
A COP Model for Graph-Constrained Coalition Formation (Extended Abstract)

Filippo Bistaffa1 and Alessandro Farinelli2
1 IIIA-CSIC, Campus UAB, 08913, Cerdanyola, Catalonia, Spain

2 Computer Science Department, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
filippo.bistaffa@iiia.csic.es, alessandro.farinelli@univr.it

Abstract
We focus on Graph-Constrained Coalition Forma-
tion (GCCF), a widely studied subproblem of coali-
tion formation where the set of valid coalitions is
constrained by a graph. We propose COP-GCCF, a
novel approach that models GCCF as a COP. We
then solve such COP with a highly-parallel GPU
implementation of Bucket Elimination, which is
able to exploit the high constraint tightness of COP-
GCCF. Results on realistic graphs, i.e., a crawl of
the Twitter social graph, show that our approach
outperforms state of the art algorithms (i.e., DyCE
and IDPG) by at least one order of magnitude, both
in terms of runtime and memory.

1 Introduction
Coalition Formation (CF) [Sandholm et al., 1999] is a funda-
mental collaboration approach in multi-agent systems, where
multiple agents join forces (or form groups) to achieve ei-
ther their individual or collective goals. In this paper we fo-
cus on the associated optimisation problem, i.e., Coalition
Structure Generation (CSG), which aims at partitioning the
set of agents (into disjoint coalitions) with the objective of
maximising the sum of the values of the chosen coalitions,
provided by the so-called characteristic function.

Our work is positioned in a strand of literature, namely
Graph-Constrained Coalition Formation (GCCF), pioneered
by Myerson [1977] and Demange [2004], and later devel-
oped by Voice et al. [2012a], Voice et al. [2012b], and
Bistaffa et al. [2017a]. GCCF is characterised by a spe-
cific type of constraints that encode synergies or relation-
ships among the agents and that can be expressed by a graph,
where nodes represent agents and edges encode the relation-
ships between the agents. In GCCF, edges enable connected
agents to form a coalition and a coalition is feasible only if
its members are the vertices of a connected subgraph. Sev-
eral real-world scenarios feature this type of constraints, such
as social or trust constraints (e.g., energy consumers who
prefer to group with their acquaintances in forming energy
cooperatives [Bistaffa et al., 2017a], or commuters sharing
rides with their friends [Bistaffa et al., 2017b]), and phys-
ical constraints (e.g., emergency responders may join spe-
cific teams in disaster scenarios where only certain routes

are available). Unfortunately, State of the Art (SoA) algo-
rithms that solve GCCF either require an exponential amount
of memory [Voice et al., 2012b] or make specific assump-
tions on the characteristic function [Voice et al., 2012a;
Bistaffa et al., 2017a].

Now, GCCF can be seen as an optimisation problem (aim-
ing at maximising the sum of the coalitional values) sub-
ject to feasibility constraints (i.e., coalitions must be feasi-
ble and disjoint). Nonetheless, to the best of our knowledge
none of the constraint optimisation techniques in the litera-
ture [Dechter, 2003] has ever been applied to GCCF.

Against this background, we propose COP-GCCF,1 the
first approach that models GCCF as a Constrained Optimi-
sation Problem (COP). COP-GCCF does not make any as-
sumption on the structure of the characteristic function. As a
consequence, in such general case, GCCF is NP-Hard, hence
finding the optimal solution is computationally demanding.
Nonetheless, the structure of the characteristic function could
be not known and/or hard to formalise, hence exploiting it
could be often very difficult or impossible. Moreover, even if
the structure of the characteristic function is known, it could
be difficult to exploit from the algorithmic point of view. For
instance, in the work by Bistaffa et al. [2017b] the structure is
known a priori, but the authors need to devise a complex, ad-
hoc technique (i.e., not easily applicable to scenarios different
from ridesharing) to compute an upper-bound on the charac-
teristic function, so as to exploit such a structure within their
branch-and-bound CSG algorithm. Therefore, it is important
to have a solution technique that does not require any property
on the characteristic function.

To achieve this objective, we exploit the structure of the
graph within COP-GCCF, so as to achieve a model of man-
ageable complexity. Specifically, we propose a COP formal-
isation that builds a hierarchy of agents resulting in a linear
number of constraints (wrt the number of agents). We repre-
sent constraints as incomplete tables (i.e., unfeasible assign-
ments are not represented in memory), so as to exploit the
high constraint tightness inherent in GCCF. This allows us to
reduce the number of rows in each constraint function from

1This paper is an extended abstract of an article in the Journal of
Artificial Intelligence Research [Bistaffa and Farinelli, 2018], which
contains parts of this paper. The journal version contains a full the-
oretical discussion of our approach, a comprehensive literature re-
view, and an extended experimental evaluation.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

5553

exponential to linear wrt the number of variables in the scope.
We then solve the COP-GCCF model using a GPU imple-
mentation of Bucket Elimination (BE) provided by Bistaffa
et al. [2016], since, to the best of our knowledge, it is the
only one able to exploit incomplete tables so as to obtain an
approach with manageable memory requirements (see Sec-
tion 3.3). In fact, SoA COP solution algorithms [Marinescu
and Dechter, 2007; Fioretto et al., 2015] without this capa-
bility could only solve problems with up to 5 agents in our
tests. Our results show that BE can be a practical solution ap-
proach if the problem is appropriately modelled as a COP, as
also confirmed by Larrosa et al. [2005]. Finally, we exploit
highly-parallel architectures (i.e., GPUs). This choice is mo-
tivated by the successful use of cloud-based [Malapert et al.,
2016] and GPU-based [Greengard, 2016] parallel approaches
to speed-up the solution of problems that exhibit a high level
of parallelism, especially in the field of AI.

In more detail, we advance the SoA in the following ways:

• We propose COP-GCCF, the first COP model to solve
GCCF, which requires a linear number of constraints.
We establish a new link between GCCF and COPs,
which opens a new line of research focusing on the use
of COP methods for GCCF.
• We test COP-GCCF both on realistic and synthetic net-

work topologies. Results show that COP-GCCF does
not provide any benefit with dense graphs, but it outper-
forms SoA algorithms (i.e., DyCE and IDPG) on sparse
topologies, both in terms of runtime and memory. COP-
GCCF is at least one order of magnitude (OoM) faster
than counterpart approaches using Twitter [Kwak et al.,
2010] as a realistic graph topology. Our tests confirm
that COP-GCCF improves upon SoA GCCF solution
algorithms, by correctly exploiting the structure of the
graph, even without exploiting the structure of the char-
acteristic function.

2 Background
2.1 COPs
Constraint Optimisation Problems (COPs) [Dechter, 2003]
are a general class of problems, which can be used to model
several optimisation scenarios [Dechter, 1999]. A COP takes
as input a cost network, i.e., a graph among the variables and
the cost functions of the problem, and requires to compute
the assignment of the variables that minimise such functions.
Cost functions can be encoded as tables, in which each row
represents a variable assignment and its resulting value.
Definition 1 (complete (resp. incomplete) tables). A cost
function Fi is complete if unfeasible assignments are explic-
itly represented with −∞ (+∞ in case of a minimisation
problem) values. In contrast, if unfeasible assignments are
not represented at all, Fi is said to be incomplete.

COPs can be solved both with Dynamic Programming
(DP) algorithms and with search-based approaches. On the
one hand, Bucket Elimination (BE) [Dechter, 1999; Dechter,
2003] is the most important DP algorithm that solves COPs,
which has been recently implemented on GPUs [Bistaffa et
al., 2016]. On the other hand, Marinescu and Dechter [2007]

proposed a best-first search approach that adopts BE-based
heuristics to guide the traversal of a particular AND/OR
search tree. Both the above approaches have been considered
as solvers for our model (see Section 3.3).

2.2 The GCCF Problem
The Coalition Structure Generation (CSG) problem [Shehory
and Kraus, 1998; Sandholm et al., 1999] takes as input a fi-
nite set of n agents A = {a1, . . . , an} and a characteristic
function v : 2A → R, that maps each coalition S ∈ 2A to its
value, describing how much collective payoff a set of players
can gain by forming a coalition. A coalition structure CS is
a partition of the set of agents into disjoint coalitions. The set
of all coalition structures is Π(A). The value of a coalition
structure CS is assessed as the sum of the values of its com-
posing coalitions, i.e., V (CS) =

∑
S∈CS v(S). The CSG

problem aims at identifying CS∗, the most valuable coalition
structure, i.e., CS∗ = arg maxCS∈Π(A) V (CS).

Given a graph G = (A,E), where E ⊆ A × A is a set of
edges between agents, representing their relationships (i.e.,
friendship), Myerson [1977] considers a coalition S to be
feasible if all of its members are connected in the subgraph
of G induced by S. That is, if for each pair of players from
a, b ∈ S there is a path in G that connects them without going
out of S. Given G, the set of feasible coalitions is FC(G) =
{S ⊆ A | The subgraph induced by S on G is connected} .

A Graph-Constrained Coalition Formation (GCCF) prob-
lem [Voice et al., 2012b] is a CSG problem together with
a graph G, where a coalition S is considered feasible if
S ∈ FC(G). In GCCF a coalition structure CS is considered
feasible if each of its coalitions is feasible, i.e., CS(G) =
{CS ∈ Π(A) | CS ⊆ FC(G)}. Hence, the goal GCCF is
to identify CS∗, which is the most valuable feasible coalition
structure, i.e., CS∗ = arg maxCS∈CS(G) V (CS). GCCF is
NP-Hard [Voice et al., 2012a].

3 COP-GCCF
In this section we discuss COP-GCCF, our COP formalisa-
tion of the GCCF problem. Our COP comprises |FC(G)| bi-
nary variables, i.e., one per feasible coalition. In our model,
xS = 1 does not necessarily mean that S is part of the final
coalition structure, since a variable can be activated because it
is required by another variable (see Section 3.1). Intuitively,
only active variables that correspond to maximal coalitions
are part of the final coalition structure. In the example in Fig-
ure 2, if x13 = 1 in the solution of the COP, then x3 = 1
since x3 is required by x13, but only {a1, a3} is part of the
final coalition structure.2

Formally, X = {xS | S ∈ FC(G)}. The computation of
X is equivalent to the enumeration of all the subgraphs of
G and can be solved using one of the existing algorithms in
the literature [Moerkotte and Neumann, 2006; Voice et al.,
2012b]. We use SlyCE by Voice et al. [2012b], which also
provide a parallelised version, i.e., D-SlyCE.

A set of coalitions S is a partition of A if each agent is part
of exactly one coalition, i.e.,

2In our examples, each xS will be named using indexes of agents
in S, e.g., xa1,a3 will be named x13.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

5554

a1

a2

a3

a4

a1

a2

a3

a4

Figure 1: Example graph G and the corresponding PT (G).

Property 1. There are no overlapping coalitions in S .

Property 2. Each agent in A is part of a coalition in S .

The above properties enforce constraints that determine the
solution space of valid variable assignments for our COP.
Within COP-GCCF, we exploit the structure of the graph G
in order to express such constraints.

As a first step, we construct a pseudotree PT (G) [Petcu,
2007] from G, establishing a partial order among the agents
in A. PT (G) is a graph in which edges are directed from chil-
dren nodes to parent ones (Figure 1). Back-edges, i.e., edges
present in G but not explicitly present in its tree representa-
tion, are marked with a dashed line. It is crucial to note that
back-edges cannot be removed from the graph, as they must
be considered in order to have a complete and correct GCCF
algorithm. Specifically, the information expressed by back-
edges is inherently maintained by the variables in the model.
As an example, the information of (a1, a3) is maintained by
x13 and x134, which would correspond to unfeasible coali-
tions without such edge.

Then, we partition the set of variables X in n sets Xi, each
corresponding to ai ∈ A, such that Xi = {xS | S con-
tains only ai or its descendants in PT (G)}. Each Xi repre-
sents the set of local variables to the agent ai. In the above
example, X1 = {x1, x12, x13, x123, x14, x124, x134, x1234},
X2 = {x2, x23}, X3 = {x3}, and X4 = {x4}.

As stated above, Properties 1 and 2 must be ensured in
order to correctly represent the GCCF problem. Property 1
requires that the activation of a particular variable/coalition
excludes the activation of incompatible variables, i.e., vari-
ables whose concurrent activation would generate overlap-
ping coalitions. Now, since in COP-GCCF we construct n
constraint functions Fi, each responsible for the variables in
Xi (see Section 3.2), Property 2 can be easily achieved for
such variables by allowing only the assignments in which ex-
actly one local variable is activated. On the other hand, Prop-
erty 1 cannot be directly enforced for variables that are lo-
cal to different agents, i.e., that belong to different Xi, and
hence, to different constraint functions. Notice that introduc-
ing additional binary constraints between overlapping vari-
ables would result in

(|X|
2

)
constraints. In contrast, we achieve

this exploiting the concept of required variables.

3.1 Required Variables
The main idea behind required variables is that the formation
of a variable/coalition xS ∈ Xi can be achieved exploiting
the hierarchy induced by PT (G). Intuitively, the agent ai can
negotiate the formation process only with its children nodes,
allowing a more succinct representation of the problem and
saving computational resources. As an example, x1234 (local
to a1) requires the participation of a2, a3, and a4, but a1 can

x1 x13 x123 x1234 x12 x124 x134 x14

x23 x2

x3

x4

X1

X2

X3

X4

Figure 2: The requires relation (indirect requirements drawn as dash-
dotted lines).

force the participation of a3 through a2. In other words, x1234

requires x4 and x23, which indirectly requires x3 through a2.
Formally, we represent such dependencies with the requires
relation, denoted as req(PT (G)) ⊆ X2, i.e., a set of couples
of variables. Figure 2 illustrates such relation corresponding
to the above example.

The crucial feature of required variables is that any two
variables that require the same variable cannot be enabled
simultaneously. Since we cannot activate two variables both
local to the same agent, two variables that require variables
local to the same agent cannot be both active. By enforcing
this, we ensure that no overlapping variables local to different
agents are activated at the same time.

In the next section, we show how to construct n constraint
functions that implement the above discussed concepts.

3.2 Constructing Constraint Functions
As mentioned in Section 3, COP-GCCF involves n constraint
functions Fi, one for each agent ai. Each Fi is constructed
according to the following definition.
Definition 2 (Fi). Each Fi is responsible for the variables
local to ai, hence we initialise the scope Qi of each Fi to in-
clude Xi. To represent the requires relation, we include all
the non-local variables that require a variable in Xi, i.e.,
Qi = Xi ∪ {xS | ∃xS′ ∈ Xi : (xS , xS′) ∈ req(PT (G))}.
The scope Qi of each Fi comprises Xi, i.e., the variables lo-
cal to ai, plus all the non-local variables that require a vari-
able in Xi. Each Fi contains |Qi| feasible assignments, i.e.,
one for each variable in the scope. The variable assignment in
each row is constructed by activating the corresponding vari-
able, namely xS . If xS is non-local, i.e., xS 6∈ Xi, we also
activate the variable required by xS . Then, for each assign-
ment in which a local variable xS ∈ Xi is activated, we de-
fine the corresponding value equal to v(S), while such value
is 0 when a non-local variable is considered. This avoids the
duplication of v(S) when xS is propagated as a non-local
variable across the constraint functions.

Notice that, in our model, we do not explicitly represent
unfeasible assignments, i.e., each Fi is an incomplete table.
This is of utmost importance, since it allows us to reduce
the space required by each Fi to a tractable size. Specifically,
within COP-GCCF each Fi has |Qi| rows, as opposed to 2|Qi|

rows, if we used complete tables with unfeasible assignments
represented as −∞. On the other hand, not all COP solution
algorithms support incomplete tables. Henceforth, is it also
necessary to use a solver that is able to exploit this feature, as
discussed in detail in Section 3.3.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

5555

x4 x1234 x124 x134 x14 Value
1 0 0 0 0 v({a4})
1 1 0 0 0 0
1 0 1 0 0 0
1 0 0 1 0 0
1 0 0 0 1 0

Local

Non-local

Figure 3: Constraint function F4.

Figure 3 shows an example of constraint function (with
non-local variables highlighted in grey) corresponding to the
example in Figure 1. Notice that, at the moment, our model
propagates several variables down the pseudotree. As an ex-
ample, X4 contains only one variable, but Q4 = X4 ∪
{x1234, x124, x134, x14}. In the journal version of this pa-
per [Bistaffa and Farinelli, 2018] we also discuss an opti-
mised version of our model that allows one to significantly
reduce the number of propagated variables.

COP-GCCF is correct (as we prove in the journal ver-
sion [Bistaffa and Farinelli, 2018]), i.e., the optimal solution
of COP-GCCF is the optimal solution of the corresponding
GCCF problem.

3.3 Solving the COP
As previously discussed, COPs can be solved both with BE
and with search-based approaches. However, a fundamental
feature of COP-GCCF is the high constraint tightness (i.e.,
several variable assignments in each Fi table are unfeasible,
see Section 3.2). Hence, using a solver that is able to inter-
nally represent constraints as incomplete tables, which allow
to significantly reduce memory requirements, is a crucial as-
pect in the choice of the COP solution algorithm.

The SoA search-based solution approach [Marinescu and
Dechter, 2007] adopts BE-based heuristics to guide the
traversal of a particular AND/OR search tree. Such an al-
gorithm can read problem instances with incomplete tables,
which are then internally converted to complete ones, i.e.,
with each unfeasible assignment associated to −∞. This re-
sults in a huge consumption of memory (see Section 3.2),
since each Fi has to contain 2|Qi| rows, 2|Qi|−|Qi| of which
are associated to −∞. We tested Marinescu and Dechter’s
approach on problem instances expressed using incomplete
tables (i.e., in WCSP format). Our results show that this ap-
proach could not solve COPs representing GCCF problems
with > 5 agents, due to high memory requirements. We ob-
tained similar results with ToulBar2 [Allouche et al., 2010].3
For this reason, we do not report these results in our experi-
mental evaluation.

To the best of our knowledge, the only COP solution ap-
proach that internally represents constraints as incomplete ta-
bles is CUBE, i.e., the GPU version of BE by Bistaffa et al.
[2016]. Fioretto et al. [2015] also proposed a GPU version
of BE, which, on the other hand, does not internally employ
incomplete tables, and hence, would incur in the same draw-
backs discussed above. As a consequence, we adopt Bistaffa
et al.’s approach to solve COP-GCCF.

3Topology-aware solvers are not effective for our model, since
the constraint graph has usually a very high treewidth (i.e., 20–30).

4 Experimental Evaluation
The main goals of our empirical analysis are i) to evaluate the
performance of COP-GCCF in terms of runtime and memory
requirements and ii) to compare it with DyCE and with IDPG.

Following Voice et al. [2012b] and Bistaffa et al. [2017b],
we generate random GCCF instances considering three dif-
ferent network topologies for the graph G, i.e., scale-free net-
works obtained with the Barabási-Albert model with m = 1
and 2, and subgraphs of a large crawl of the Twitter social
graph [Kwak et al., 2010]. G is obtained by means of a BFS
starting from a random node of the whole graph, adding each
node and the corresponding arcs to G, until the desired num-
ber of nodes is reached [Russell, 2013]. Each feasible coali-
tion is associated to an uniformly distributed random value
within [−10, 10], while, for IDPG, unfeasible coalitions have
a value of −∞. We vary n within [20, 30], generating 20 ran-
dom instances for each of the above network topologies and
solving each of them with the three considered algorithms.
All our experiments are run on a machine with a 3.40GHz
CPU, 16GB of memory and a GeForce GTX 680 GPU.4 For
DyCE and IDPG, we used the authors’ implementations.

In terms of runtime, our results show that COP-GCCF out-
performs DyCE in all the considered network topologies, and
it is one OoM faster than IDPG on a realistic dataset, i.e.,
Twitter. On the other hand, the trend in our tests also shows
that IDPG performs better than COP-GCCF on dense or al-
most completely connected graphs. This is expected, as IDPG

is specifically devised for completely connected graphs, and,
hence, is a preferable solution technique in such scenarios.

In terms of memory consumption, our results follow the
behaviour discussed above, i.e., the memory requirements of
COP-GCCF are lower wrt DyCE and IDPG for scale-free net-
works with m = 1 and Twitter subgraphs. The memory con-
sumption of our approach is 2 OoM lower in the former case,
and 1 OoM lower in the latter one. For scale-free networks
with m = 2, COP-GCCF requires twice as much the mem-
ory wrt DyCE and IDPG, due to the higher density of G that
results in a larger number of variables.

5 Conclusions
We proposed COP-GCCF, a novel approach that models the
GCCF problem as a COP, and we solve such COP with a
GPU algorithm based on BE. Our results show that our ap-
proach outperforms SoA algorithms on a realistic dataset,
both in terms of runtime and memory. Moreover, we estab-
lish a clear link between GCCF and COPs, which, to the best
of our knowledge, has never been proposed before in the liter-
ature. Future work will aim at applying our model to realistic
scenarios, such as Collective Energy Purchasing [Bistaffa et
al., 2017a] and Social Ridesharing [Bistaffa et al., 2017b].

Acknowledgments
Bistaffa was supported by the H2020-MSCA-IF-2016
HPA4CF project.

4Our implementation is available at https://github.com/
filippobistaffa/COP-GCCF.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

5556

References
[Allouche et al., 2010] David Allouche, Simon de Givry, and

Thomas Schiex. Toulbar2, an open source exact cost func-
tion network solver. Technical report, INRIA, 2010.

[Bistaffa and Farinelli, 2018] Filippo Bistaffa and Alessan-
dro Farinelli. A COP Model for Graph-Constrained Coali-
tion Formation. Journal of Artificial Intelligence Research,
62:133–153, 2018.

[Bistaffa et al., 2016] Filippo Bistaffa, Nicola Bombieri, and
Alessandro Farinelli. An efficient approach for accelerat-
ing bucket elimination on GPUs. IEEE Transactions on
Cybernetics, 47(11):3967–3979, 2016.

[Bistaffa et al., 2017a] Filippo Bistaffa, Alessandro
Farinelli, Jesús Cerquides, Juan Rodrı́guez-Aguilar,
and Sarvapali D. Ramchurn. Algorithms for graph-
constrained coalition formation in the real world. ACM
Transactions on Intelligent Systems and Technology, 8(4),
2017.

[Bistaffa et al., 2017b] Filippo Bistaffa, Alessandro
Farinelli, Georgios Chalkiadakis, and Sarvapali D.
Ramchurn. A cooperative game-theoretic approach to
the social ridesharing problem. Artificial Intelligence,
246:86–117, 2017.

[Dechter, 1999] Rina Dechter. Bucket elimination: A uni-
fying framework for reasoning. Artificial Intelligence,
113(1–2):41–85, 1999.

[Dechter, 2003] Rina Dechter. Constraint processing. Mor-
gan Kaufmann, 2003.

[Demange, 2004] Gabrielle Demange. On group stability in
hierarchies and networks. Political Economy, 112(4):754–
778, 2004.

[Fioretto et al., 2015] Ferdinando Fioretto, Tiep Le, Enrico
Pontelli, William Yeoh, and TranCao Son. Exploit-
ing GPUs in solving (distributed) constraint optimiza-
tion problems with dynamic programming. In Principles
and Practice of Constraint Programming, pages 121–139.
2015.

[Greengard, 2016] Samuel Greengard. GPUs reshape com-
puting. Communications of the ACM, 59(9), 2016.

[Kwak et al., 2010] Haewoon Kwak, Changhyun Lee, Ho-
sung Park, and Sue Moon. What is Twitter, a social net-
work or a news media? In International World Wide Web
Conference, pages 591–600, 2010.

[Larrosa et al., 2005] Javier Larrosa, Enric Morancho, and
David Niso. On the practical use of variable elimination
in constraint optimization problems: ”still-life” as a case
study. Journal of Artificial Intelligence Research, 23:421–
440, 2005.

[Malapert et al., 2016] Arnaud Malapert, Jean-Charles
Régin, and Mohamed Rezgui. Embarrassingly parallel
search in constraint programming. Journal of Artificial
Intelligence Research, 57:421–464, 2016.

[Marinescu and Dechter, 2007] Radu Marinescu and Rina
Dechter. Best-first AND/OR search for graphical mod-
els. In AAAI Conference on Artificial Intelligence, pages
1171–1176, 2007.

[Moerkotte and Neumann, 2006] Guido Moerkotte and
Thomas Neumann. Analysis of two existing and one
new dynamic programming algorithm for the generation
of optimal bushy join trees without cross products. In
International Conference on Very Large Data Bases,
pages 930–941, 2006.

[Myerson, 1977] Roger B. Myerson. Graphs and cooper-
ation in games. Mathematics of Operations Research,
2(3):225–229, 1977.

[Petcu, 2007] Adrian Petcu. A Class of Algorithms for Dis-
tributed Constraint Optimization. Phd. thesis no. 3942,
Swiss Federal Institute of Technology (EPFL), 2007.

[Russell, 2013] Matthew A. Russell. Mining the Social Web.
O’Reilly Media, 2013.

[Sandholm et al., 1999] Tuomas Sandholm, Kate Larson,
Martin Andersson, Onn Shehory, and Fernando Tohmé.
Coalition structure generation with worst case guarantees.
Artificial Intelligence, 111(1):209–238, 1999.

[Shehory and Kraus, 1998] Onn Shehory and Sarit Kraus.
Methods for task allocation via agent coalition formation.
Artificial Intelligence, 101(1-2):165–200, 1998.

[Voice et al., 2012a] Thomas Voice, Maria Polukarov, and
Nicholas Jennings. Coalition structure generation over
graphs. Journal of Artificial Intelligence Research,
45:165–196, 2012.

[Voice et al., 2012b] Thomas Voice, Sarvapali D. Ramchurn,
and Nicholas R. Jennings. On coalition formation with
sparse synergies. In International Conference on Au-
tonomous Agents and Multi-Agent Systems, pages 223–
230, 2012.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

5557

