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Abstract

Engagement, the key construct that describes the
synergy between human (users) and technology
(computing systems), is gaining increasing atten-
tion in academia and industry. Human-Engaged AI
(HEAI) is an emerging research paradigm that aims
to jointly advance the capability and capacity of
human and AI technology. In this paper, we first
review the key concepts in HEAI and its driving
force from the integration of Artificial Intelligence
(AI) and Human-Computer Interaction (HCI). Then
we present an HEAI framework developed from our
own work.

1 Introduction
Researches on Artificial Intelligence (AI) and Human-
Computer Interaction (HCI) have more crossovers in recent
years, with AI techniques empowering HCI innovations while
receiving data and feedback in return [Grudin, 2009]. At an
application level, emerging robots, virtual agents, and voice
(natural-language) interfaces for social and/or end-user service
purposes are good examples of synthesis of the two fields. At a
conceptual level, the rising “usable AI” (e.g., [Gajos and Weld,
2008; Lau, 2009]), “explainable AI (XAI)” (e.g., [Gunning,
2017]), and “human-aware AI (HAAI)” (e.g., [Chakraborti
et al., 2017]) paradigms acknowledge the co-existence of AI
technologies and human users, and have attracted attention
of practitioners and researchers from both fields. One may
envision more in-depth convergence of AI and HCI in certain
domains in the future, with the focus being designing better
use of (as opposed to merely better) AI.

To achieve mutual enhancement between human and AI,
both parties need to honor and realize each other’s full poten-
tial. In this process, the notion of “engagement” offers a lens
into the synergistic relationship between human users and AI
technologies [Salehzadeh Niksirat et al., 2018]. McCarthy and
Wright suggest in their book “Technology as Experience” that
it is the “meaningful engagement” that “transforms people and
systems” [McCarthy and Wright, 2007]. For example, our past
research on reviewer-recommendation bot deployed in online
software development platforms e.g., GitHub showed that, au-
tomatic reviewer recommendation services would not improve

the collaborative coding review process if they overlook po-
tential code reviewers’ (behavioral, cognitive, and emotional)
engagement with the target project [Peng et al., 2018]. In
the CHI 2018 Panel & Roundtable Discussion on Human-
Robot Teaming (HRT), the panelists who are top scholars
from academia and industry listed engagement and usability
as the first key topic area of HRT [Vinson et al., 2018].

In this paper, we present an overview of the basic concepts
and research landscape of human-engaged AI (HEAI), and our
data-driven HEAI framework.

2 Human-Engaged AI (HEAI)
Adapting the notion of human-engaged computing proposed
in [Ren, 2016], human-engaged AI (HEAI) aims to achieve a
state of optimal, balanced synergism between engaged humans
and engaging AI systems.

2.1 Definition of Engagement
Engagement is “a state of consciousness in which one is fully
immersed in and aligned with the activity at hand” [Ren, 2016]
and “the process by which interactors start, maintain, and end
their perceived connections to each other during an interac-
tion” [Sidner et al., 2005]. Engagement is not a basic action;
rather, it is a process of communicating “what has been un-
derstood so far, what the interactors are each (or together)
attending to, evidence of their waning connectedness, and
evidence of their desire to disengage” [Sidner et al., 2005].
In the scope of this paper, interactors refer to human users
and AI systems such as robots and virtual agents that form
a ‘symbiotic mutualism’ relationship on the path towards a
(shared) goal. Engagement in a way reflects the ‘affordance’
between the interactors [Salehzadeh Niksirat et al., 2018].

Human Engagement
Identifying when and why the human interactors’ engagement
cues conflict with the original intent to establish human-AI
synergism is critical. The actual definition and measurement
of human engagement may change along with the context,
use case, and user group characteristics. Generally, we can
classify human engagement into four types [Silpasuwanchai
et al., 2016].
• Attentional Engagement: (selective) attentional attribu-

tion to a task, such as attention allocation and redistribu-
tion (e.g., [Chapman, 1997]).
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• Cognitive Engagement: psychological devotion to a task,
such as active thinking and reflection (e.g., [Li et al.,
2014]), etc.

• Behavioral Engagement: physical participation and in-
volvement (e.g., [De-Marcos et al., 2014]).

• Emotional Engagement: affective responses towards the
task at hand, such as interest, excitement, frustration, and
boredom (e.g., [Laurel, 1991]).

Generally, human users’ engagement can serve as a sign
of their conscious application of mental and/or physical capa-
bilities during the interaction with AI technologies. How to
infer one or more types of human engagement under a specific
scenario is one of the key research problems in HEAI.

AI Engagement
People have the tendency to treat computers as social ac-
tors [Nass et al., 1994]. In particular, human users often
make social attributions toward computing systems with even
a minimal set of anthropomorphism and agency characteristics
(e.g., robots and agents), and behave as if they are in front of
other humans [Nass et al., 1993]. That is to say, people may
also seek cues of AI engagement during the interaction, so as
to adjust their behaviors and decisions accordingly.

To users, the ‘engagement’ of a technology can include but
not limited to the availability and allocation of resources, in-
ternal states such as uncertainty and error while progressing in
task, contextual and situational awareness, etc. Communicat-
ing the ‘engagement’ of an AI system via human interpretable
cues makes its capacity and potential more transparent to the
users. How to design the expression of AI engagement in a
given task is another essential question in HEAI.

2.2 Engaged Human Users
In human-human interaction, people can take a holistic (sen-
sory) and/or an analytical approach to inferring other indi-
viduals’ engagement. This process consists of three levels:
perception, comprehension, and projection. Perception means
sensing all possible cues that can be indicative of one’s engage-
ment status. Comprehension means leveraging pre-established
engagement model and backward looking engagement sig-
nals [Sidner et al., 2005] to further analyze the engagement
dynamicity – fluctuation over time – and the underlying rea-
sons. Projection means exploiting forward looking engage-
ment signals [Sidner et al., 2005] to predict future engagement,
with current actions, if any, taken into consideration.

2.3 Engaging AI Systems
If both human and AI are engaged in the interactive process,
it is likely to result in more productive performance and rela-
tionship. In other words, the benefits of HEAI extend beyond
utility, transforming the prosaic experience between human
and AI to an aesthetic experience that is particularly fulfilling,
satisfying, and creative [McCarthy and Wright, 2007].

The question arises as to what strategies AI systems can
employ to engage users in an appropriate manner. In human-
human interaction, such scenarios are usually handled with
social intelligence and emotional intelligence. We propose to

Figure 1: Our proposed data-driven HEAI framework.

Figure 2: Nao robot detects user engagement via social signals such
as gaze, body and head orientation, nodding, and backchannels.

equip AI with similar capabilities, which, as Subbarao Kamb-
hampati pointed out in his AAAI 2018 presidential address, is
largely overlooked in current AI research.

3 Research Landscape of HEAI
Figure 1 illustrates our data-driven human-engaged AI frame-
work. It consists of five key components: 1) construction
of computational model of human engagement; 2) real-time
holistic and analytical inference of human engagement; 3)
management of human engagement; 4) expression of AI en-
gagement; and 5) engagement-based applications.

3.1 Engagement Inference and Modeling
Our group emphasizes on the use of the following three types
of signals for inferring and modeling human engagement.

Social signals are “communicative or informative signals
that, either directly or indirectly, provide information about
social facts, namely social interactions, social emotions, so-
cial attitudes, or social relations” [Vinciarelli et al., 2012].
That is to say, social signals can convey attentional, emo-
tional, and even cognitive engagement. Common social sig-
nals include gaze, facial expressions, vocal behaviors, prox-
emics, gesture, posture, and other body languages. Our group
looks into non-intrusive methods to capture social signals
during an interaction, applying sensors like camera, depth
sensor, microphone and eye tracker (e.g., [Sun et al., 2017a;
Zhu et al., 2017]; Figure 2).

Physiological signals are readings produced by physiolog-
ical processes of human beings, including but not limited to
heartbeat rate (ECG/EKG signal), pulse, respiratory rate and
content (capnogram), skin conductance (EDA signal), muscle
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Figure 3: Sensing emotional and cognitive engagement via skin
conductance signals, and presenting the real-time engagement status
on four types of displays: graphical, illustrative, artistic, and ambient.

Figure 4: Visualization of players’ temporal and spatial behaviors
during a multiplayer online battle arena (MOBA) game.

current (EMG signal), and brain electrical activity (EEG sig-
nal). We have been using physiological signals as indicators
of attentional, cognitive and emotional engagement (e.g., [Sun
et al., 2017b; Zhu et al., 2015]; Figure 3).

Behavioral signals are actions and activities performed dur-
ing an interaction, as inputs or reactions towards output gen-
erated by the other party. Behavioral signals can be captured
by interface logs, suggesting behavioral, cognitive, and some-
times emotional engagement. The actual types of data are of-
ten task-specific, ranging from conversational acts, text input,
clicks, scrolling, page switch, emoji usage, likes, check-ins,
to aggregated time on task and number of attempts. We have
been mining behavioral signals and patterns in different ap-
plication domains, such as online learning [Silpasuwanchai et
al., 2016], digital games [Li et al., 2017; 2018] (Figure ??),
social media and multimedia services [Ma and Cao, 2017;
Wu and Ma, 2017], e-commerce [Yue et al., 2016], and smart
transportation [Chen et al., 2016].

On the one hand, we use real-time social, physiological, and
behavioral signals as backward and forward looking engage-
ment cues to recognize users’ ongoing engagement dynamics.
On the other hand, by mining patterns (e.g., temporal or con-
textual) of aggregated social, physiological, and behavioral
signals, we are able to construct general engagement model
for future inference and prediction.

3.2 Management of Human User Engagement

We have been exploring two mechanisms – user initiative and
system initiative – for managing human engagement.

Figure 5: Ingredients of AI social intelligence and emotional intelli-
gence explored in our research.

Figure 6: (Top) Nao robot reengages users in conversation through ex-
plicit gestures and speech acts. (Bottom) a moving desktop computer
engages users in posture adjustment in an implicit manner.

User Initiative: Awareness and Reflection
The user initiative mechanism for engagement management
requires AI system to evoke users’ awareness and reflection
of their own engagement status. Through techniques such
as data visualization (e.g., Figure 3 and 4), users can gain a
better understanding of their attention, emotion, and activeness
on the fly and apply self-adjustment consciously. They can
also conduct retrospective analysis of their past engagement
dynamicity to improve future performance.

System (AI) Initiative: Intervention
The system initiative mechanism has AI proactively direct
users’ engagement (see Figure 5 for the different ingredients
of this mechanism we have investigated). For example, we
employ the proxemics theory (social intelligence) to design a
persuasive screen that can engage users in posture adjustment
during prolonged sitting [Zhu et al., 2017] (Figure 6 bottom).
We exploit personality theory to design virtual agent [Yang et
al., 2017] (Figure 7) and robot [Sun et al., 2017a] (Figure 6
top) to handle user challenges with emotional intelligence.

3.3 Expression of AI Engagement

When humans and AI systems are in close collaboration,
keeping humans informed of the systems’ ‘engagement’ can
help mitigate miscommunication, boost coordination, and en-
hance satisfaction. In particular, we take an ethopoeia ap-
proach [Nass et al., 1993] to designing AI engagement expres-
sion. For instance, we experiment with the use of non-verbal
emotional expressions to indicate a voice assistant’s conversa-
tional states, to increase its connectedness and promote user
engagement [Shi et al., 2018] (Figure 8).
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Figure 7: Enriching virtual agent design with personality can improve
agent’s perceived emotional intelligence.

Figure 8: Three designs of voice assistant’s engagement expression:
facial expression, bubble movement, and voice waveform.

3.4 Other Applications of Engagement
Additionally, we leverage the notion of engagement to de-
sign and improve intelligent services driven by AI algorithms.
For example, we model users’ attentional and cognitive en-
gagement on different interfaces using eye-tracking data, and
propose algorithms to automatically optimize the interface de-
sign (e.g., [Yue et al., 2016; Ma, 2014]). We mine player
behavioral engagement patterns that can lead to different
game occurrences, and develop a learning system based on
the findings to identify game configurations that are critical
for balancing different gameplay outcomes [Li et al., 2018;
2017]. We analyze viewer emotional engagement while
watching (live) streaming videos according to time-sync
commenting behaviors, and design a video synopsis, nav-
igation, and recommendation system [Ma and Cao, 2017;
Sun et al., 2016]. We have also been working on building
computational humor recognizers in social media [Cattle and
Ma, 2018].

4 Conclusion
This paper presents an overview of the conceptual framework
and research landscape of data-driven human-engaged AI
(HEAI), which aims to achieve optimally synergized inter-
actions between humans and AI technologies. We summarize
our exploratory works related to two essential components of
HEAI, i.e., engaged humans and engaging AI systems. Our
researches demonstrate the potential to reach mutual enhance-
ment and aesthetic experience between the two parties.
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