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Abstract
In this paper, we present exploitability descent, a
new algorithm to compute approximate equilibria
in two-player zero-sum extensive-form games with
imperfect information, by direct policy optimiza-
tion against worst-case opponents. We prove that
when following this optimization, the exploitabil-
ity of a player’s strategy converges asymptotically
to zero, and hence when both players employ this
optimization, the joint policies converge to a Nash
equilibrium. Unlike fictitious play (XFP) and coun-
terfactual regret minimization (CFR), our conver-
gence result pertains to the policies being optimized
rather than the average policies. Our experiments
demonstrate convergence rates comparable to XFP
and CFR in four benchmark games in the tabular
case. Using function approximation, we find that
our algorithm outperforms the tabular version in two
of the games, which, to the best of our knowledge, is
the first such result in imperfect information games
among this class of algorithms.

1 Introduction
Extensive-form games model sequential interactions between
multiple agents, each of which maximize their own utility.
Classic examples are perfect information games (e.g. chess
and Go), which have served as milestones for measuring
the progress of artificial intelligence [Campbell et al., 2002;
Silver et al., 2016]. When there are simultaneous moves, such
as in Markov games, the players may need stochastic policies
to guarantee their worst-case expected utility, and must use
linear programming at each state for value back-ups. Comput-
ing policies for imperfect information games is much more
difficult: no Bellman operator exists, so approximate dynamic
programming is not applicable; exact equilibrium solutions
can be found by sequence-form linear programming [Koller
et al., 1994; Shoham and Leyton-Brown, 2009], but these
techniques do not scale to very large games.

The challenge domain for imperfect information has been
computer Poker, which has driven much of the progress in
computational approaches to equilibrium-finding [Rubin and
Watson, 2011]. While there are gradient descent techniques

that can find an ε-Nash equilibrium in O( 1
ε ) iterations [Hoda

et al., 2007], the dominant technique has been counterfactual
regret minimization (CFR) [Zinkevich et al., 2008]. Based
on CFR, recent techniques have solved heads-up limit Texas
Hold’em [Bowling et al., 2015] and beat human professionals
in no-limit Texas Hold’em [Moravčı́k et al., 2017; Brown and
Sandholm, 2017].

Other techniques have emerged in recent years, based first
on fictitious play (XFP) [Heinrich et al., 2015], and gener-
alized to double oracle and any meta-game solver over sets
of policies [Lanctot et al., 2017]. Both require a subroutine
that computes a best response (an “oracle”). Here, reinforce-
ment learning can be used to compute approximate oracles,
and function approximation can be used to generalize over
the state space without domain-specific abstraction mecha-
nisms. Hence, deep neural networks can trained from zero
knowledge as in AlphaZero [Silver et al., 2018]. Policy gra-
dient techniques are also compatible with function approxi-
mation in this setting [Srinivasan et al., 2018], but may re-
quire many iterations to converge. Combining data buffers
with CFR using regression to predict regrets has also shown
promise in medium-sized poker variants [Waugh et al., 2015;
Brown et al., 2019].

In this paper, we introduce a new algorithm for computing
approximate Nash equilibria. Like XFP, best responses are
computed at each iteration. Unlike XFP, players optimize their
policies directly against their worst-case opponent. When us-
ing tabular policies and `2 projections after policy updates,
the sequence of policies will contain an ε-Nash equilibrium,
unlike CFR and XFP that only converge-in-average. Our algo-
rithm works well with function approximation, as the problem
can be expressed directly as a policy gradient optimization.
Our experiments show convergence rates comparable to XFP
and CFR in the tabular setting, exhibit generalization over the
state space using neural networks in four different games.

At the time of original submission, we were unaware of a
similar algorithm recently presented at the Deep RL Work-
shop NeurIPS 2018: Self-Play Against a Best Response
(SPAR) [Tang et al., 2018]. The work we present in this
paper was done independently. In this paper, we provide con-
vergence guarantees, as well as results in both the tabular and
neural network cases. We do so on four benchmark games
(both commonly used poker benchmarks used in [Tang et al.,
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2018] and two additional games), whereas results of SPAR
focus on the sample-based setting not covered in this paper.

2 Background and Terminology
An extensive-form game describes a sequential interaction
between players i ∈ {1, 2, · · · , n} ∪ {c}, where c is consid-
ered a special player called chance with a fixed stochastic
policy that determines the transition probabilities given states
and actions. We will often use −i to refer to all the opponents
of i. In this paper, we focus on the n = 2 player setting.

The game starts in the empty history h = ∅. On each turn,
a player i chooses an action a ∈ Ai, changing the history
to h′ = ha. Here h is called a prefix history of h′, denoted
h @ h′. The full history is sometimes also called a ground
state because it uniquely identifies the true state, since chance’s
actions are included. In poker, for example, a ground state
would include all the players’ private cards. We define an
information state s ∈ S for player i as the state as perceived
by an agent which is consistent with its observations. For-
mally, each s is a set of histories, specifically h, h′ ∈ s ⇔
the sequence of of player i’s observations along h and h′ are
equal. In poker, an information state groups together all the
histories that differ only in the private cards of −i. Denote Z
the set of terminal histories, each corresponding to the end of
a game, and a utility to each player ui(z) for z ∈ Z . We also
define τ(s) as the player whose turn it is at s, and Z(h) the
subset of terminal histories that share h as a prefix.

Since players cannot observe the ground state h, policies
are defined as πi : Si → ∆(Ai), where ∆(Ai) is the set of
probability distributions over Ai. Each player tries to max-
imize their expected utility given the initial starting history
∅. We assume finite games, so every history h is bounded in
length. The expected value of a joint policy π (all players’
policies) for player i is defined as

vi,π = Ez∼π[ui(z)], (1)

where the terminal histories z ∈ Z are composed of actions
drawn from the joint policy. We also define state-action values
for joint policies. The value qi,π(s, a) represents the expected
return starting at state s, taking action a, and playing π:

qi,π(s, a) =Ez∼π[ui(z) | h ∈ s, ha v z]

=
∑

h∈s,z∈Z(h)

Pr(h|s)ui(z)

=

∑
h∈s ηπ(h)qi,π(h, a)∑

h∈s ηπ(h)
, (2)

where qi,π(h, a) = Ez∼π[ui(z) | ha v z] =∑
h∈s,z∈Z(h) ηπ(h, z)ui(z) is the expected utility of the

ground state-action pair (h, a), and ηπ(h) is the probability of
reaching h under the policy π. We make the common assump-
tion that players have perfect recall, i.e. they do not forget
anything they have observed while playing. Under perfect
recall, the distribution of the states can be obtained only from
the opponents’ policies using Bayes’ rule (see [Srinivasan et
al., 2018, Section 3.2]).

Each player i tries to find a policy that maximizes their own
value vi,π . However, this is difficult to do independently since

the value depends on the joint policy, not just player i’s policy.
A best response policy for player i is defined to be bi(π−i) ∈
BR(π−i) = {πi | vi,(πi,π−i) = maxπ′i vi,(π′i,π−i)}. Given a
joint policy π, the exploitability of a policy π−i is how much
the other player could gain if they switched to a best response:
δi(π) = maxπ′i vi,(π′i,π−i) − vi,π . In two-player zero-sum
games, an ε-minmax (or ε-Nash equilibrium) policy is one
where maxi δi(π) ≤ ε. A Nash equilibrium is achieved when
ε = 0. A common metric to measure the distance to Nash is
NASHCONV(π) =

∑
i δi(π).

2.1 Extensive-Form Fictitious Play (XFP)
Extensive-form fictitious play (XFP) is equivalent to standard
fictitious play, except that it operates in the extensive-form
representation of the game [Heinrich et al., 2015]. In fictitious
play, the joint policy is initialized arbitrarily (e.g. uniform ran-
dom distribution at each information state), and players learn
by aggregating best response policies. The extensive-form

Algorithm 1: Fictitious Play

input :π0 — initial joint policy
1 for t ∈ {1, 2, · · · } do
2 for i ∈ {1, . . . , n} do
3 Compute a best response bti(π

t−1
−i )

4 Update average policy πt to include bti

version, XFP, requires game-tree traversals to compute the
best responses and specific update rules that account for the
reach probabilities to ensure that the updates are equivalent to
the classical algorithm, as described in [Heinrich et al., 2015,
Section 3]. Fictitious play converges to a Nash equilibrium
asymptotically in two-player zero-sum games. Sample-based
approximations to the best response step have also been devel-
oped [Heinrich et al., 2015] as well as function approximation
methods to both steps [Heinrich and Silver, 2016]. Both steps
have also been generalized to other best response algorithms
and meta-strategy combinations [Lanctot et al., 2017].

2.2 Counterfactual Regret Minimization (CFR)
CFR decomposes the full regret computation over the tree
into per information-state regret tables and updates [Zinkevich
et al., 2008]. Each iteration traverses the tree to compute
the local values and regrets, updating cumulative regret and
average policy tables, using a local regret minimizer to derive
the current policies at each information state.

The quantities of interest are counterfactual values, which
are similar to Q-values, but differ in that they weigh
only the opponent’s reach probabilities, and are not nor-
malized. Formally, let η−i,π(h) be only the opponents’
contributions to the probability of reaching h under π.
Then, similarly to equation 2, we define counterfactual val-
ues: qci,π(s, a) =

∑
h∈s η−i,π(h)qi,π(h, a), and vci,π(s) =∑

a∈Ai πi(s, a)qci,π(s, a). On each iteration k, with a joint
policy πk, CFR computes a counterfactual regret r(s, a) =
qci,πk(s, a)− vci,πk(s) for all information states s, and a new
policy from the cumulative regrets of (s, a) over the iter-
ations using regret-matching [Hart and Mas-Colell, 2000].
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The average policies converge to an ε-Nash equilibrium in
O(|Si|2|Ai|/ε2) iterations.

CFR Versus a Best Response Oracle (CFR-BR)
Instead of both players employing CFR (CFR-vs-CFR), each
player can use CFR versus their worst-case (best response)
opponent, i.e. simultaneously running CFR-vs-BR and BR-
vs-CFR. This is the main idea behind counterfactual regret
minimization against a best response (CFR-BR) algorithm [Jo-
hanson et al., 2012]. The combined average policies of the
CFR players is also guaranteed to converge to an ε-Nash equi-
librium. In fact, the current strategies also converge with high
probability. Our convergence analyses are based on CFR-BR,
showing that a policy gradient versus a best responder also
converges to an ε-Nash equilibrium.

2.3 Policy Gradients in Games
We consider policies πθ = (πi,θi)i each policy are parameter-
ized by a vector of parameter (θi)i = θ. Using the likelihood
ratio method, the gradient of vi,πθ with respect to the vector
of parameters θi is:

∇θivi,πθ =
∑
s∈Si

(∑
h∈s

ηπ(h)

)∑
a

∇θiπi,θi(s, a)qi,πθ (s, a)

(3)

This result can be seen as an extension of the policy gradi-
ent Theorem [Sutton et al., 2000; Glynn and L’ecuyer, 1995;
Williams, 1992; Baxter and Bartlett, 2001] to imperfect infor-
mation games and has been used under several forms: for a
detailed derivation, see [Srinivasan et al., 2018, Appendix D].

The critic (qi,πθ ) can be estimated in many ways (Monte
Carlo Return [Williams, 1992] or using a critic for instance
in [Srinivasan et al., 2018] in the context of games. Then:

θi ← θi + α
K∑
l=0

1i=τ(sl)

∑
a

∇θiπi,θi(sl, a)q̂i,πθ (sl, a),

where α is the learning rate used by the algorithm and
q̂i,πθ (sl, a) is the estimation of the return used.

3 Exploitability Descent
Exploitability Descent (ED) follows the basic form of the clas-
sic convex-concave optimization problem for solving matrix
games [Gale et al., 1951; Boyd and Vandenberghe, 2004].
Conceptually, the algorithm is uncomplicated and shares the
outline of fictitious play: on each iteration, there are two steps
that occur for each player. The first step is identical to ficti-
tious play: compute the best response to each player’s policy.
The second step then performs gradient ascent on the policy
to increase each player’s utility against the respective best re-
sponder (aiming to decrease each player’s exploitability). The
change in the second step is important for two reasons. First, it
leads to a convergence of the policies that are being optimized
without having to compute an explicit average policy, which
is complex in the sequential setting. Secondly, the policies
can now be easily parameterized (i.e. using e.g. deep neural

Algorithm 2: Exploitability Descent (ED)

input :π0 — initial joint policy
1 for t ∈ {1, 2, · · · } do
2 for i ∈ {1, · · · , n} do
3 Compute a best response bti(π

t−1
−i )

4 for i ∈ {1, · · · , n}, s ∈ Si do
5 Define bt−i = {btj}j 6=i
6 Let qb(s) = VALUESVSBRS(πt−1

i (s), bt−i)

7 πti(s) = GRADASCENT(πt−1
i (s), αt,qb(s))

networks) and trained using policy gradient ascent without
storing a large buffer of previous data.

The general algorithm is outlined in Algorithm 2, where αt
the learning rate on iteration t. Two steps (lines 6 and 7) are
intentionally unspecified: we will show properties for two spe-
cific instantiations of this general ED algorithm. The quantity
qb refers to a set of expected values for player i = τ(s), one
for each action at s using πt−1

i against a set of individual best
responses. The GRADIENTASCENT update step unspecified
for now as we will describe several forms, but the main idea
is to increase/decrease the probability of higher/lower utility
actions via the gradients of the value functions, and project
back to the space of policies.

3.1 Tabular ED with q-Values and `2 Projection
For a vector of |A| real numbers θs, define the simplex as
∆s = {θs,a | θs ≥ 0,

∑
a θs,a = 1}, and the `2 projection as

Π`2(θs) = argminθ′s∈∆s
||θ′s − θs||2.

Let πθ be a joint policy parameterized by θ, and πθi refer
to the portion of player i’s parameters (i.e. in tabular form
{θs | τ(s) = i}). Here each parameter is a probability of
an action at a particular state: θs,a = πθ(s, a). We refer to
TabularED(q, `2) as an instance of exploitability descent with

qb(s) = {qi,(πt−1
θ ,bt−i)

(s, a)}a∈A, (4)

and the policy gradient ascent update defined to be

θts = Π`2

(
θt−1
s + αt〈∇θsπt−1

θ (s),qb(s)〉
)

= Π`2

(
θt−1
s + αtqb(s)

)
, (5)

where the Jacobian∇θsπt−1
θ (s) is an identity matrix because

each parameter θs,a corresponds directly to the probability
πθ(s, a), and 〈·, ·〉 is the usual matrix inner product.

3.2 Tabular ED with Counterfactual Values and
Softmax Transfer Function

For some vector of real numbers, θs, define softmax(θs) =
{Πsm(θs)}a = {exp(θs,a)/

∑
a′ exp(θs,a′)}a. Re-using the

tabular policy notation from the previous section, we now
define a different instance of exploitability descent. We re-
fer to TabularED(qc, softmax) as the algorithm that specifies
πθ(s) = Πsm(θs),

qb(s) = {qci,π((πt−1
θ , bt−i), s, a)}a∈A, (6)

and the policy parameter update as

θts = θt−1
s + αt〈∇θsπt−1

θ (s),qb(s)〉, (7)

where ∇θsπt−1
θ (s) represents the Jacobian of softmax.
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3.3 Convergence Analyses
We now analyze the convergence guarantees of ED. We give
results for two cases: first, in cyclical perfect information
games and Markov games, and secondly imperfect information
games. All the proofs are found in the Appendix ?? of the
technical report version of the paper [Lockhart et al., 2019].

Cyclical Perfect Information Games and Markov Games
The following result extends the policy gradient theorem [Sut-
ton et al., 2000; Glynn and L’ecuyer, 1995; Williams, 1992;
Baxter and Bartlett, 2001] to the zero-sum two-player case.
It proves that a generalized gradient of the worst-case value
function can be estimated from experience as in the single
player case.
Theorem 1 (Policy Gradient in the Worst Case). The gradient
of policy πθi ’s value, vi,(πθi ,b), against a best response, β .

=

b−i(πθi) ∈ BR(πθi) is a generalized gradient (see [Clarke,
1975]) of πθi ’s worst-case value function,

∇θivi,(πθi ,b−i(πθi )) ∈ ∂min
π−i

vi,(πθi ,π−i).

All of the proofs are found in Appendix ?? of the technical
report version of the paper [Lockhart et al., 2019].

This theorem is a natural extension of the policy gradient
theorem to the zero-sum two-player case. As in policy gra-
dient, this process is only guaranteed to converge to a local
maximum of the worst case value minπ−i vi,(πθi ,π−i) of the
game but not necessarily to an equilibrium of the game. An
equilibrium of the game is reached when the two following
conditions are met simultaneously: (1) if the policy is tabular
and (2) if all states are visited with at least some probability
for all policies. This statement is proven in Appendix ??.

The method is called exploitability descent because policy
gradient in the worst case minimizes exploitability. In a two-
player, zero-sum game, if both players independently run ED,
NASHCONV is locally minimized.
Lemma 1. In the two-player zero-sum case, simultaneous pol-
icy gradient in the worst case locally minimizes NASHCONV.

Imperfect Information Games
We now examine convergence guarantees in the imperfect
information setting. There have two main techniques used
to solve adversarial games in this case: the first is to rely on
the sequence-form representation of policies which makes the
optimization problem convex [Koller et al., 1994; Hoda et al.,
2007]. The second is to weight the values by the appropriate
reach probabilities, and employ local optimizers [Zinkevich et
al., 2008; Johanson et al., 2012]. Both take into account the
probability of reaching information states, but the latter allows
a convenient tabular policy representation.

We prove finite time exploitability bounds for TabularED(q,
`2), and we relate TabularED(qc, softmax) to a similar algo-
rithm that also has finite time bounds.

The convergence analysis is built upon two previous results:
the first is CFR-BR [Johanson et al., 2012]. The second is a
very recent result that relates policy gradient optimization in
imperfect information games to CFR [Srinivasan et al., 2018].
The result here is also closely related to the optimization
against a worst-case opponent [Waugh and Bagnell, 2014,

Theorem 4], except our policies are expressed in tabular
(i.e. behavioral) form rather than the sequence form.

Case: TabularED(q, `2). Recall that the parameters θ =
{θs,a}s∈S,a∈A correspond to the tabular policy. For conve-
nience, let θs = {θs,a}a∈A.

We now present the main theorem, which states that if both
players optimize their policies using TabularED(q, `2), it will
generate policies with decreasing regret, which combined form
an approximate Nash equilibrium.

Theorem 2. Let TabularED(q, `2) be described as in Sec-
tion 3.1 using tabular policies and the update rule in Def-
inition ??. In a two-player zero-sum game, if each player
updates their policy simultaneously using TabularED(q, `2),
if ∀s, a ∈ S × A : θs,a > 0 and αt = t−

1
2 , then for each

player i: after T iterations, a policy π∗i ∈ {π1
i , · · · ,πTi } will

have been generated such that π∗i is i’s part of a 2ε
T -Nash

equilibrium, where ε = |Si|
(√

T + (
√
T − 1

2 )|Ai|(∆ui)
2
)

,

and ∆u = maxz,z′∈Z(ui(z)− ui(z′)).

ED is computing best responses each round already, so it is
easy to track the best iterate: it will simply be the one with the
highest expected value versus the opponent’s best response.

The proof can also be applied to the original CFR-BR theo-
rem, so we now present an improved guarantee, whereas the
original CFR-BR theorem made a probabilistic guarantee.

Corollary 1. (Improved [Johanson et al., 2012, Theorem 4]) If
player i plays T iterations of CFR-BR, then it will have gener-
ated a π∗i ∈ {π1,π2, · · · ,πT }, where π∗i is a 2ε-equilibrium,
where ε is defined as in [Johanson et al., 2012, Theorem 3].

The best iterate can be tracked in the same way as ED, and
the convergence is guaranteed.

Remark 1. When using q-values, the values are normal-
ized by a quantity, B−i(π, s), that depends on the opponents’
policies [Srinivasan et al., 2018, Section 3.2]. The conver-
gence guarantee of TabularED(q, `2) relies on [Srinivasan
et al., 2018, Theorem 2], whose proof includes a division by
B−i(π, s) [Srinivasan et al., 2018, Appendix E.2]. Therefore,
the regret bound is undefined when B−i(π, s) = 0, which can
happen when an opponent no longer plays to reach s.

Case: TabularED(qc, `2). Instead of using q-values, we
can implement ED with counterfactual values. In this case,
TabularED with the `2 projection becomes CFR-BR(GIGA),
which then avoids the issued discussed in Remark 1.

Theorem 3. Let TabularED(qc, `2) be described as in Sec-
tion 3.1 using tabular policies and the following update rule:

πti(s) = Π`2

(
πt−1
i (s) + αtqc,b(s)

)
.

Then, Theorem 2 also holds for TabularED(qc, `2).

Case: TabularED(qc, softmax) We now relate TabularED
with counterfactual values and softmax policies closely to an
algorithm with known finite time convergence bounds. For
details, see Appendix ??.
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TabularED(qc, softmax) is still a policy gradient algorithm:
it differentiates the policy (i.e. softmax function) with respect
to its parameters, and updates in the direction of higher value.
With two subtle changes to the overall process, we can show
that the algorithm would become CFR-BR using hedge [Fre-
und and Schapire, 1997] as a local regret minimizer. CFR with
hedge is known to have a better bound, but has typically not
performed as well as regret matching in practice, though it has
been shown to work better when combined with pruning based
on dynamic probability thresholding [Brown et al., 2017].

Instead of policy gradient, one can use a softmax transfer
function over the the sum of action values (or regrets) over
time, which are the gradients of the value function with respect
to the policy. Accumulating the gradients in this way, the algo-
rithm can be recognized as Mirror Descent [Nemirovsky and
Yudin, 1983], which also coincides with hedge given the soft-
max transfer [Beck and Teboulle, 2003]. When using the coun-
terfactual values, ED then turns into CFR-BR(hedge), which
converges for the same reasons as CFR-BR(regret-matching).

We do not have a finite time bound of the exploitability of
TabularED(qc, softmax) as we do for the same algorithm with
an `2 projection or CFR-BR(hedge). But since TabularED(qc,
softmax) is a policy gradient algorithm, its policy will be
adjusted toward a local optimum upon each update and will
converge at that point when the gradient is zero. We use this
algorithm because the policy gradient formulation allows for
easily-applicable general function approximation.

4 Experimental Results

We now present our experimental results. We start by com-
paring empirical convergence rates to XFP and CFR in the
tabular setting, following by convergence behavior when train-
ing neural network functions to approximate the policy.

In our initial experiments, we found that using q-values led
to plateaus in convergence in some cases, possibly due to nu-
merical instability caused by the problem outlined in Remark 1.
Therefore, we present results only using TabularED(qc, soft-
max), which for simplicity we refer to as TabularED for the
remainder of this section. We also found that the algorithm
converged faster with slightly higher learning rates than the
ones suggested by Section 3.3.

4.1 Experiment Domains

Our experiments are run across four different imperfect infor-
mation games. We provide very brief descriptions here; see
Appendix ?? as well as [Kuhn, 1950; Southey et al., 2005]
and [Lanctot, 2013, Chapter 3] for more detail.

Kuhn poker is a simplified poker game first proposed by
Harold Kuhn [Kuhn, 1950] Leduc poker is significantly larger
game with two rounds and a 6-card deck in two suits, e.g.
{JS,QS,KS, JH,QH,KH}. Liar’s Dice(1,1) is dice game where
each player gets a single private die, rolled at the start of the
game, and players proceed to bid on the outcomes of all dice in
the game. Goofspiel is a card game where players try to obtain
point cards by bidding simultaneously. We use an imperfect
information variant where bid cards are unrevealed.

4.2 Convergence Results
We now present empirical convergence rates to ε-Nash equi-
libria. The main results are depicted in Figure 1.

Figure 1: Extensive-form fictitious play (XFP), CFR, tabular and
neural-net ED. The y-axis is NASHCONV defined in Section 2, and
the x-axis is number of iterations, both in log-scale.

For the neural network experiments, we use a single policy
network for both players, which takes as input the current state
of the game and whose output is a softmax distribution over
the actions of the game. The state of the game is represented
in a game-dependent fashion as a fixed-size vector of between
11 and 52 binary bits, encoding public information, private
information, and the game history.

The neural network consists of a number of fully-connected
hidden layers, each with the same number of units and with
rectified linear activation functions after each layer. A linear
output layer maps from the final hidden layer to a value per ac-
tion. The values for the legal actions are selected and mapped
to a policy using the softmax function.

At each step, we evaluate the policy for every state of the
game, compute a best response to it, and evaluate each ac-
tion against the best response. We then perform a single
gradient descent step on the loss function: −

∑
s πi(s) ·(

qb(s)−B(s)
)

+wr
1
n

∑
i θ

2
i , where the final term is a regu-

larization for all the neural network weights, and the baseline
B(s) is a computed constant (i.e. it does not contribute to
the gradient calculation) with B(s) = πi(s) · qb(s). We per-
formed a sweep over the number of hidden layers (from 1 to 5),
the number of hidden units (64, 128 or 256), the regularization
weight (10−7, 10−6, 10−5, 10−4), and the initial learning rate
(powers of 2). The plotted results show the best values from
this sweep for each game.
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4.3 Discussion
There are several interesting observations to make about the
results. First, the convergence of the neural network policies
is more erratic than the tabular counterparts. However, in two
games the neural network policies have learned more accurate
approximate equilibria than any of the tabular algorithms for
the same number of iterations. The network could be general-
izing across the state space (discovering patterns) in a way that
is not possible in the tabular case, despite raw input features.

Although Tabular ED and XFP have roughly the same con-
vergence rate, the respective function approximation versions
have an order of magnitude difference in speed, with Neural
ED reaching an exploitability of 0.08 in Leduc Poker after 105

iterations, a level which NFSP reaches after approximately
106 iterations [Heinrich and Silver, 2016]. Neural ED and
NFSP are not directly comparable as NFSP is computing an
approximate equilibrium using sampling and RL while ED
uses true best response. However, NFSP uses a reservoir buffer
dataset of 2 million entries, whereas this is not required in ED.

5 Conclusion
We introduce Exploitability Descent (ED) that optimizes its
policy directly against worst-case opponents. In cyclical per-
fect information and Markov games, we prove that ED policies
converge to strong policies that are unexploitable in the tab-
ular case. In imperfect information games, we also present
finite time exploitability bounds for tabular policies. While
the empirical convergence rates using tabular policies are com-
parable to previous algorithms, the policies themselves prov-
ably converge. So, unlike XFP and CFR, there is no need to
compute the average policy. Neural network function approx-
imation is applicable via direct policy gradient ascent, also
avoiding domain-specific abstractions, or the need to store
large replay buffers of past experience, as in neural fictitious
self-play [Heinrich and Silver, 2016], or a set of past networks,
as in PSRO [Lanctot et al., 2017].

In some of our experiments, neural networks learned lower-
exploitability policies than the tabular counterparts, which
could be an indication of strong generalization potential by
recognizing similar patterns across states. There are interesting
directions for future work: using approximate best responses
and sampling trajectories for the policy optimization in larger
games where enumerating the trajectories is not feasible.
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