the di-
vision of positive set and unlabeled set under each η is kept
identical for every compared method. In our experiment, we
conduct 5-fold cross validation on all comparators and their
mean test accuracies over the five trials are reported in Ta-
ble 1. Furthermore, we also apply the t-test with significant
level 0.1 to statistically examine whether our LDCE is signif-
icantly better than other methods.

From the mean test accuracies reported in Table 1, we see
that LDCE is consistently among the best two methods on
the seven datasets. Apart from mushroom dataset, the per-
formances of existing PU learning approaches can be signifi-
cantly enhanced by LDCE as revealed by the t-test.

（a） （b） 

LDCE UPU 

（c） （d）

W-SVM

（e） （f）

L-SVM

Figure 1: The performances of various methods on synthetic dataset:
(a) shows the real positive and unlabeled examples, (b) shows the
positive and unlabeled examples for model training, (c)∼(f) display
the decision boundaries generated by LDCE, UPU, W-SVM and L-
SVM, respectively. The incorrectly classified examples are high-
lighted by purple circles.

6.3 Real-world Data
We also conduct the experiments on two real-world datasets
to evaluate the ability of our LDCE in dealing with practical
problem.

Handwritten Digit Recognition
The USPS 1 dataset was adopted to assess the ability of var-
ious methods in recognizing the handwritten digits. This
dataset contains 9298 digit images belonging to 10 classes,
i.e. the digits “0”-“9”. The resolution of all images is 16×16,
so the pixel-wise feature we adopted was 256 dimensions, in
which every dimension represents the gray value of corre-
sponding pixel. We choose the digit images of “0” as posi-
tive, and regard the rest of digit images as negative examples.
Therefore, there are 1553 positive examples and 7745 neg-
ative examples, and such class imbalance will pose a great
challenge for the compared methodologies. The way for gen-
erating the positive set is the same as the manipulations in
Section 6.2.

Since this dataset is imbalanced, we apply two metrics,

1http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html
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Dataset (n, d) Num of P Num ofN η W-SVM UPU NNPU L-SVM LDCE

vote (435, 16) 267 168
0.2 0.876± 0.04

√
0.888± 0.03 0.883± 0.03

√
0.775± 0.05

√
0.901± 0.03

0.3 0.862± 0.05 0.885± 0.04 0.869± 0.02 0.834± 0.03
√

0.894± 0.04
0.4 0.801± 0.09 0.802± 0.03

√
0.786± 0.03

√
0.747± 0.03

√
0.823± 0.05

balance (625, 4) 288 337
0.2 0.853± 0.03

√
0.854± 0.03

√
0.838± 0.03

√
0.822± 0.04

√
0.910± 0.02

0.3 0.773± 0.12 0.805± 0.03
√

0.760± 0.11 0.773± 0.12 0.827± 0.03
0.4 0.629± 0.05

√
0.685± 0.02

√
0.680± 0.04

√
0.626± 0.05

√
0.721± 0.03

breast (683, 10) 143 540
0.2 0.947± 0.01

√
0.952± 0.02

√
0.956± 0.01

√
0.933± 0.02

√
0.974± 0.02

0.3 0.802± 0.02
√

0.795± 0.01
√

0.821± 0.03 0.798± 0.01
√

0.845± 0.03
0.4 0.794± 0.01

√
0.791± 0.00

√
0.799± 0.02

√
0.789± 0.02

√
0.845± 0.04

australian (690, 14) 370 383
0.2 0.810± 0.04

√
0.811± 0.04 0.838± 0.02 0.796± 0.05

√
0.849± 0.03

0.3 0.828± 0.01
√

0.842± 0.01 0.838± 0.03
√

0.825± 0.02
√

0.852± 0.02
0.4 0.832± 0.04 0.801± 0.02

√
0.839± 0.03

√
0.809± 0.04 0.851± 0.02

benknote (1372, 4) 610 762
0.2 0.966± 0.01

√
0.958± 0.01

√
0.963± 0.01

√
0.864± 0.08

√
0.977± 0.01

0.3 0.953± 0.02
√

0.952± 0.01
√

0.972± 0.01 0.775± 0.04
√

0.975± 0.02
0.4 0.937± 0.01

√
0.929± 0.03

√
0.964± 0.01 0.808± 0.05

√
0.973± 0.01

mushroom (8124, 112) 3916 4208
0.2 0.658± 0.09

√
0.764± 0.02

√
0.910± 0.04× 0.526± 0.05

√
0.849± 0.03

0.3 0.688± 0.09
√

0.726± 0.01
√

0.864± 0.07× 0.504± 0.01
√

0.750± 0.01
0.4 0.510± 0.01

√
0.656± 0.04 0.750± 0.05× 0.507± 0.01

√
0.658± 0.05

web (11055, 31) 6157 4898
0.2 0.794± 0.03

√
0.785± 0.04

√
0.830± 0.02 0.630± 0.02

√
0.840± 0.02

0.3 0.691± 0.06
√

0.729± 0.05
√

0.822± 0.02 0.652± 0.08
√

0.827± 0.02
0.4 0.625± 0.03

√
0.732± 0.07

√
0.817± 0.01 0.612± 0.01

√
0.821± 0.01

Table 1: Comparison of mean test accuracies of various approaches on UCI datasets.
√

(×) denotes that our approach is significantly better
(worse) than the corresponding method revealed by the paired t-test with significance level 0.1. The best two results on each dataset are
indicated in red and blue, respectively.

i.e. test accuracy and F-measure, to evaluate the performance
of all methods. The results of various methods are present-
ed in Table 2 and Figure 2, respectively. From the Table 2,
we see that our proposed LDCE preforms better than other
methods under different noise rates (η), in terms of test accu-
racy. From Figure 2, we observe that the F-measure obtained
by LDCE is also higher than other methods on the two real-
world datasets, which demonstrate the effectiveness of our
proposed approach in dealing with imbalance data.

Violent Behavior Detection
Recently, intelligent monitoring technique for detecting vio-
lent behavior has gained incresing of attention due to its great
practical significance. In this section, we utilize the Hockey-
Fight 2 dataset and apply our proposed approach and other
PU methods to fight behavior detection. The HockeyFight
dataset is made up of 1000 video clips collected in ice hock-
ey competitions, of which 500 contain fight behavior and 500
are non-fight sequences. We classify the clips with fighting
and without fighting by using various PU learning method-
s including L-SVM, W-SVM, UPU, NNPU and our LDCE.
Similar to [Gong et al., 2015], after adopting the space-time
interest point (STIP) and motion SIFT (MoSIFT) as action
descriptors, each video clip of the dataset can be represent-
ed as a histogram over 100 visual words by further using the
Bag-of-Words (BoW) quantization. Hence, every clip in the
dataset was characterized by a 100-dimensional feature vec-
tor. Similar to Section 6.2, the proportions of training exam-
ples and test examples are also maintained as 80% and 20%,
respectively, and the noise rate η also ranges from 0.2 to 0.4.

The test accuracies and F-measure values achieved by the
compared methods are presented in Table 2 and Figure 2, re-
spectively, which clearly indicate that our LDCE achieves the
top-level performance among all the comparators. Particular-
ly, it can be noted that the F-measure of LDCE is as high as
0.783 when the noise rate is 0.4. In contrast, the second best
L-SVM only achieves the F-measure of 0.671. Therefore,
our LDCE is still able to render very impressive results even

2http://visilab.etsii.uclm.es/personas/oscar/FightDetection/index.html

Dataset (n, d) η W-SVM UPU NNPU L-SVM LDCE

HockeyFight (1000, 100)
0.2 0.841 0.845 0.845 0.825 0.860
0.3 0.780 0.765 0.745 0.745 0.791
0.4 0.681 0.742 0.735 0.514 0.752

USPS (9298, 256)
0.2 0.925 0.929 0.916 0.896 0.934
0.3 0.743 0.901 0.893 0.733 0.911
0.4 0.812 0.892 0.866 0.768 0.901

Table 2: Comparison of test accuracies of various approaches on
two real-world datasets including HockeyFight and USPS. The best
result on each dataset is indicated in bold.

(b)(a)
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Figure 2: The F-measure of various PU learning methods on (a)
HockeyFight and (b) USPS. The highest F-measure value under each
noise rate η is marked by red.

though a large number of positive examples are “hidden” in
the original unlabeled set.

7 Conclusion
This paper proposes a novel PU learning algorithm dubbed
“Loss Decomposition and Centroid Estimation” (LDCE). By
treating the unlabeled examples as negative with false neg-
ative label error, we convert PU learning to the noisy label
learning problem, and use the loss decomposition technique
to explicitly model the noisy labels. Based on loss decompo-
sition, we shed light on that the unbiased estimation of labeled
example centroid helps to reduce the adverse effect of noise.
Thorough experimental results on both synthetic and practi-
cal datasets show that the proposed method is more effective
than the state-of-the-art PU learning methods. In the future, it
is worthwhile to extend our LDCE model to non-linear case
by introducing the kernel trick.
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