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Abstract
A Minimal Correction Subset (MCS) of an unsat-
isfiable constraint set is a minimal subset of con-
straints that, if removed, makes the constraint set
satisfiable. MCSs enjoy a wide range of applica-
tions, such as finding approximate solutions to con-
strained optimization problems. However, existing
work on applying MCS enumeration to optimiza-
tion problems focuses on the single-objective case.
In this work, Pareto Minimal Correction Subsets
(Pareto-MCSs) are proposed for approximating the
Pareto-optimal solution set of multi-objective con-
strained optimization problems. We formalize and
prove an equivalence relationship between Pareto-
optimal solutions and Pareto-MCSs. Moreover,
Pareto-MCSs and MCSs can be connected in such a
way that existing state-of-the-art MCS enumeration
algorithms can be used to enumerate Pareto-MCSs.
Finally, experimental results on the multi-objective
virtual machine consolidation problem show that
the Pareto-MCS approach is competitive with state-
of-the-art algorithms.

1 Introduction
Given an unsatisfiable set of constraints F , a Minimal Correc-
tion Subset (MCS) is a minimal subset of constraints C such
that, if all constraints in C are removed from F , then F be-
comes satisfiable. MCSs enjoy a wide range of applications,
such as analysis of over-constrained systems [Felfernig et
al., 2012; Junker, 2004], minimal model computation [Ben-
Eliyahu and Dechter, 1996], interactive constraint satisfac-
tion [O’Callaghan et al., 2005], among others [Mencı́a et
al., 2015]. Many efficient MCS enumeration algorithms have
been recently proposed [Bacchus et al., 2014; Felfernig et al.,
2012; Marques-Silva et al., 2013], and MCS-based approxi-
mation algorithms are able to find good quality approxima-
tions of optimal solutions efficiently [Mencı́a et al., 2015].

∗This paper is an abridged version of the paper entitled ”Intro-
ducing Pareto Minimal Correction Subsets” that won a best student
paper award at the 20th International Conference on Theory and Ap-
plications of Satisfiability Testing [Terra-Neves et al., 2017]. For the
interested reader, proofs of theoretical results presented throughout
the paper are available in the full version.

However, the usage of MCSs has focused only on approxi-
mating single-objective problems.

In many scenarios, such as scheduling [Iturriaga et al.,
2017] or green computing [Zheng et al., 2016], a deci-
sion maker may need to optimize multiple conflicting objec-
tives [Ulungu and Teghem, 1994]. In this case, multiple op-
timal solutions may exist, referred to as Pareto-optimal solu-
tions [Pareto, 1906], each of them favoring certain objectives
at the expense of others. There is a wide plethora of stochas-
tic algorithms that try to approximate the Pareto front [Deb
et al., 2000; Xu and Fortes, 2010]. Such approaches are non-
deterministic and are known to be parameter sensitive, result-
ing in each different problem requiring a distinct configura-
tion of the algorithm to achieve a competitive performance.
Moreover, stochastic algorithms are known to struggle as
instances become more tightly constrained. On the other
hand, it is widely accepted that constraint-based methods,
compared to other approaches, usually thrive in tightly con-
strained problems, and some exact algorithms exist for com-
puting the set of Pareto-optimal solutions of multi-objective
problems [Rayside et al., 2009]. However, such solutions are
impractical for large scale instances.

The main contributions of this paper are: (1) a first defini-
tion of Multi-MCSs and Pareto-MCSs, an extension of MCSs
to constrained multi-objective optimization problems; (2) a
proof of an equivalence relationship between Pareto-MCSs
and Pareto-optimal solutions; (3) a proof of a relationship be-
tween Multi-MCSs and MCSs that allows one to use off-the-
shelf MCS enumerators as Multi-MCS enumerators; (4) an
extensive experimental evaluation on virtual machine consol-
idation instances from the Google Cluster Data project which
clearly shows the suitability of the Pareto-MCS approach for
finding good quality approximations of the Pareto front.

The paper is organized as follows. Section 2 introduces ba-
sic definitions used in the remainder of the paper. In section 3,
a definition of Multi-MCSs and Pareto-MCSs is proposed and
some of their properties are described. Experimental results
showing the effectiveness of the Pareto-MCS approach are
presented in section 4. Section 5 concludes the paper.

2 Preliminaries
In this section, we introduce the necessary definitions and no-
tations that will be used throughout the rest of the paper. We
start by describing Weighted Boolean Optimization (WBO)
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and its multi-objective version. Next, Minimal Correction
Subsets (MCSs) are defined and we review how these can be
used to find solutions for WBO problems.

2.1 Weighted Boolean Optimization
Let X = {x1, x2, . . . , xn} be a set of n Boolean variables. A
literal is either a variable xi or its complement ¬xi. Given an
integer k ∈ N, a set of m literals l1, l2, . . . , lm and their re-
spective coefficients ω1, ω2, . . . , ωm ∈ N, a Pseudo-Boolean
(PB) constraint is a linear inequality with the form:∑

ωi · li ./ k, ./ ∈ {≤,≥,=}. (1)

A weighted PB constraint is a pair (c, ω), where c is a PB
constraint and ω ∈ N+ is the cost of not satisfying c.

Given a formula F = (FH , FS), where FH and FS denote
sets of hard and soft weighted PB constraints respectively, the
WBO problem [Manquinho et al., 2009] consists of finding a
complete assignment α : X → {0, 1} that satisfies all con-
straints in FH , denoted α(FH) = 1, and minimizes the sum
of the weights of the constraints in FS that are not satisfied.
If FH is unsatisfiable, we say that α(FH) = 0 for any as-
signment α. Analogously, given a PB constraint c, α(c) = 1
(α(c) = 0) denotes that α satisfies (does not satisfy) c.
Example 2.1. Let FH = {(x1 + x2 + x3 ≤ 2)} be the
set of hard PB constraints and FS = {(x1 ≥ 1, 4), (x2 ≥
1, 2), (x3 ≥ 1, 3)} the set of weighted soft PB constraints of
a WBO instance. α1 = {(x1, 1), (x2, 0), (x3, 1)} is an op-
timal assignment that does not satisfy (x2 ≥ 1), having a
cost of 2. α2 = {(x1, 0), (x2, 1), (x3, 1)} is not optimal be-
cause it does not satisfy (x1 ≥ 1), which has a weight of
4. α3 = {(x1, 1), (x2, 1), (x3, 1)} is an invalid assignment
because it does not satisfy FH .

A Multi-Objective Weighted Boolean Optimization
(MOWBO) instance is composed of a set FH of hard PB
constraints and a set OS = {FS1, FS2, . . . , FSl} of soft
weighted PB constraint sets. Given an assignment α and a
set FSi ∈ OS , let w(FSi, α) denote the sum of the weights
of the PB constraints in FSi unsatisfied by α, i.e.,

w(FSi, α) =
∑

(c,ω)∈FSi, α(c)=0

ω. (2)

Definition 2.1. Let W = (FH , OS) be a MOWBO in-
stance, with OS = {FS1, FS2, . . . , FSl}. Let α, α′ : X →
{0, 1} be two complete assignments such that α 6= α′ and
α(FH) = α′(FH) = 1. We say that α dominates α′

(α ≺ α′) if, and only if, ∀FS∈OS
w(FS , α) ≤ w(FS , α

′) and
∃F ′

S∈OS
w(F ′S , α) < w(F ′S , α

′).

Definition 2.2. Let W = (FH , OS) be a MOWBO instance
and α : X → {0, 1} a complete assignment. α is Pareto-
optimal if, and only if, α(FH) = 1 and no other complete
assignment α′ exists such that α′(FH) = 1 and α′ ≺ α.

In MOWBO, the goal is to find the set of Pareto-
optimal [Pareto, 1906] solutions, i.e., the Pareto front.
Example 2.2. Let FH = {(x1 + x2 ≤ 1)} be the
set of PB constraints and OS = {FS1, FS2}, where
FS1 = {(¬x1, 1), (x2, 2)} and FS2 = {(x1, 1)}, the set

x1 x2 {(¬x1, 1), (x2, 2)} (x1, 1)
0 0 2 1
0 1 0 1
1 0 3 0
1 1 - -

Table 1: Possible assignments and respective costs for example 2.2.

of soft constraint sets of a MOWBO instance. Table 1
shows the costs for each possible assignment. Note that
{(x1, 1), (x2, 1)} violates FH . Hence, it is not a valid assign-
ment. {(x1, 0), (x2, 0)} is not Pareto-optimal because it is
dominated by {(x1, 0), (x2, 1)}. However, {(x1, 0), (x2, 1)}
and {(x1, 1), (x2, 0)} are Pareto-optimal solutions since they
are not dominated by any other assignment that satisfies FH .

2.2 Minimal Correction Subsets
Given an unsatisfiable set of PB constraints F , an MCS is a
minimal subset C ⊆ F such that F \ C is satisfiable.
Definition 2.3. Let F be an unsatisfiable set of constraints.
A subset C ⊆ F is an MCS of F if, and only if, F \ C is
satisfiable and (F \ C) ∪ {c} is unsatisfiable for all c ∈ C.
Example 2.3. Consider the unsatisfiable set of PB con-
straints F = {(x1 + x2 = 1), (x1 ≥ 1), (x2 ≥ 1)}. F has
three MCSs C1 = {(x1 ≥ 1)}, C2 = {(x2 ≥ 1)} and
C3 = {(x1 + x2 = 1)}.

Several algorithms exist for finding MCSs [Bailey and
Stuckey, 2005; Felfernig et al., 2012; Marques-Silva et al.,
2013; Mencı́a et al., 2015]. The following definition extends
the notion of MCS to WBO instances. For simplicity, we
assume that the set of hard PB constraints FH of a WBO in-
stance is always satisfiable, but this can be checked using a
single call to a satisfiability solver.
Definition 2.4. Let F = (FH , FS) be a WBO instance, where
FH and FS denote the hard and soft PB constraint sets re-
spectively. A subset C ⊆ FS is an MCS of F if, and only if,
FH ∪ (FS \ C) is satisfiable and FH ∪ (FS \ C) ∪ {c} is
unsatisfiable for all c ∈ C.

An MCS provides an approximation to a WBO optimal so-
lution, and in some problems is faster to compute [Ignatiev
et al., 2014]. Actually, the WBO problem can be reduced
to finding the MCS C ⊆ FS that minimizes the sum of the
weights of its constraints [Birnbaum and Lozinskii, 2003].
Example 2.4. Consider the WBO instance given by FH =
{(x1 + x2 = 1)} and FS = {(x1 ≥ 1, 1), (x2 ≥
1, 2), (¬x1 ≥ 1, 4), (¬x2 ≥ 1, 6)}. It has two MCSs C1 =
{(x1 ≥ 1, 1), (¬x2 ≥ 1, 6)} and C2 = {(x2 ≥ 1, 2), (¬x1 ≥
1, 4)}. The sum of the weights of the constraints inC1 andC2

is 7 and 6 respectively. C2 is the MCS that minimizes the sum
of the weights of its constraints. Therefore, any assignment
that satisfies {(x1 + x2 = 1), (x1 ≥ 1), (¬x2 ≥ 1)} is an
optimal solution of the WBO instance.

3 Pareto Minimal Correction Subsets
This section introduces the novel concept of Multi-MCSs and
explains how they can be used to approximate the Pareto front
of a MOWBO instance. First, Multi-MCSs and Pareto-MCSs
are defined. Next, we describe some properties of Multi-
MCSs and Pareto-MCSs.
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3.1 Multi and Pareto Minimal Correction Subsets
The definition of Multi-MCS, an extension of MCSs to
MOWBO formulas, builds upon the concept of MCS for
WBO formulas (see section 2.2).
Definition 3.1. Let W = (FH , OS) be a MOWBO instance,
with OS = {FS1, FS2, . . . , FSl}. Let C = (C1, C2, . . . , Cl)
be a tuple of sets such that Ci ⊆ FSi, 1 ≤ i ≤ l. C is
a Multi-MCS of W if, and only if, FH ∪

⋃l
i=1(FSi \ Ci) is

satisfiable and FH ∪
⋃l
i=1(FSi \ Ci) ∪ {c} is unsatisfiable

for all c ∈
⋃l
i=1 Ci.

The dominance relation between two MOWBO solutions
in definition 2.1 can also be extended to pairs of Multi-MCSs.
Definition 3.2. Let W = (FH , OS) be a MOWBO instance.
Let C = (C1, C2, . . . , Cl) and C′ = (C ′1, C

′
2, . . . , C

′
l) be

two Multi-MCSs of W. We say that C dominates C′ (C ≺
C′) if, and only if, ∀1≤i≤l

∑
(c,ω)∈Ci

ω ≤
∑

(c′,ω′)∈C′
i
ω′ and

∃1≤j≤l
∑

(c,ω)∈Cj
ω <

∑
(c′,ω′)∈C′

j
ω′.

Considering the definition of dominance for Multi-MCSs,
the concept of Pareto-MCS can be formalized.
Definition 3.3. Let W = (FH , OS) be a MOWBO instance
and C a Multi-MCS of W. C is a Pareto-MCS if, and only if,
no other Multi-MCS C′ exists such that C′ ≺ C.
Example 3.1. Recall the MOWBO instance W = (FH , OS)
from example 2.2, with FH = {(x1 + x2 ≤ 1)} and OS =
{FS1, FS2}, where FS1 = {(¬x1, 1), (x2, 2)} and FS2 =
{(x1, 1)}. W has two Multi-MCSs C1 = ({}, {(x1, 1)}) and
C2 = ({(¬x1, 1), (x2, 2)}, {}), which are also Pareto-MCSs.

3.2 Properties of Multi and Pareto Minimal
Correction Subsets

Recall from section 2.2 that the WBO problem can be reduced
to finding an MCS that minimizes the sum of the weights of
its soft constraints. Therefore, it is expected that a MOWBO
instance can be reduced to finding the set of its Pareto-MCSs.
The following results reveal an equivalence relationship be-
tween Pareto-MCSs and Pareto-optimal solutions.
Proposition 1. Let W = (FH , OS) be a MOWBO instance,
with OS = {FS1, FS2, . . . , FSl}, and α a Pareto-optimal so-
lution of W. Let C = (C1, C2, . . . , Cl), where Ci = {(c, ω) :
(c, ω) ∈ FSi ∧ α(c) = 0} for all 1 ≤ i ≤ l. Then, C is a
Pareto-MCS of W.
Proposition 2. Let W = (FH , OS) be a MOWBO instance,
with OS = {FS1, FS2, . . . , FSl}, and C = (C1, C2, . . . , Cl)
a Pareto-MCS of W. Then, any complete assignment α that
satisfies FH ∪

⋃l
i=1(FSi \ Ci) is a Pareto-optimal solution.

Propositions 1 and 2 show that for each Pareto-MCS there
is at least one Pareto-optimal solution and that each Pareto-
optimal solution has an associated Pareto-MCS. Therefore,
MOWBO can be reduced to Pareto-MCS enumeration in the
same way that WBO can be reduced to MCS enumeration.
Proposition 3. Let W = (FH , OS) be a MOWBO instance,
with OS = {FS1, FS2, . . . , FSl}, and C = (C1, C2, . . . , Cl)

a Multi-MCS of W. Then, C =
⋃l
i=1 Ci is an MCS of the

WBO instance F = (FH ,
⋃l
i=1 FSi).

Proposition 3 implies that Pareto-MCS enumeration
of a MOWBO instance W = (FH , OS) can be re-
duced to enumerating MCSs of the WBO instance F =
(FH ,

⋃
FS∈OS

FS) as follows: (1) build F from W; (2) enu-
merate MCSs C of F using an off-the-shelf MCS enumerator
and convert them to Multi-MCSs C = (C1, C2, . . . , Cl) of
W, where Ci = {(c, ω) : (c, ω) ∈ C∩FSi} for all 1 ≤ i ≤ l;
(3) filter out Multi-MCSs dominated by any other Multi-MCS
using non dominated sorting [Deb et al., 2000]. Therefore,
efficient state-of-the-art algorithms for MCS enumeration can
be used to enumerate Pareto-MCSs right off-the-shelf.

4 Experimental Results
This section evaluates the performance of the Pareto-MCS
based approach on instances of the Virtual Machine Consoli-
dation (VMC) problem. We refer to our approach for enumer-
ating Pareto-MCSs as PCLD, since the CLD [Marques-Silva
et al., 2013] algorithm was used to compute MCSs. The per-
formance of PCLD is compared with that of the state-of-the-
art evolutionary algorithms for VMC. PCLD was built on top
of Sat4j-PB [Le Berre and Parrain, 2010] (version 2.3.4), and
the evolutionary algorithms were implemented on top of the
MOEA Framework1 (version 2.9.1).

In VMC, we have several servers with fixed resource ca-
pacities and Virtual Machines (VMs) with requirements of
those same resources. Each VM must be placed in some
server, but server capacities cannot be exceeded and some
VMs cannot be placed in the same server. There exists an
initial placement, i.e., a VM can be associated with an ini-
tial server, incurring a migration cost if the VM is placed in
a different one. A migration budget constraint can be used
to enforce an upper limit on the migration costs, and is spec-
ified as a percentile bp of the total memory capacity of the
servers. The goal is to find a placement for all VMs that satis-
fies the constraints and simultaneously minimizes (1) energy
consumption of servers, (2) migration costs and (3) resource
wastage. The latter is a measure of the imbalance of server
resource usage. A detailed description of the VMC prob-
lem can be found in the literature [Terra-Neves et al., 2017;
Zheng et al., 2016]. The evaluation is performed on publicly
available benchmarks2, based on subsets of workload traces
randomly selected from the Google Cluster Data project3.

In the VMC problem instances, it is impractical to find
the full set of Pareto-optimal solutions within a reasonable
amount of time. Therefore, the evaluation process considers
approximations of the Pareto-optimal solution set that each
algorithm is able to produce within the time limit of 1800 sec-
onds. The Hypervolume (HV) quality indicator [Zitzler and
Thiele, 1999] provides a combined measure of convergence
and diversity. Larger values of HV mean that the solution
set is composed of solutions of better quality and/or diversity.
The Inverted Generational Distance (IGD) indicator [Zhang
and Li, 2007] measures the average Euclidean distance, in
the cost space, between the Pareto optimal solutions and the
approximation returned by the algorithm, and a smaller value

1http://moeaframework.org/
2http://sat.inesc-id.pt/dome/
3http://code.google.com/p/googleclusterdata/
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Figure 1: HV distributions (bp = 100%).

Figure 2: IGD distributions (bp = 100%).

Figure 3: HV distributions (bp = 5%).

Figure 4: IGD distributions (bp = 5%).

Figure 5: HV distributions (bp = 1%).

Figure 6: IGD distributions (bp = 1%).

is preferred. Since the Pareto front is unknown, we use in-
stead the combination of the solutions produced by all algo-
rithms evaluated. The evaluation was conducted on an AMD
Opteron 6376 (2.3 GHz) running Debian jessie and each al-
gorithm was executed with a memory limit of 4 GB. Evolu-
tionary algorithms were executed with 10 different seeds for
each instance, and the analysis is performed using the median
values over all executions.

The performance of PCLD is compared with that of the
evolutionary algorithms VMPMBBO [Zheng et al., 2016],
MGGA [Xu and Fortes, 2010] and NSGAII [Deb et al.,
2000]. MGGA was adapted to consider migration costs in-
stead of thermal dissipation and configured as suggested by
Xu and Fortes [2010]. We note that VMPMBBO was orig-
inally designed for optimizing energy consumption and re-
source wastage and was run with the configuration suggested
by Zheng et al. [2016]. The only difference is that we use 2
additional subsystems to account for migration costs. NS-
GAII is a general purpose genetic algorithm and was fine
tuned to solve the VMC problem.

Figures 1 and 2 show the HV and IGD distributions, re-
spectively, for all algorithms when bp = 100%. A point (x, y)
in the HV (IGD) distribution plot indicates that the given ap-
proach obtained an HV (IGD) equal to or greater (lower) than
y for x instances. We can see that NSGAII has the best per-
formance both in terms of HV and IGD, being able to find so-
lution sets for more instances and of better quality. However,
considering large migration costs is not realistic for an active
data center where live migrations may result in a large perfor-
mance deterioration of running applications. Therefore, con-
sidering a limited budget for migrations of VMs is more real-

istic. With migration budgets of 5% and 1%, the performance
of the evolutionary algorithms degrades considerably, while
PCLD remains robust, as we can see in figures 3, 4, 5 and 6.
MGGA’s performance degrades the most, since it is unable to
find many feasible solutions. In fact, with bp = 1%, MGGA
fails to find feasible solutions for any instance. Moreover,
PCLD is able to find feasible solutions for far more instances
than the remaining algorithms.

5 Conclusion
This paper introduces the Pareto Minimal Correction Subset
(Pareto-MCS) of a multi-objective constrained optimization
problem. An equivalence relationship between Pareto-MCSs
and Pareto-optimal solutions shows that Pareto-optimal so-
lution enumeration can be reduced to Pareto-MCS enumer-
ation. Additionally, we show that Pareto-MCS enumeration
can be reduced to MCS enumeration, allowing the usage of
off-the-shelf MCS enumeration algorithms, instead of devel-
oping entirely new algorithms for Pareto-MCS enumeration.

An experimental evaluation on instances of the Virtual Ma-
chine Consolidation (VMC) problem shows that Pareto-MCS
enumeration is competitive with the state-of-the-art on a large
set of problem instances. Not only is this new approach able
to find solutions for more instances, but it is also able to find
solution sets of higher quality in more constrained instances.
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