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Abstract
We propose a novel neural network model that aims
to generate diverse and human-like natural lan-
guage questions. Our model not only directly cap-
tures the variability in possible questions by using
a latent variable, but also generates certain types of
questions1 by introducing an additional observed
variable. We deploy our model in the generative
adversarial network (GAN) framework and mod-
ify the discriminator which not only allows evaluat-
ing the question authenticity, but predicts the ques-
tion type. Our model is trained and evaluated on a
question-answering dataset SQuAD, and the exper-
imental results shown the proposed model is able
to generate diverse and readable questions with the
specific attribute.

1 Introduction
Automatic question generation aims to generate natural ques-
tions from a given text passage and a target answer. It has
many important application values: One potential value for
question generation is in education, where the automatic tu-
toring systems generate natural questions for reading compre-
hension materials [Heilman and Smith, 2010]. In the dialogue
system, question generation techniques can help the dialogue
agents launch a conversation or request feedback [Li et al.,
2017a]. In the medical field, question generation systems are
also used as a clinical tool for evaluating or improving men-
tal health [Colby et al., 1971]. As the reverse task of question
answering, question generation also has the potential for gen-
erating large-scale question answer pair corpus[Serban et al.,
2016].

Traditional methods for question generation mainly use
rigid heuristic rules to convert an input passage into corre-
sponding questions [Heilman, 2011; Chali and Hasan, 2015].
However, these approaches strongly rely on human-designed
transformation and generation rules so that cannot be easily
adopted to other domains. Recently, neural networks based
question generation methods aim at training an end-to-end

∗Corresponding author: Libo Zhang (libo@iscas.ac.cn).
1We classify the questions into six types - WHO, WHAT,

WHICH, HOW, WHEN and OTHER.

system to generate natural language questions from text with-
out the human-designed rules [Zhou et al., 2017]. The work
adapts the sequence-to-sequence approach [Cho et al., 2014]
for generating questions, in which the encoder encodes the
text passage and other auxiliary information (answer or con-
text), and then a decoder is used to sequentially output ques-
tion words. However, the existing encoder-decoder models
only generate a single question for one text passage.

Given a text passage and a question, a unique answer can
be found in the passage, but multiple questions can be asked
by giving a passage and an answer. Learning the variety of
a valid question is an important but overlooked problem in
many existing methods [Zhou et al., 2017; Yuan et al., 2017].
In order to capture the diversity in the potential questions, our
method aims to produce a series of questions from a given
passage and a given answer. Human ask different types of
questions. They are classified into six types in SQuAD dataset
[Rajpurkar et al., 2016], - WHO/WHOM, WHAT, WHICH,
HOW, WHEN, OTHER 2. Our method also aims to learn the
generation of the certain types of questions.

In this paper, we teach machines to ask the right questions
- the natural language questions are generated by learning the
given text passage and a targeted answer. The key idea of
our work is to model the question generations as a one-to-
many problem. Given a text passage and an answer, multiple
valid questions may exist. We model a probabilistic distribu-
tion over the potential questions using a latent variable. This
allows us to generate diverse questions by drawing samples
from the learned distribution and reconstruct the words se-
quence via a decoder neural network. Meanwhile, the ob-
served question-type labels represent the salient attributes of
questions and are provided to the models as conditionals in
order to generate questions with the certain types.

We apply adversarial training to natural-language question
generation task, in which we simultaneously train a gener-
ative model G and a discriminative model D. We use the
latent variable and the observation variable in G to learn a
distribution over potential questions, generating diverse and
certain types of questions. We also made a modification for
D, which encourages G to produce sequences that are indis-
tinguishable from the questions generated by the human, and

2Six-types questions account for about 11.1%, 57.7%, 7.1%,
10.5%, 6.3%, 7.3% in training data, respectively.
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contain the specific attributes. The main contributions of this
paper are as follows:
• We present a novel natural-language question genera-

tion model deployed in GAN [Goodfellow et al., 2014]
framework which consists of a generative model G and
a discriminative model D. D encourages G to gener-
ate more readable and diverse questions with the certain
types.
• The variational auto-encoders (VAE) [Kingma and

Welling, 2013] is adopted to the generative model G by
introducing a latent variable to capture question diver-
sity.
• The question type is regarded as the salient attribute and

the observed variable, which is used to learn a disentan-
gled representation from the latent distribution to pro-
duce the certain types of questions.

We train and evaluate our model on SQuAD dataset, and the
experimental results show our model is able to generate the
certain types of questions with high readability and diversity.

2 Related Work
2.1 Question Generation
Automatic question generation has drawn an increasing atten-
tion from natural language generation community in recent
years. Majority of earlier work uses a rule-based method that
transforms a sentence into related questions [Heilman, 2011]
by manually constructed template. However, these methods
strongly depend on manually generated rules so that cannot
be easily adopted to other domains. Instead of generating
questions from texts, a neural network method is trained to
convert knowledge base triples to generate factoid questions
from structured data [Serban et al., 2016]. More recently,
neural networks based question generation models aim at
training an end-to-end system to generate natural language
questions from text without human-designed transformation
and generation rules [Zhou et al., 2017; Yuan et al., 2017;
Du et al., 2017]. These work extends the sequence-to-
sequence models [Cho et al., 2014] by enriching the encoder
with auxiliary feature information to help generating better
sentence encoding. Then the decoder with attention mecha-
nism [Bahdanau et al., 2014] produces natural language ques-
tion of sentence.

2.2 Deep Generative Models
Deep neural network based generative models are widely
used in text generation tasks such as text summarization [See
et al., 2017], machine translation [Hu et al., 2017] and dia-
logue system [Li et al., 2017b]. Deep generative models have
drawn a lot attentions. Recurrent neural networks (RNNs)
based generative model is proposed in [Graves, 2013] to gen-
erate the next word conditioned on previous work sequence.
Encoder-decoder architecture [Cho et al., 2014] based gener-
ative models use RNNs to encode an input text sentence into a
fixed vector, and generate a new output text sequence from the
vector using the second RNN model. These models usually
produce one corresponding text sequence from a given text
sequence. Recently, VAE [Kingma and Welling, 2013] as a

popular framework has been applied in text generation tasks
such as dialogue system [Zhao et al., 2017] and image cap-
tion [Rezende et al., 2014] as deep generative models. VAE
encodes the input sequence into a latent hidden space, and
then utilizes a decoder network to rebuild the original input
by sampling from this space, aiming to capture the variability
in potential generated sequences. GAN [Goodfellow et al.,
2014], an alternative training approach to generative mod-
els, where the training procedure is a minimax two-player
game, in which a generative model is trained to generate out-
puts, while the discriminative model evaluates them for au-
thenticity. To apply GAN to text generation, SeqGAN [Yu et
al., 2016] models the text generation as a sequential decision
making process, and utilizes policy gradient methods [Sutton
et al., 1999] to train the generative model.

3 Model
In this section, we introduce our neural question generation
model. As depicted in figure 1, we apply adversarial train-
ing to natural-language question generation task, in which we
simultaneously train a generative model G and a discrimina-
tive model D. Generative model is employed in an encoder-
decoder architecture [Cho et al., 2014]. It is based on condi-
tional variational autoencoders [Zhao et al., 2017] that cap-
tures the diversity in the encoder, introducing the latent vari-
able z and the observation variable c in G in order to learn
a distribution over potential questions given an answer. We
also made a simple modification for D by adding an auxil-
iary classifier to distinguish the types of questions. Similar to
the standard adversarial training manner [Goodfellow et al.,
2014], we first pre-train the generative model by generating
questions given the passages and answers. Then we pre-train
the discriminator by providing positive examples from the
human-generated questions and the negative examples pro-
duced from the pre-trained generator. After the pre-training,
the generator and discriminator are trained alternatively.

3.1 Generative Model
Model Description
Question generation task is to model the true probability of a
question Y given an input text passage X and an answer A.
We denote our model distribution by P (Y |X,A). We intro-
duce a latent variable z which is used to learn to the latent dis-
tribution over the valid questions. We then define the condi-
tional distribution P (Y, z|X,A) = P (Y |z,X,A)P (z|X,A)
and our goal is to use deep neural networks (parametrized by
θ) to approximate P (z|X,A) and P (Y |z,X,A). We refer
to Pθ(z|X,A) as the prior network and Pθ(Y |z,X,A) as the
question generation decoder. Then the generative process of
Y can be depicted as: (1) Sample the latent variable z from
the prior network Pθ(z|X,A). (2) Generate Y through the
question generation decoder Pθ(Y |z,X,A).

We assume the latent variable z follow multivariate Gaus-
sian distribution with a diagonal covariance matrix. At train-
ing time, we follow the variational autoencoder framework
[Kingma and Welling, 2013; Sohn et al., 2015] and intro-
duce an approximation network Qφ(z|X,A) to approximate
the true posterior distribution Pθ(z|X,A). We thus have the
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Figure 1: The neural question generation model deployed in GAN
framework. ⊕ denotes the concatenation of the input vectors.

following evidence lower bound (ELBO) [Sohn et al., 2015]:

logP (Y |X,A) ≥−KL(Qφ(z|X,A)||Pθ(z|X,A))
+EQφ(z|X,A)[logPθ(Y |z,X,A)]

(1)

We point out that existing encoder-decoder models encode
an input passage X and answer A as a single fixed repre-
sentation. Hence, all of the possible questions corresponding
to X and A must be stored within the decoder’s probabil-
ity distribution P (Y |X,A), and during decoding it is hard to
disentangle these possible questions. However, our question
generation model contains a stochastic component z in the de-
coder P (Y |z,X,A), and so by sampling different z and then
performing maximum likelihood decoding on P (Y |z,X,A),
we hope to tease apart the questions stored in the probability
distribution P (Y |X,A).

In our question generation task, the generative model uses
the latent variable z to learn the potential questions distri-
bution and generate the diverse question by sampling differ-
ent z. However, it is hard to produce the specific attributes
or types of questions by randomly sampling from z. For in-
stance, every question has its corresponding type and we hope
to generate the specific types of questions. Inspired from AC-
GAN [Odena et al., 2017], we introduce another observed
variable – question type label c, which is independent of z,
to learn a disentangled representation from z. Our model can
encode useful information into z and we want to tease apart
these information by using an additional observed variable c.
We update ELBO as follows:

logP (Y |X,A) ≥−KL(Qφ(z|X,A)||Pθ(z|X,A))
+EQφ(z|X,A)[logPθ(Y |(z, c), X,A)]

(2)

Note that this loss decomposes into two parts: the KL di-
vergence between the approximate posterior and the prior,
and the cross-entropy loss between the model distribution and
the data distribution. Finally, the model is trained by mini-
mizing the following loss:

Jml(θ, φ) =KL(Qφ(z|X,A)||Pθ(z|X,A))
−EQφ(z|X,A)[logPθ(Y |(z, c), X,A)]

(3)

Model Implementation
Given an input text passage X = {x1, . . . , xn}, a ques-
tion Y = {y1, . . . , ym} and the corresponding answer A =
{a1, . . . , al}. Here, n, m and l are the length of the text pas-
sage, the length of ground truth question and the length of
answer, respectively. Sequence elements xi, yj and ak are
given by pre-trained glove embedding vectors [Pennington et
al., 2014].

At the stage of encoding, firstly, we augment each doc-
ument word embedding with a binary feature that indicates
whether the passage word belongs to the answer. Then, we
use a bidirectional RNNs [Schuster and Paliwal, 1997] with
long short-term memory (LSTM) [Hochreiter and Schmid-
huber, 1997] cell as the context encoder which runs on the
augmented passage sequence, generating the corresponding
hidden state vectors hd = {hd1, ..., hdn} for the input tokens.
Here, hdi is the concatenation of the RNNs’ forward hidden

state ~hdi and backward hidden state ~h
d

i , i.e., hdi = [~hdi ;
~h
d

i ]
3.

Meanwhile, we obtain the semantic representation of passage
hD by concatenating the last hidden states of the forward and

backward RNNs, i.e., hD = [~hdn;
~h
d

1].
We assume that the answer A consists of the sequence of

words {xs, ..., xe} in the passage, where s and e are the start
position and the end position of the answer word in the pas-
sage, s.t. 1 ≤ s ≤ e ≤ n. In order to obtain the semantic
representation ha of the answer A, we concatenate the hid-
den states {hds , ..., hde} of the context encoder corresponding
to the answer word positions in the passage with the answer
word embeddings {as, ..., ae}, i.e., [hdi ; ai], s ≤ i ≤ e. We
form ha by calculating the average pooling of the concate-
nated answer representation of each position.

ha =
1

e− s+ 1

e∑
i=s

[hdi ; ai], (4)

We also run a bidirectional LSTM RNNs as a question en-
coder which runs over the word embeddings of question, and
concatenate the final state of forward RNNs and backward
RNNs to obtain the representation of question hq = [~hqm; ~h

q

1].
Assume that the latent variable z follow Gaussian distribu-

tion, the approximation network Qφ(z|X,A) ∼ N(µ, σ2I)
and the prior network Pθ(z|X,A) ∼ N(µ′, σ′

2I). When we
obtain the passage representation hD, the answer representa-
tion ha and the question representation hq , we can calculate
the mean and variance of Q and P :[

µ
log(σ2)

]
=Wq

hDha
hq

+ bq, (5)

3We use the notation [·; ·] to denote concatenation of two vectors
throughout the paper.
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[
µ′

log(σ′
2
)

]
=Wp2(tanh(Wp1

[
hD

ha

]
+ bp2)) + bp1, (6)

where Wq , bq , Wp1, bp1,Wp2, and bp2 are learning parame-
ters. We then obtain samples of z from the approximation
network Q (training) or the prior network P (testing) using
the reparameterization trick [Kingma and Welling, 2013] and
concatenate hD, ha, z and question type label c (one-hot rep-
resentation). Finally, we initialize the hidden state of the de-
coder with the nonlinear transformation of these concatenated
representation s0 = tanh(W0[h

D;ha; z; c] + b0), where W0

and b0 are learning parameters.
At the stage of decoding, we employ an attention-based

LSTM decoder to decode the source passage and answer in-
formation to generate questions. At decoding time step t, the
LSTM decoder reads the previous word embedding yt−1 and
context vector Ct−1 to compute the new hidden state st. The
context vector Ct for current time step t is computed through
the attention mechanism [Luong et al., 2015], which matches
the current decoder state st with each hidden state hd in the
context encoder to get an importance score. The importance
scores are then normalized to get the current context vector
by weighted sum:

st = LSTM(yt−1, Ct−1, st−1)

et,i = vT tanh(West−1 + Ueh
d
i )

αt,i =
exp(et,i)∑n
i=1 exp(et,i)

Ct =

n∑
i=1

αt,ih
d
i

(7)

where We, Ue and vT are learning parameters. Finally, the
probability of each target word yt is predicted based on all
the words that are generated previously (i.e., y<t), and input
text passage X .

P (yt|X, y<t) = softmax(V ′(V [st;Ct] + b) + b′) (8)

where V ′, V , b′ and b are learnable parameters .While train-
ing our generative model with LSTM decoder, the vanishing
latent variable problem [Bowman et al., 2016] make the train-
ing process difficult as the decoder tends to ignore the latent
variable. We use similar techniques in [Bowman et al., 2016]
to overcome this problem by KL annealing and word drop
decoding. The former gradually increases the weight of KL
term from 0 to 1 over the course of model training and the
latter uses a certain percentage of dropout for target words in
the decoder.

3.2 Discriminative Model
In our question generation model, every generated sample has
a corresponding class label c and the generator G use the
passage X , the answer A, the latent variable z and question
class label c to generate questions . Similar to the discrim-
inator of AC-GAN [Odena et al., 2017], our discriminator

D has a binary classifier and an auxiliary classifier. The bi-
nary classifier aims at distinguishing the input question se-
quence whether is generated by humans or synthesized by
machines and the auxiliary classifier predicts the probability
of the question class. We firstly obtain the answer semantic
representation and the question semantic representation using
the similar way in generative model. And then the both rep-
resentations are encoded into a vector representation using a
LSTM RNNs encoder, which finally is fed to 2-class softmax
function and 6-class softmax function, returning a probabil-
ity distribution over the input question being a machine gen-
erated question or human-generated question P (q|Y ) and a
probability distribution over the question class P (C|Y ), re-
spectively.

3.3 Parameters Training
Our question generation model adopts the adversarial training
process in GAN framework. The discriminator is regard as a
reward function to further improve the generator iteratively
by dynamically updating the discriminator. We firstly pre-
train our generator by minimizing the loss Jml in equation
3. Once we obtain more realistic and high-quality questions
generated by generator G, the discriminator D is trained to
minimize the following loss function:

LDψ =−EY∼pdata[logP (q=real|Y )+logP (C=c|Y )]

−EY∼Gθ[logP (q=fake|Y )+logP (C=c|Y )]

(9)

When the discriminator D is obtained and fixed, we are
ready to update the generatorG. The loss function of our gen-
erator G has two parts: the loss computed by policy gradient
(denoted by Jpg) and the loss Jml in equation 3 (contains the
KL divergence and the cross-entropy loss). According to the
policy gradient theorem [Sutton et al., 1999], we compute the
gradient of Jpg w.r.t. the parameters τ :

∇τJpg =
1

T

T∑
t=1

∑
yt

[αRD((Y1:t−1, I), yt)

+βRC((Y1:t−1, I), yt)] · ∇τ (Gτ (yt|Y1:t−1, I))

=
1

T

T∑
t=1

Eyt∈Gτ [αR
D((Y1:t−1, I), yt)

+βRC((Y1:t−1, I), yt) · ∇τ (Gτ (yt|Y1:t−1, I))]
(10)

where RD((Y1:t−1, I), yt) and RC((Y1:t−1, I), yt) are the
action-value function. The former denotes the obtained re-
ward from D which equals to the probability of the input
question sequence being a human-generated question, and the
latter is also a reward which equals to the probability of the
real class of the generated question. I denotes the input con-
tent consisting of the input passage X , the answer A, the
latent variable z and the question class variable c, and T is
the length of the question sequence and Y1:t is the generated
question up to time step t. α and β are the scaling factor to
control the weight of two different reward function. Formally,
the objective function of G is J = Jpg + (2 − α − β)Jml.
We use α and β to balance the magnitude difference between
Jpg and Jml. In above equation, we use stochastic gradient
descent to update the parameters of model.
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4 Experiments
4.1 Dataset
We conduct our experiments on the SQuAD dataset [Ra-
jpurkar et al., 2016], which is used for machine reading
comprehension and consists of more than 100,000 questions
posed by crowd workers on 536 high-PageRank Wikipedia
articles. We extract {passage, answer, question} triples to
construct the training, development and test sets. As the offi-
cial test set is not publicly available, we randomly and nearly
halve the development set to build the new development and
test sets. We pre-process the dataset using Stanford CoreNLP
to tokenize sentence. Then all passages are turned to lower-
case and truncated into 400 tokens. After pre-processing, the
extracted training, development and test sets contain 83,889,
5,168 and 5,000 triples respectively.

4.2 Training Details
We use the top 50,000 most frequent tokens for the source and
target vocabulary. All other tokens outside the vocabulary list
are replaced by the UNK symbol. We set the dimension of
word embedding to 300 and use the glove.840B.300d pre-
trained embeddings [Pennington et al., 2014] for initializa-
tion. The LSTM hidden unit size is set to 300 and the number
of layers of LSTMs is set to 1 in both the encoder and the de-
coder. We update the model parameters using stochastic gra-
dient descent with mini-batch size of 64. The learning rate
of generator G and discriminator D is set to 0.001, 0.0002,
respectively. We clip the gradient when its norm exceeds 5.
The scaling factors α and β are set to 0.6 and 0.5. The latent z
space size is set to 200. During decoding, we do beam search
with a beam size of 3.

4.3 Approaches
We conduct several experiments based on the following ap-
proaches, where H&S-M and seq2seq are the two baseline
methods.

H&S-M: A manually constructed rule based system modi-
fied on the code released by [Heilman, 2011].

seq2seq: We implement a sequence-to-sequence model
with attention mechanism [Bahdanau et al., 2014] for ques-
tion generation.

seq2seq + GAN: We employ sequence-to-sequence model
with attention mechanism in GAN framework to further im-
prove the performance by using adversarial learning method.

seq2seq + z: We employ an attentional sequence-to-
sequence model and introduce the latent variable z to capture
diversity in potential questions.

seq2seq + z + GAN: We implement an adversarial training
process for an attentional sequence-to-sequence model with
the latent variable z.

seq2seq + z +c: Based on the above “seq2seq + z” ap-
proach, we introduce an observed variable c of question class
in this approach to learn disentangled representations from z
and generate the specific types of questions.

seq2seq + z + c + GAN: We also employ “seq2seq + z +
c” approach in GAN framework to push machines to generate
questions that are indistinguishable from human-generated
questions.

4.4 Evaluation Metrics
The proposed method is evaluated using the evaluation pack-
age released by [Chen et al., 2015]. The package in-
cludes BLEU 1, BLEU 2, BLEU 3, BLEU 4, METEOR
and ROUGE-L evaluation scripts. In our task, BLEU mea-
sures the average n-gram precision between generated and
ground-truth questions. BLEU-n is BLEU score that calcu-
lates n-gram matches for counting co-occurrences. METEOR
is a recall-oriented metric, which computes the similarity be-
tween generated and reference questions by considering syn-
onyms, stemming and paraphrases. ROUGE metric is com-
monly used to evaluate n-grams recall of the generated sum-
maries with ground-truth sentences as references. We report
ROUGE-L (longest common subsequence) score in our ex-
periment.

To evaluate the quality of questions generated by our
“seq2seq + z + c” approach, we compare it against the human
evaluation and the rule-based “H&S-M” baseline approach.
We mainly consider whether the generated questions are nat-
ural, grammatically correct and fluent and whether the ques-
tions match the text passage and answer. We randomly sam-
ple 100 [passage, question, answer] triples and four human
raters will be asked to rate the triples on a 1–5 level, where 1
indicates the lowest level and 5 indicates the highest level.

4.5 Results and Analysis
Table 1 lists the performance of different models. A sampling
is required from the latent space distribution for the models
contained the latent variable z. In our evaluation, we calculate
the average score from the three sampling results. Due to
the unknown question type, for the models which contain the
class variable c, e.g. “seq2seq + z + c” and “seq2seq + z + c
+ GAN”, the scores presented in the table are calculated by
choosing the best among all question types. The best result
from each question type is the average score from sampling
three times of the latent variable z. The results in the table
shown that the proposed “seq2seq + z + c + GAN” approach
achieves the best performance across all evaluation metrics.

In Table 1, we note that the performance of “seq2seq + z”
approach is comparable with “seq2seq” approach. It implies
that introducing the latent variable in seq2seq model don’t
bring the performance improvement but capture the diversity
in potential questions. “seq2seq + z + c” approach achieves
slightly better performance than “seq2seq” and “seq2seq + z”
approaches. The potential reason for this may be that it is
easier for “seq2seq + z +c” approach to generate good ques-
tions from the latent space distribution by specifying the cor-
responding question type for an answer. In addition, we also
notice that all these approaches achieve notable performance
improvement when employed in GAN architecture. That in-
dicates that the adversarial learning method indeed further
improves the performance.

We also evaluate the quality of questions generated by our
“seq2seq + z + c” approach and the “H&S-M” approach with
human judges. The human evaluation results also shown
in Table 1. Our approach outperforms “H&S-M” approach
by 1.8 score, which indicates the question generated by our
“seq2seq + z + c” approach are more natural and more re-
lated to the given text passage and answer.
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Model BLEU1 BLEU2 BLEU3 BLEU4 METEOR Rouge-L HUMAN
H&s-m 37.2 21.5 14.32 9.54 14.35 28.88 2.3
seq2seq 42.3 24.9 16.7 12.21 16.24 39.18 -

seq2seq+GAN 43.42 25.96 17.5 12.98 17.21 40.23 -
seq2seq+z 43.1 24.71 16.54 12.4 16.43 38.96 -

seq2seq+z+GAN 44.27 25.68 17.52 13.21 17.38 40.31 -
seq2seq+z+c 43.3 25.1 16.82 12.56 16.97 39.3 -

seq2seq+z+c+GAN 44.42 26.03 17.6 13.36 17.7 40.42 4.1

Table 1: Evaluation results of different approaches on SQuAD test dataset from automatic evaluation metrics and human evaluation. The best
performing method for each column is highlighted in bold.

I: not all cells in a multicellular plant contain chloroplasts . all green parts of a
plant contain chloroplasts the chloroplasts or more specifically the chlorophyll
in them are what make the photosynthetic parts of a plant green .
Q: what parts of plants have chloroplasts ?
G1: what parts of plants contain chloroplasts ?
G2: what parts of a plant ’s cells are chlorophyll to be found ?
I: from the late 1340s onwards people in the countryside suffered from fre-
quent natural disasters such as droughts floods and the resulting famines and
the government ’s lack of effective policy led to a loss of popular support .
Q: when did the yuan people suffer a series of natural disasters ?
G1: when did people suffer from frequent natural disasters ?
G2: when did people suffer from frequent natural disasters such as droughts ?
I: throughout the 1980s and 1990s demand for a scottish parliament grew
in part because the government of the united kingdom was controlled by
the conservative party while scotland itself elected relatively few conservative
mps .
Q: whose control of the uk ’s government helped fuel a desire for a scottish
parliament ?
G1: what political party controlled the government of the uk ?
G2: who controlled the government of the united kingdom during the 1980s
and 1990s ?

Table 2: Examples of generated questions, I is the input passage, Q
is the gold question and G1 and G2 are the “seq2seq + z + GAN”
generated questions by sampling twice from the latent space. The
underlined words are the target answers.

We present question samples generated by our “seq2seq + z
+ GAN” approach and “seq2seq + z + c + GAN”. The former
aims to capture diversity in potential questions. Therefore,
we sample twice from the latent space z, generating the two
different expression of questions for one text passage and a
given answer. The corresponding examples is shown in Ta-
ble 2. It is observed that the generated questions in Table 2
indeed show diversity but tend to generate a single type of
question. For instance, the first example shown in Table 2 is
WHAT-type questions. However, it is easy to know that other
question types such as WHICH-type and WHERE-type are
also suitable for this example. It is hard to generate the dif-
ferent types of questions only by repeatedly sampling from
the latent space. Therefore, we explore to generate specific
types of questions using an observed variable c in “seq2seq
+ z + c + GAN” approach. We show some different types of
questions generated by our method in Table 3. It is observed
that it generates all types of questions for the given passage
and answer although some types of questions don’t match the
given answer in the passage.

I: the plant cells which contain chloroplasts are usually parenchyma cells
though chloroplasts can also be found in collenchyma tissue . a plant cell
which contains chloroplasts is known as a chlorenchyma cell . a typical
chlorenchyma cell of a land plant contains about 10 to 100 chloroplasts .
Q: what plant cells have chloroplasts in them ?
G1: who contains chloroplasts in plant ?
G2: what parts of a plant contain chloroplasts ?
G3: which parts of a plant contain chloroplasts ?
G4: how many parts of a plant contain chloroplasts ?
G5: when in plant are chloroplasts found ?
G6: where are chloroplasts located in plant ?
I: at the start of the war no french regular army troops were stationed in north
america and few british troops . new france was defended by about 3,000
troupes de la marine companies of colonial regulars some of whom had signif-
icant woodland combat experience .
Q: how much british military was in north america at start of war ?
G1: who was stationed in north america at the beginning of the war?
G2: what troops was stationed in north america ?
G3: which troops were in north america
G4: how many british troops were stationed in north america ?
G5: when were the french troops troops stationed in north america ?
G6: where were the french troops stationed in north america

Table 3: Examples of generated questions, I is the input passage, Q
is the gold question and G1 ∼ G6 are the “seq2seq + z + c + GAN”
generated questions by specifying the question type. The underlined
words are the target answers.

5 Conclusions and Future Work
In this paper, we proposed a natural question generation
model employed in GAN framework, which uses the latent
variable to capture the diversity and uses the observed vari-
able to learn disentangled representation. Experimental re-
sults showed that our model could generate more readable
and diverse questions with the specific types.

Except for question generation tasks, we hope to apply our
model to dialogue system to generate utterances with differ-
ent emotions. We plan to perform more work along this di-
rection.
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