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Abstract
The paper studies how arguments can be eval-
uated in weighted bipolar argumentation graphs
(i.e., graphs whose arguments have basic weights
and may be supported and attacked). It introduces
principles that an evaluation method (or semantics)
would satisfy, analyzes existing semantics with re-
spect to them, and finally proposes a new semantics
for the class of non-maximal acyclic graphs.1

1 Introduction
Argumentation is a form of common-sense reasoning, which
consists of justifying claims by arguments. The latter have
generally basic strengths, and may be both attacked and sup-
ported by other arguments, leading to the so-called weighted
bipolar argumentation graphs.
Two families of semantics were proposed in the litera-

ture for the evaluation of arguments in such graphs: ex-
tension semantics [Cayrol and Lagasquie-Schiex, 2005b;
Oren and Norman, 2008; Brewka and Woltran, 2010; Boella
et al., 2010; Nouioua and Risch, 2010], and gradual se-
mantics [Cayrol and Lagasquie-Schiex, 2005a; Evripidou
and Toni, 2014; Baroni et al., 2015; Rago et al., 2016;
Pazienza et al., 2017]. The former evaluate mainly sets of
arguments (extending Dung’s 1995 semantics) while the lat-
ter focus on individual arguments.
This paper extends our previous works on axiomatic foun-

dations of semantics for unipolar graphs (support graphs
[Amgoud and Ben-Naim, 2016b] and attack graphs [Amgoud
and Ben-Naim, 2016a]). It defines principles that a semantics
would satisfy in a bipolar setting. Such principles are useful
for defining reasonable semantics, for a better understanding
of the design choices or foundations of each semantics, and
for comparing pairs of semantics. As a second contribution,
the paper analyzes existing semantics against the principles.
The main conclusion is that extension semantics do not har-
ness the potential of support relations. For instance, when
there is no attack in a graph, the existing semantics declare all
(supported, non-supported) arguments of the graph as equally

1This is an abridged version of a paper titled “Evaluation of ar-
guments on weighted bipolar graphs” which won a best-paper award
at ECSQARU-17 conference.

strong. Gradual semantics take into account supporters in
this particular case, however they violate some key princi-
ples. The third contribution of the paper is the definition of
a novel gradual semantics for the sub-class of non-maximal
acyclic bipolar graphs. We show that it satisfies all the pro-
posed principles. Furthermore, it avoids a big jump problem
that may impede the relevance of existing gradual semantics
in some practical applications.

2 Basic Concepts
Let us now introduce weighted bipolar argumentation graphs.

Definition 1 A weighted bipolar argumentation graph is a
quadrupleA = 〈A, w,R,S〉, where A is a finite set of argu-
ments,w a function fromA to [0, 1],R ⊆ A×A, S ⊆ A×A.
Let WAG denote the set of all such graphs.

Given two arguments a and b, aRb (resp. aSb) means a at-
tacks (resp. supports) b, and w(a) is the intrinsic strength of
a. The latter may be the certainty degree of the argument’s
premises, trustworthiness of the argument’s source, . . ..
A semantics is a function assigning an overall strength

from the unit interval [0, 1] to each argument of a weighted
bipolar graph. Arguments that get value 1 are extremely
strong whilst those that get value 0 are worthless.

Definition 2 A semantics is a function S transforming anyA
= 〈A, w,R,S〉 ∈ WAG into a function DegS

A
from A to [0, 1].

For a ∈ A, DegS
A
(a) is the overall strength of a.

Let us recall the notion of isomorphism between graphs.

Definition 3 Let A = 〈A, w,R,S〉, A′ = 〈A′, w′,R′,S ′〉 ∈
WAG. An isomorphism from A to A

′ is a bijective function
f from A to A′ such that: i) ∀ a ∈ A, w(a) = w′(f(a)),
ii) ∀ a, b ∈ A, aRb iff f(a)R′f(b), iii) ∀ a, b ∈ A, aSb iff
f(a)S ′f(b).

Notations: Let A = 〈A, w,R,S〉 ∈ WAG and a ∈ A.
AttA(a) = {b ∈ A | bRa} and sAttA(a) = {b ∈
AttA(a) | DegS

A
(b) 6= 0}. Similarly, Supp

A
(a) = {b ∈

A | bSa} and sSupp
A
(a) = {b ∈ Supp

A
(a) | DegS

A
(b) 6=

0}. Let A′ = 〈A′, w′,R′,S ′〉 ∈ WAG such that A ∩ A′ = ∅.
Let A ⊕ A

′ be 〈A′′, w′′,R′′,S ′′〉 ∈ WAG such that A′′ =
A∪A′,R′′ = R∪R′, S ′′ = S ∪S ′, ∀x ∈ A′′, the following
holds: w′′(x) = w(x), if x ∈ A; w′′(x) = w′(x), if x ∈ A′.
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3 Principles for Semantics
In what follows, we propose principles that shed light on
foundational properties behind semantics. In other words,
properties that help us to better understand the underpinnings
of semantics, and that facilitate their comparisons. The first
nine principles are simple combinations of properties pro-
posed for graphs with only one type of interactions (support
in [Amgoud and Ben-Naim, 2016b] and attack in [Amgoud
and Ben-Naim, 2016a]). The three last principles are new.
The first basic principle, Anonymity, states that the degree

of an argument is independent of its identity.
Principle 1 (Anonymity) Semantics S satisfies anonymity
iff, for all A = 〈A, w,R,S〉, A′ = 〈A′, w′,R′,S ′〉 ∈ WAG,
for any isomorphism f from A to A′, the following property
holds: ∀ a ∈ A, DegS

A
(a) = DegS

A′(f(a)).

Bi-variate independence principle states the following: the
overall strength of an argument a should be independent of
any argument b that is not connected to it (i.e., there is no
path from b to a, ignoring the direction of the edges).
Principle 2 (Bi-variate Independence) Semantics S satis-
fies bi-variate independence iff, for all A = 〈A, w,R,S〉,
A

′ = 〈A′, w′,R′,S ′〉 ∈ WAG such that A ∩ A′ = ∅, the fol-
lowing property holds: ∀ a ∈ A, DegS

A
(a) = DegS

A⊕A′(a).

Bi-variate directionality principle states that the overall
strength of an argument should depend only on its incoming
arrows, and not on the arguments it itself attacks or supports.
Principle 3 (Bi-variate Directionality) Semantics S satis-
fies bi-variate directionality iff, for all A = 〈A, w,R,S〉,
A

′ = 〈A′, w′,R′,S ′〉 ∈ WAG such that A = A′, w = w′,
R ⊆ R′, and S ⊆ S ′, the following holds: for all a, b, x ∈ A,
if R′ ∪ S ′ = R ∪ S ∪ {(a, b)} and there is no path from b
to x, then DegS

A
(x) = DegS

A′(x). A path can mix attack and
support relations, but the edges must be directed from b to x.
Bi-variate equivalence principle ensures that the overall

strength of an argument depends only on its basic strength
and the overall strengths of its attackers and supporters.
Principle 4 (Bi-variate Equivalence) Semantics S satisfies
bi-variate equivalence iff, for any A = 〈A, w,R,S〉 ∈ WAG,
for all a, b ∈ A, if:
• w(a) = w(b),
• there exists a bijective function f from AttA(a) to
AttA(b) s.t ∀x ∈ AttA(a), DegS

A
(x) = DegS

A
(f(x)),

• there exists a bijective function f ′ from Supp
A
(a) to

Supp
A
(b) s.t ∀x ∈ Supp

A
(a), DegS

A
(x) = DegS

A
(f(x)),

then DegS
A
(a) = DegS

A
(b).

Stability principle states the following: if an argument is
neither attacked nor supported, its overall strength should be
equal to its intrinsic strength.
Principle 5 (Stability) Semantics S satisfies stability iff, for
anyA = 〈A, w, R, S〉 ∈ WAG, for any a ∈ A, if AttA(a) =
Supp

A
(a) = ∅, then DegS

A
(a) = w(a).

Neutrality principle states that worthless attackers and
worthless supporters have no effect on their targets.

Principle 6 (Neutrality) Semantics S satisfies neutrality iff
for anyA = 〈A, w, R, S〉 ∈ WAG, for all a, b, x ∈ A, if:
• w(a) = w(b),
• AttA(a) ⊆ AttA(b),
• Supp

A
(a) ⊆ Supp

A
(b),

• AttA(b) ∪ Supp
A
(b) = AttA(a) ∪ Supp

A
(a) ∪ {x}

such that DegS
A
(x) = 0,

then DegS
A
(a) = DegS

A
(b).

If an argument a is equally or less attacked than an argu-
ment b, and equally or more supported than b, then Bi-variate
Monotony ensures that a should be at least as strong as b.
Principle 7 (Bi-variate Monotony) Semantics S satisfies
bi-variate monotony iff, for any A = 〈A, w,R,S〉 ∈ WAG,
for all a, b ∈ A such that:
• w(a) = w(b),
• AttA(a) ⊆ AttA(b),
• Supp

A
(b) ⊆ Supp

A
(a),

the following holds:
• DegS

A
(a) ≥ DegS

A
(b); (Monotony)

• if (DegS
A
(a) > 0 and sAttA(a) ⊂ sAttA(b)) or

(DegS
A
(b) < 1 and sSupp

A
(b) ⊂ sSupp

A
(a)),

then DegS
A
(a) > DegS

A
(b). (Strict Monotony)

Bi-variate Reinforcement principle concerns the quality of
attackers and supporters. It states that any argument becomes
stronger if the quality of its attackers is reduced and the qual-
ity of its supporters is increased.
Principle 8 (Bi-variate Reinforcement) Semantics S satis-
fies bi-variate reinforcement iff, for anyA = 〈A, w,R,S〉 ∈
WAG, for all C,C′ ⊆ A, for all a, b ∈ A, for all x, x′, y, y′ ∈
A \ (C ∪ C′) such that:
• w(a) = w(b),
• AttA(a) = C ∪ {x} AttA(b) = C ∪ {y},
• Supp

A
(a) = C′ ∪ {x′} Supp

A
(b) = C′ ∪ {y′},

• DegS
A
(x) ≤ DegS

A
(y) DegS

A
(x′) ≥ DegS

A
(y′),

the following holds:
• DegS

A
(a) ≥ DegS

A
(b); (Reinforcement)

• if (DegS
A
(a) > 0 and DegS

A
(x) < DegS

A
(y)) or

(DegS
A
(b) < 1 and DegS

A
(x′) > DegS

A
(y′)),

then DegS
A
(a) > DegS

A
(b). (Strict Reinforcement)

Our next principle is not mandatory. Its suitability depends
on the nature of arguments (opinion-based, analogical, etc.).
It combines Imperfection property from [Amgoud and Ben-
Naim, 2016b] with Resilience one from [Amgoud and Ben-
Naim, 2016a]. Imperfection states that an argument whose
basic strength is less than 1 cannot be fully rehabilitated by
supports. This property prevents irrational behaviors, like
fully accepting fallacious arguments that are supported. Re-
silience states that an argument whose basic strength is posi-
tive cannot be completely destroyed by attacks.
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Principle 9 (Resilience) Semantics S satisfies resilience iff,
for anyA = 〈A, w,R,S〉 ∈ WAG, for all a ∈ A,

if 0 < w(a) < 1, then 0 < DegS
A
(a) < 1.

The next principles are new and answer the question: how
the overall strengths of attackers should be aggregated with
those of supporters? To answer this question, it is important
to specify which of the two types of interactions is more im-
portant. We argue that a support is weaker than an attack since
an attack is sufficient for weakening a whole argument while
a support may only strengthen a part of it. Hence, in what
follows we consider the case where an attack is more impor-
tant than a support (Franklin principle) and the case where
both relations are equally important (Strict Franklin princi-
ple). The latter ensures that an attacker and a supporter of
equal strength counter-balance each other. This principle is
suitable in multiple criteria decision making contexts.
Principle 10 (Franklin) A semantics S satisfies franklin iff,
for anyA = 〈A, w, R, S〉 ∈ WAG, for all a, b, x, y ∈ A, if
• w(a) = w(b),
• AttA(a) = AttA(b) ∪ {x},
• Supp

A
(a) = Supp

A
(b) ∪ {y},

• DegS
A
(x) = DegS

A
(y),

then the following hold:
• DegS

A
(a) ≤ DegS

A
(b), (Franklin)

• DegS
A
(a) = DegS

A
(b). (Strict Franklin)

Proposition 1 Let S be a semantics that satisfies Bi-variate
Independence, Bi-variate Directionality, Stability, and Strict
Franklin. For anyA = 〈A, w,R,S〉 ∈ WAG, for any a ∈ A, if
there exists a bijective function f from AttA(a) to Supp

A
(a)

such that for any x ∈ AttA(a), DegS
A
(x) = DegS

A
(f(x)),

then DegS
A
(a) = w(a).

Weakening states that if the attackers of an argument over-
come its supporters, the argument looses weight. The idea is
that supporters are not sufficient for counter-balancing attack-
ers, however, they may mitigate the global loss due to attacks.
Principle 11 (Weakening) Semantics S satisfies weakening
iff, for any A = 〈A, w, R, S〉 ∈ WAG, for any a ∈ A,
if w(a) > 0 and there exists an injective function f from
Supp

A
(a) to AttA(a) such that:

• ∀x ∈ Supp
A
(a), DegS

A
(x) ≤ DegS

A
(f(x)); and

• sAttA(a) \ {f(x) | x ∈ Supp
A
(a)} 6= ∅ or

∃x ∈ Supp
A
(a) such that DegS

A
(x) < DegS

A
(f(x)),

then DegS
A
(a) < w(a).

Strengthening states that if the supporters of an argument
overcome its attackers, the argument gains weight. Indeed,
attacks are not sufficient for counter-balancing supports, how-
ever, they may mitigate the global gain due to supports.
Principle 12 (Strengthening) Semantics S satisfies
strengthening iff, for any A = 〈A, w,R,S〉 ∈ WAG,
for any a ∈ A, if w(a) < 1 and there exists an injective
function f from AttA(a) to Supp

A
(a) such that:

• ∀x ∈ AttA(a), DegS
A
(x) ≤ DegS

A
(f(x)); and

• sSupp
A
(a) \ {f(x) | x ∈ AttA(a)} 6= ∅ or

∃x ∈ AttA(a) such that DegS
A
(x) < DegS

A
(f(x)),

then DegS
A
(a) > w(a).

Bivariate Monotony follows from five other principles.
Proposition 2 If a semantics satisfies Bi-variate Indepen-
dence, Bi-variate Directionality, Stability, Neutrality and Bi-
variate Reinforcement, then it satisfies Bivariate Monotony.
Proposition 3 The principles can be satisfied all together.

4 Formal Analysis of Existing Semantics
There are two families of semantics in case of bipolar
argumentation graphs: extension semantics [Cayrol and
Lagasquie-Schiex, 2005b; Oren and Norman, 2008; Brewka
and Woltran, 2010; Boella et al., 2010; Nouioua and Risch,
2010] and gradual semantics [Cayrol and Lagasquie-Schiex,
2005a; Baroni et al., 2015; Rago et al., 2016].
Extension semantics extend Dung’s 1995 ones for account-

ing for supports between arguments. They take as input
an argumentation graph 〈A, w,R,S〉 whose arguments have
all the same intrinsic strength, and return sets of arguments,
called extensions. From the extensions, a three-valued qual-
itative degree is assigned to every argument. Indeed, an ar-
gument is accepted if it belongs to all extensions, undecided
(or credulously accepted) if it belongs to some but not all ex-
tensions, and rejected if it does not belong to any extension.
When the support relation is empty, the semantics proposed
in [Cayrol and Lagasquie-Schiex, 2005b; Oren and Nor-
man, 2008; Brewka and Woltran, 2010; Boella et al., 2010;
Nouioua and Risch, 2010] coincide with Dung’s ones. Thus,
they violate the principles that are violated by Dung’s se-
mantics (see [Amgoud and Ben-Naim, 2016a] for a de-
tailed analysis of Dung’s semantics). For instance, stable se-
mantics violates Bi-variate Independence, Bi-variate Equiv-
alence, Stability, Resilience, and Strict Monotony. When
the attack relation is empty, the approaches from [Cay-
rol and Lagasquie-Schiex, 2005b; Oren and Norman, 2008;
Boella et al., 2010] return a single extension, which contains
all the arguments of the graph at hand. Thus, all arguments
are equally accepted. This shows that the support relation
does not play any role, and a supported argument is as strong
as a non-supported one. Formally, these approaches violate
strengthening principles, which capture the role of supports.
The approaches developed in [Brewka and Woltran, 2010;
Nouioua and Risch, 2010] also return a single extension when
the attack relation is empty. In case of acyclic graphs, the ex-
tension is the set of all arguments. Thus, these approaches vi-
olate strengthening and the support relation may not be fully
exploited in the evaluation of arguments.
Gradual semantics were introduced for the first time in

[Cayrol and Lagasquie-Schiex, 2005a]. The authors pre-
sented some properties that such semantics should satisfy
(like a particular case of strengthening). However, they did
not define concrete semantics. To the best of our knowledge,
the first gradual semantics was proposed in [Evripidou and
Toni, 2014]. It was extended to QuAD in [Baroni et al., 2015]
for evaluating arguments in acyclic graphs.
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Definition 4 Let A = 〈A, w,R,S〉 ∈ WAG. A is acyclic iff
the following holds: for any non-empty finite sequence a =
〈a1, a2, . . . , an〉 of elements of A, if ∀i ∈ {1, 2, . . . , n − 1},
〈ai, ai+1〉 ∈ R ∪ S, then 〈an, a1〉 6∈ R ∪ S.
We define next restricted semantics. All principles for se-

mantics are straightforwardly adapted to restricted semantics.
Definition 5 A restricted semantics is a function S trans-
forming any acyclicA = 〈A, w,R,S〉 ∈ WAG into a function
DegS

A
from A to [0, 1].

QuAD is a restricted semantics assigning a numerical value
to every argument on the basis of its intrinsic strength, and the
overall strengths of its attackers and supporters. It evaluates
differently supporters and attackers before aggregating them.
Proposition 4 QuAD violates Strict Monotony, Strict Re-
inforcement, Resilience, (Strict) Franklin, Weakening, and
Strengthening. It satisfies all the remaining principles.
As a consequence of violating Weakening and Strength-

ening, QuAD may behave irrationally. Consider a weighted
bipolar graph where A = {a, b1, b2, b3}, w(b1) = w(b2) =
0.8, w(b3) = 0.9,R = {(b2, a), (b3, a)}, and S = {(b1, a)}.
Thus, a has an attacker and a supporter of equal strengths
(DegS

A
(b1) = DegS

A
(b2) = 0.8), and an additional attacker

b3. If w(a) = 0.2, then DegS
A
(a) = 0.422 meaning that the

single supporter is privileged to the two attackers. However,
if w(a) = 0.7, DegS

A
(a) = 0.477 meaning that attacks are

privileged to support. More generally, we can show that if
w(a) ≥ 0.5, then DegS

A
(a) < w(a), else DegS

A
(a) > w(a).

Hence, choosing which of support and attack should take
precedence depends on the intrinsic strength of an argument.
QuAD was recently extended to the restricted semantics

DF-QuAD in [Rago et al., 2016]. Unlike QuAD, it uses the
same function for aggregating supporters and attackers sepa-
rately. It satisfies Strict Franklin axiom, thus it treats equally
attacks and supports. It violates Strengthening and Weaken-
ing in presence of attackers/supporters of degree 1. However,
the semantics avoids the irrational behavior of QuAD.
Proposition 5 DF-QuAD violates Strict Monotony, Strict
Reinforcement, Resilience, Weakening, and Strengthening. It
satisfies all the remaining principles.
Both (QuAD, DF-QuAD) suffer from a big jump problem.

Consider the graph depicted in Figure 1. For x being QuAD
or DF-QuAD, Degx

A
(i) = 0.991. Note that the value of i

makes a big jump from 0.10 to 0.991 and i becomes even
stronger than its supporter j. There are two issues with such
jump: First, the gain is enormous. Assume that i is a fal-
lacious argument. The supporter may increase slightly its
strength but cannot fully rehabilitate it. Second, such jump
impedes the discrimination between different cases where
w(i) > 0.1 since whatever the value of w(i), the overall
strength is almost 1.

5 Euler-based Graded Semantics
We have seen that no existing semantics satisfies all our prin-
ciples. We define a novel restricted semantics satisfying them
all for the subclass of acyclic non-maximal graphs. Without

loss of generality, the basic strengths of arguments are con-
sidered less than 1. Note that few arguments are intrinsically
perfect. The probability of false information, exceptions, etc.,
is rarely 0. In contrast, the loss of cyclic graphs is important.
But, we consider that the class of all acyclic non-maximal
graphs is expressive enough to deserve attention.
Definition 6 A restricted semantics is a function S trans-
forming any acyclic non-maximalA = 〈A, w,R,S〉 ∈ WAG

into a function DegS
A
from A to [0, 1].

Before presenting our semantics, we need to introduce a re-
lation between arguments based on the longest paths to reach
them (mixing support and attack arrows).
Definition 7 (Well-founded relation) Let A =
〈A, w,R,S〉 be an acyclic BAG and a ∈ A. A path to
a inA is a non-empty finite sequence a = 〈a1, a2, . . . , an〉 of
elements of A such that an = a and ∀i ∈ {1, 2, . . . , n − 1},
〈ai, ai+1〉 ∈ R ∪ S. We denote by Rel(A) the well-founded
binary relation ≺ on A such that ∀x, y ∈ A, x ≺ y iff
max{n | there exists a path to x of length n} < max{n |
there exists a path to y of length n}. SinceA is acyclic, those
maximum lengths are well-defined, so is Rel(A).
We are ready to define the Euler-based restricted seman-

tics. The general idea is to take into account supporters
and attackers in an exponent E of e (the Euler’s number).
More precisely, the stronger or more-numerous the support-
ers, the greater and more-likely-positive that exponent. Obvi-
ously, the inverse is true with the attackers. Then, the overall
strength of an argument a is naturally defined as w(a)eE . Fi-
nally, we need certain tweaking (including a double polarity
reversal) to make our function a restricted semantics in the
first place, and to have it satisfy all our axioms.
Definition 8 We denote by Ebs the restricted semantics such
that for any acyclic non-maximalA = 〈A, w,R,S〉 ∈ WAG,
Ebs(A) is the function f from A to [0, 1] recursively defined
with Rel(A) as follows: ∀a ∈ A,

f(a) = 1−
1− w(a)2

1 + w(a)eE
, E =

∑

x∈Supp(a)

f(x)−
∑

x∈Att(a)

f(x).

Theorem 1 Let A = 〈A, w,R,S〉 ∈ WAG be acyclic non-
maximal and a ∈ A. The following holds:

DegEbs
A

(a) = 1−
1− w(a)2

1 + w(a)eE
where

E =
∑

x∈Supp(a)

DegEbs
A

(x) −
∑

x∈Att(a)

DegEbs
A

(x).

Example 1 Consider the graph depicted in Figure 1. Ev-
ery circle contains [argument name]:[intrinsic strength] and
below [overall strength]. The neutrality principle can be
checked with g and e, stability with d, g, h, and j, bivariate
monotony with a and b, bivariate reinforcement with b and c,
Imperfection with i, Strict Franklin with a, weakening with
e.g. b, and strengthening with i.
Note also that being supported by a very strong argument

does not cause a weak argument to become extremely strong,
which shows that Ebs does not suffer from the big jump prob-
lem. Indeed, DegEbs

A
(i) = 0.22 and thus the jump is not big.

Theorem 2 Ebs satisfies all the 12 principles.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

5197



d:0.22
0.22

a:0.60
0.60

j:0.99
0.99

g:0.00
0.00

e:0.40
0.40

b:0.60
0.54

i:0.10
0.22

h:0.99
0.99

f :0.40
0.27

c:0.60
0.53

Figure 1: Bipolar graph

6 Conclusion
The paper presented for the first time principles that serve as
guidelines for defining semantics for weighted bipolar argu-
mentation graphs. It also analyzed existing semantics with
regard to the principles. The results revealed that extension
semantics violate key principles, and do not fully exploit sup-
port relations. Existing gradual semantics satisfy more but
not all the principles. We proposed a novel semantics which
satisfies all the principles.
This work can be extended in several ways. An urgent fu-

ture work consists of defining a semantics that satisfies the
principles while dealing with any typology of graphs includ-
ing thus cyclic ones. Another perspective consists of defining
semantics that take strict precedence to attacks over supports.
Finally, new principles can be defined for capturing other fea-
tures of semantics like those proposed very recently in [Ba-
roni et al., 2018; Mossakowski and Neuhaus, 2016].
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