
DatalogMTL: Computational Complexity and Expressive Power

Przemysław A. Wałęga1,2 , Bernardo Cuenca Grau1 , Mark Kaminski1 and Egor V. Kostylev1

1Department of Computer Science, University of Oxford, UK
2Institute of Philosophy, University of Warsaw, Poland

{przemyslaw.walega, bernardo.cuenca.grau, mark.kaminski, egor.kostylev}@cs.ox.ac.uk

Abstract
We study the complexity and expressive power
of DatalogMTL—a knowledge representation lan-
guage that extends Datalog with operators from
metric temporal logic (MTL) and which has found
applications in ontology-based data access and
stream reasoning. We establish tight PSpace data
complexity bounds and also show that Data-
logMTL extended with negation on input predi-
cates can express all queries in PSpace; this im-
plies that MTL operators add significant expres-
sive power to Datalog. Furthermore, we provide
tight combined complexity bounds for the forward-
propagating fragment of DatalogMTL, which was
proposed in the context of stream reasoning, and
show that it is possible to express all PSpace queries
in the fragment extended with the falsum predicate.

1 Introduction
DatalogMTL is an extension of Datalog with metric tempo-
ral operators that has been studied in the context of querying
temporal data [Brandt et al., 2017; Brandt et al., 2018] and
reasoning over data streams [Wałęga et al., 2019].

DatalogMTL allows for MTL expressions in rules such as
�[k1,k2]ϕ and x[k1,k2]ϕ, with k1 and k2 rational numbers,
which hold at time t if ϕ holds at each and some, respec-
tively, moment in the time interval [t−k2, t−k1]. Rules with
such expressions can be used to naturally capture interesting
events in temporal data. For instance, an analyst monitoring
equipment data might be interested in flagging risky overheat-
ing events—that is, complex events where the temperature of
a piece of equipment (1) has reached 60 Celsius, (2) has con-
tinuously exceeded 40 Celsius for a period of 10 seconds, or
(3) has continuously exceeded 40 Celsius for two consecutive
periods of 5 seconds with at most 2 seconds in-between. Such
events are naturally captured by DatalogMTL rules (1)–(3),
where numbers represent seconds:

Overheat(x)← x[0,0]TempAbove60(x), (1)

Overheat(x)← �[0,10]TempAbove40(x), (2)

Overheat(x)← �[0,5]TempAbove40(x) ∧
x[5,7] �[0,5]TempAbove40(x). (3)

Fact entailment in DatalogMTL has been recently studied
by Brandt et al. (2018), who showed that it is EXPSPACE-
complete in combined and P-hard in data complexity, as-
suming binary encoding of numbers. Brandt et al. (2018)
also studied the non-recursive fragment of DatalogMTL and
showed that fact entailment becomes PSPACE-complete and
in P, respectively. Wałęga et al. (2019) defined forward-
propagating DatalogMTL, which disallows punctual inter-
vals of the form [t, t] and imposes further syntactic restric-
tions to ensure that rule application cannot propagate de-
rived information to the past; they also showed that fact
entailment for this fragment is PSPACE-complete in data
complexity assuming binary encoding of numbers and P-
complete assuming unary encoding. The results in [Brandt et
al., 2018] and [Wałęga et al., 2019] place the data complexity
of DatalogMTL in-between PSPACE and EXPSPACE; to the
best of our knowledge, however, the exact data complexity of
DatalogMTL has remained an open problem until now.

In this paper, we bridge this gap and show that the data
complexity of fact entailment in DatalogMTL is in PSPACE
(and hence PSPACE-complete). Similarly to [Brandt et al.,
2018], we assume binary encoding of numbers, and consider
rules equipped with the MTL operators x%, �%, and S%,
which refer to the past, and |%, �%, and U%, which refer to
the future. To obtain the upper bound, we define in Section 3
two non-deterministic generalised Büchi automata relative to
a DatalogMTL program and a temporal dataset, such that the
languages of these automata are both non-empty if and only if
the program and the dataset admit a common model. We then
show that the emptyness condition for such automata can be
checked using only polynomial space.

In Section 4 we revisit fact entailment in the forward-
propagating fragment of DatalogMTL. Our results in Sec-
tion 3 immediately extend the PSPACE upper bound in data
complexity by Wałęga et al. (2019) to programs equipped
with the falsum predicate ⊥ and punctual intervals of the
form [t, t]. Concerning combined complexity, we establish
a novel EXPSPACE lower bound applicable to programs
equipped with ⊥ and an EXPTIME upper bound (matching
the complexity of plain Datalog) for programs without ⊥.

Finally, we discuss the expressive power of DatalogMTL
in the sense of descriptive complexity [Immerman, 1999].
We show that, under standard minor modifications to the lan-
guage [Dantsin et al., 2001], the forward-propagating frag-

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1886

M, t |= > for all t ∈ Q
M, t 6|= ⊥ for all t ∈ Q
M, t |= x%A if M, s |= A for some s with t− s ∈ %
M, t |= |%A if M, s |= A for some s with s− t ∈ %
M, t |= �%A if M, s |= A for all s with t− s ∈ %
M, t |= �%A if M, s |= A for all s with s− t ∈ %
M, t |= AS%A′ if M, s |= A′ for some s with t− s ∈ %

and M, r |= A for all r ∈ (s, t)

M, t |= AU%A′ if M, s |= A′ for some s with s− t ∈ %
and M, r |= A for all r ∈ (t, s)

Table 1: Semantics of DatalogMTL ground literals

ment equipped with ⊥ captures (i.e., can express all queries
in) PSPACE. Together with the data complexity results in Sec-
tion 3, this implies that DatalogMTL also captures PSPACE.

2 Preliminaries
Intervals. We consider intervals over Q, denoted by 〈x, y〉,
where x, y ∈ Q ∪ {−∞,+∞}, 〈 is [or (, 〉 is] or), and

〈x, y〉 = {t ∈ Q | x ≤ t ≤ y and
t 6= x if 〈 is (, whereas t 6= y if 〉 is) }.

The left and right endpoints of an interval % are denoted by
%− and %+, respectively. An interval %with %− ≥ 0 is positive
and an interval of the form [t, t] is punctual. The length of an
interval % is denoted by |%|. For non-empty intervals %1, %2,
and a non-empty positive interval %3 we consider operations
%1 ∪ %2, %1 ∩ %2, %c1, %1 − %3, %1 	 %3, %1 + %3, and %1 ⊕ %3,
the result of each of which is an interval; the first two are
the usual union and intersection and the others are defined in
Table 2 (note that 	 and ⊕ can result in an empty interval,
e.g., [0, 1] 	 [0, 2] = [0,−1]). We assume that each t ∈ Q
is represented by an integer numerator and a positive integer
denominator, both encoded in binary.

Syntax of DatalogMTL. Assume a function-free first-
order vocabulary with constants and predicates with non-
negative integer arities. An atom is of the form P (τ) where
P is a predicate and τ is a matching arity tuple of constants
and variables. A literal is an expression from the following
grammar, for α an atom and % a non-empty positive interval:

A:=α | > | ⊥ | x%A | |%A | �%A | �%A | AS%A | AU%A.

A (DatalogMTL) rule is an expression of the form:

B ← A1 ∧ · · · ∧ An, (4)

where n ≥ 0, each Ai is a literal, and B is a literal
not mentioning operators x, |, S , and U . A rule of the
form (4) is safe if each variable in B occurs in some Ai. A
(DatalogMTL) program is a finite set of safe rules [Brandt et
al., 2018]. The greatest common divisor gcd(Π) of a program
Π is the greatest rational number which divides all rational

numbers which are endpoints of intervals in Π to integer val-
ues (if Π has no numbers, we take gcd(Π) = 1 for definite-
ness). An expression e (e.g., an atom, literal, or rule) is ground
if it mentions no variables. An assignment ν of variables to
constants is a grounding of e if eν is ground. A (temporal)
fact is an expression of the form α@% with α a ground atom
and % a non-empty interval; a generalised fact is of the form
A@%, where A is a ground literal and % a non-empty inter-
val. A dataset is a finite set of facts. For a program Π and a
dataset D we denote with glit(Π,D) the set of ground literals
consisting of>, all groundings of literals in Π by constants in
Π and D, and literals �[0,+∞)α, �(0,+∞)α, �[0,+∞)α, and
�(0,+∞)α, for α an atom in D.

Semantics of DatalogMTL. An interpretation M speci-
fies, for each ground atom α and each time point t ∈ Q,
whether α is true at t, in which case we write M, t |= α. This
notion extends to ground literals different from atoms as in
Table 1. Interpretation M is a model of a rule of the form (4)
if, for each grounding ν and each t ∈ Q, we have M, t |= Bν
whenever M, t |= Aiν for every i = 1, . . . , n. Interpretation
M is a model of a program Π, written M |= Π, if M is a
model of all rules in Π. Interpretation M is a model of a gen-
eralised fact A@% if M, t |= A for all t ∈ %. Interpretation
M is a model of a possibly infinite set E of generalised facts
(e.g., a dataset), written M |= E , if M is a model of all the
elements of E . Note that each set of facts has the unique min-
imal model (i.e., a model assigning true as little as possible).
A program Π and a possibly infinite set of generalised facts
E are consistent if Π and E have a common model. A pro-
gram Π and a set E entail a set of generalised facts E ′, written
(Π, E) |= E ′, if each model of Π and E is a model of E ′. If
E ′ is a singleton {A@%}, then we denote it simply by A@%.
Brandt et al. (2018) showed that fact entailment and consis-
tency checking in DatalogMTL polynomially reduce to the
complements of each other. Hence, in what follows we mostly
concentrate on consistency and consider combined complex-
ity of this problem when both program and dataset form the
input, and data complexity when the program is fixed.

Normal Form. Similarly to Brandt et al. (2018), we usually
assume that programs are in a normal form where there is no
nesting of metric operators and where the form of intervals is
restricted. For convenience in the automata construction later
on, however, we refine their definition by further restricting
the form of unbounded intervals. In particular, a program Π
is in normal form if it contains only rules of the forms:

B ← α1 ∧ · · · ∧ αn, B ← �%α, B ← AS%α,
B ← �%α, B ← AU%α,

where each of α, α1, . . . , αn is an atom,A is> or an atom,B
is ⊥ or an atom, and % is a non-empty positive interval such
that either it is bounded or it satisfies %− = 0.

Proposition 1. Each program Π can be transformed in poly-
nomial time into a program Π′ in normal form such that
(Π,D) |= α@% if and only if (Π′,D) |= α@% for each dataset
D and each fact α@% over the vocabulary of Π.

In what follows we assume that all programs are normal.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1887

operation left endpoint right endpoint left-open iff left endpoint is −∞ or right-open iff right endpoint is +∞ or

%c1 %−1 %+
1 never never

%1 − %2 %−1 − %
+
2 %+

1 − %
−
2 %1 is left-open or %2 is right-open %1 is right-open or %2 is left-open

%1 	 %2 %−1 − %
−
2 %+

1 − %
+
2 %1 is left-open and %2 is left-closed %1 is right-open and %2 is right-closed

%1 + %2 %−1 + %−2 %+
1 + %+

2 %1 or %2 is left-open %1 or %2 is right-open
%1 ⊕ %2 %−1 + %+

2 %+
1 + %−2 %1 is left-open and %2 is right-closed %1 is right-open and %2 is left-closed

Table 2: Operations on intervals, where we assume that −∞+ x = −∞ and +∞+ x = +∞ for any value x (so + is not commutative)

Canonical Interpretations. Consistency and fact entail-
ment can be checked using the canonical interpretation of a
program and a dataset, as defined next [Brandt et al., 2018].
The immediate consequence operator TΠ of a program Π ap-
plied to a set E of generalised facts is the minimal set TΠ(E)
containing E and satisfying the following conditions, where
Π′ is the set of (results of) all groundings of rules in Π, and
E ′ extends E with >@% for each non-empty interval %:
if B ← α1 ∧ · · · ∧ αn is in Π′, αi@%i ∈ E for i = 1, . . . , n,

and % =
⋂n
i=1 %i is non-empty, then B@% ∈ TΠ(E);

if B ← �%2α is in Π′, α@%1 ∈ E , and % = %1 ⊕ %2 is
non-empty, then B@% ∈ TΠ(E);

if B ← �%2α is in Π′, α@%1 ∈ E , and % = %1 	 %2 is
non-empty, then B@% ∈ TΠ(E);

ifB ← A1S%3A2 is in Π′,Ai@%i ∈ E ′ for i = 1, 2, and % =
((%c1∩%2)+%3)∩%c1 is non-empty, thenB@% ∈ TΠ(E);

ifB ← A1U%3A2 is in Π′,Ai@%i ∈ E ′ for i = 1, 2, and % =
((%c1∩%2)−%3)∩%c1 is non-empty, thenB@% ∈ TΠ(E);

if α@%1 ∈ E , α@%2 ∈ E , and % = %1 ∪ %2 is non-empty,
then α@% ∈ TΠ(E).

The canonical interpretation Π(D) of Π andD is the minimal
model of all facts in Tω1

Π (D), with ω1 the first uncountable
ordinal, which is defined by application of TΠ as follows, for
κ a successor ordinal and γ a limit ordinal:

T 0
Π(D) =D, T κ+1

Π (D) =TΠ(TκΠ(D)), T γΠ(D) =
⋃
κ<γ

TκΠ(D).

Brandt et al. (2018) showed that if a program Π and a dataset
D are consistent, then Π(D) is their common model, and
Π(D) is a model of Π and D if and only if ⊥@% /∈ Tω1

Π (D)
for all %; moreover, for every fact α@%, (Π,D) |= α@% if and
only if Π(D) |= α@% or ⊥@%′ ∈ Tω1

Π (D) for some %′.

3 Data Complexity of DatalogMTL
In this section we establish our main result, namely that
checking consistency and fact entailment in DatalogMTL is
in PSPACE in data complexity. In the remainder of this sec-
tion, we fix a program Π in normal form and a dataset D.

In Section 3.1 we show that the canonical interpretation
Π(D) is structured according to regularly distributed consec-
utive intervals such that all points within an interval satisfy
the same ground atoms. We refer to such intervals as ruler-
intervals and to the set of their endpoints as the ruler. We also
refer to any interpretation satisfying the same ground atoms
on each ruler-interval as a ruler-interpretation.

In Section 3.2 we define two (infinite) generalised Büchi
automata and show that their languages are both non-empty if
and only if Π andD are consistent. Each state of the automata
is a window over an interval, which corresponds to the projec-
tion of a ruler-interpretation into this interval. Each symbol in
the alphabet is a set of ground literals in glit(Π,D). The ini-
tial states of both automata represent a window capturing the
input dataset. Transitions between windows W1 and W2 are
such thatW2 is the result of ‘sliding’W1 one step in the ruler.
The sets of final states ensure that the ruler-interpretation ob-
tained from the facts in the states of an accepting run satisfy
also the generalised facts in those states.

In Section 3.3 we show that non-emptyness of these au-
tomata can be checked using only polynomial space. This is
non-trivial since the initial state can be of exponential size
in the size of the dataset, and the number of states is un-
bounded. We address the first difficulty by guessing the ini-
tial state step-by-step. To address the second difficulty, we de-
fine equivalent automata with only exponentially many states,
each of which is of polynomial size; these automata can be
run ‘on-the-fly’ using only polynomial space.

3.1 Structure of the Canonical Interpretation
We next define the notions of a ruler, a ruler-interval, and a
ruler-interpretation for Π and D. Crucially, the time points in
the ruler are regularly distributed and depend only on the time
points in D and the greatest common divisor of Π.
Definition 2. The ruler (for Π andD) is the set of time points
of the form x+n ·gcd(Π) for x a rational inD (or 0 ifD = ∅)
and n an integer. A ruler-interval is either a punctual inter-
val over a time point on the ruler or an interval (t1, t2) with
t1, t2 consecutive time points on the ruler. A ruler-interval
%′ precedes or succeeds an interval % with endpoints on the
ruler if %′ ∩ % is empty, %′ ∪ % is a non-empty interval, and
(%′)+ = %− or (%′)− = %+, respectively. An interpretation
M is a ruler-interpretation if, for each ground atom α, we
have that M, t |= α implies M, t′ |= α for every time point t′
in the same ruler-interval as t.
Example 3. A fragment of the ruler and the corresponding
ruler-intervals for a program Πex with gcd(Πex) = 2.5 and a
dataset Dex = {α@[0, 0], β@[4.2, 4.2]} is depicted below.

−0.8 0 1.7 2.5 4.2 5Ruler:

Ruler-intervals:

Observe that the ruler contains all multiples of 2.5 as well
as all rationals of the form 4.2 + 2.5 · n; moreover, (4.2, 5)
succeeds [0, 4.2] but does not succeed [0, 4.2).

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1888

The following lemma shows that the canonical interpreta-
tion is a ruler-interpretation, and hence we can concentrate
only on ruler-interpretations when checking for consistency.

Lemma 4. Interpretation Π(D) is a ruler-interpretation.

Proof sketch. It suffices to show by induction on the con-
struction steps of Tω1

Π (D) that, for all α@% ∈ Tω1

Π (D), the
endpoints %− and %+ are on the ruler. The base step of the
induction trivially holds since T 0

Π(D) = D. For the inductive
step, we can show that if α@% is added by any of the rules in
the definition of the consequence operator TΠ (see Section 2),
then endpoints %− and %+ are of the required form.

3.2 Büchi Automata for Consistency Checking
We start this section with the definition of windows, which
play the role of states in the automata construction below.

Definition 5. Let % be an interval with endpoints on the ruler.
A window over % is a set W of generalised facts A@%′ with
A ∈ glit(Π,D) and ruler-intervals %′ ⊆ % for which there ex-
ists a ruler-interpretation M, called corresponding toW , such
that for all ruler-intervals %′ ⊆ % and A ∈ glit(Π,D) we have
M |= A@%′ if and only if A@%′ ∈W .

Intuitively, a window W over % provides a full description
of a ruler-interpretation projected into %; in particular, if M is
a ruler-interpretation corresponding to W , then M |= W .

Definition 6. A window W over an interval % satisfies Π
whenever, for each grounding B ← A1 ∧ · · · ∧ An of a rule
in Π and each ruler-interval %′ ⊆ %, we have B@%′ ∈ W if
B is an atom and Ai@%′ ∈ W for every i = 1, . . . , n, and
Ai@%

′ /∈W for some i = 1, . . . , n if B = ⊥.

The following definitions about windows will also be use-
ful. The length of a window over an interval % is the number of
ruler-intervals contained in % (note that the length of the win-
dow is always a natural number, contrary to the length of %).
We denote by `min the minimal length of a window over a
closed interval % with |%| = 2z for z the maximal rational in
Π. Note that, since z is a multiple of gcd(Π), the window over
[x, x+ 2z] has length `min for each rational x on the ruler.

A window W2 over an interval %2 follows a window W1

over an interval %1 if the following holds:
– W1 and W2 have the same length;
– %1 ∪ %2 = %′1 ∪ (%1 ∩ %2)∪ %′2 for the ruler-intervals %′1 and
%′2 preceding %2 and succeeding %1, respectively;

– A@% ∈ W1 if and only if A@% ∈ W2 for each ruler-
interval % ⊆ %1 ∩ %2.

Intuitively,W2 followsW1 over %1 ifW2 is obtained fromW1

by deleting all generalised facts over the first ruler-interval in
%1 and adding generalised facts over the ruler-interval suc-
ceeding %1. The next lemma establishes a useful closure prop-
erty of windows that follow one another.

Lemma 7. LetW1 andW2 be windows such thatW2 follows
W1. If W1 and W2 satisfy Π and are of length at least `min,
then W1 ∪W2 is a window satisfying Π.

We are ready to define the two automata that we use for
consistency checking. The automata are parametrised by a
window W , which determines the initial state.

Definition 8. For W a window of length ` satisfying Π, let
G←W be the generalised Büchi automaton (Q,Σ, δ,W,F) with
the following components:
– the states Q are all windows of length ` satisfying Π;
– the alphabet Σ is the powerset of glit(Π,D);
– the transition function δ is a partial function from Q×Σ to
Q such that δ(W1, σ) = W2 whenever W2 is followed by
W1 and W2 \W1 = {A@% | A ∈ σ};

– W is the initial state;
– accepting condition F (i.e., a set of sets of states) contains

{W ′ ∈ Q | �%α@%′ ∈W ′ or α@%′ /∈W ′} and

{W ′ ∈ Q | αS%β@%′ /∈W ′ or β@%′ ∈W ′}

for each �%α and each αS%β, respectively, in glit(Π,D)
with unbounded %, where %′ is any ruler-interval.

The automaton G→W is the same as G←W except that W2 fol-
lows W1 in the definition of δ, and � and S are used instead
of � and U , respectively, in F .

The automata accept an infinite Σ-word σ1σ2 . . . if there
is a sequence W1,W2, . . . of states, called an accepting run,
such that W1 = W , Wi+1 = δ(Wi, σi) for each i ≥ 1, and
the run has infinitely many states belonging to each set in F .

Note that both automata in Definition 8 have infinitely
many states; in the next section, we show that they are equiv-
alent to finite generalised Büchi automata. Also, observe that
the automata are essentially deterministic, except that certain
pairs of a state and alphabet symbol are lacking a transition.

It would be useful to have a generalisation of Lemma 7 to
an infinite number of windows. Although such a generalisa-
tion is not true in general, we next show that it holds for win-
dows along accepting runs of the automata. We define an in-
finite window as in Definition 5 except that % = (−∞,+∞);
all relevant notions transfer to infinite windows.

Lemma 9. IfW is a window of length at least `min satisfying
Π, then the union of all states in accepting runs of G←W and
of G→W is an infinite window satisfying Π.

Proof. LetW ∗ be the union of all states occurring in these ac-
cepting runs. Each state is a window satisfying Π, soW ∗ also
satisfies Π. Let M be the minimal model of the set of all facts
in W ∗. For each A ∈ glit(Π,D) with no unbounded interval
and for each ruler-interval % we have M |= A@% if and only
if A@% ∈ W ∗; otherwise we would have a state in the ac-
cepting run without a corresponding ruler-interpretation (i.e.,
a state that is not a window). Since accepting runs visit each
set in F infinitely often we can show that the above equiva-
lence also holds for A with an unbounded interval. Thus, M
corresponds to W ∗, and W ∗ is an infinite window.

We are ready to show that automata G←W and G→W can be
used to check whether Π and D are consistent. Let `D be the
length of a window over [−x − z, x + z] for x the maximal
absolute value of rationals in D and z the maximal rational
in Π. Intuitively, [−x− z, x+ z] is big enough to contain all
facts over bounded intervals from a dataset.

Theorem 10. Program Π and dataset D are consistent iff
there is a window W of length `D satisfying Π such that the
languages of both G←W and G→W are non-empty and W |= D.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1889

Proof sketch. If Π and D are consistent, then they are satis-
fied by Π(D), which is a ruler-interpretation by Lemma 4.
For x the maximal absolute value of rationals in D and z the
maximal rational in Π, the forward direction of the theorem is
witnessed by the window W over % = [−x− z, x+ z] such
that, for each ground literal A ∈ glit(Π,D) and ruler-interval
%′ ⊆ %, A@%′ ∈W if and only if Π(D) |= A@%′.

Conversely, if W satisfies the conditions, then G←W and
G→W have accepting runs. Let W ∗ be the union of all states
in accepting runs of the automata, and M the minimal model
of facts in W ∗. By the proof of Lemma 9, W ∗ is a window
satisfying Π, and M corresponds to W ∗. Since W |= D we
can show M |= D; so, M is a model of Π and D.

Although Theorem 10 suggests a consistency checking al-
gorithm, windows of length `D may contain an exponential
(in the size of a dataset) number of elements; moreover, the
number of states in the automata is unbounded. In the follow-
ing section we show how to overcome these difficulties.

3.3 Complexity of Consistency Checking
We start by showing that we can decide whether a set of gen-
eralised facts is a window by guessing a polynomial represen-
tation of a corresponding interpretation.
Lemma 11. Checking whether a finite set W of generalised
facts is a window for program Π and dataset D is in NP in
the size of (the representation of) D.

Proof sketch. If W is a window over %, then it has a corre-
sponding interpretation M (minimally) witnessing the gen-
eralised facts in W . Such M can be represented concisely
as a set of facts such that if α@%1 ∈ W then α@%1 ∈M,
if �%2α@%1 ∈ W then α@(%1 − %2) ∈ M, and if
�%2α@%1 ∈W then α@(%1 + %2) ∈ M. Moreover, for a
generalised fact in W with S or U we need to guess at most
two witnessing facts and add them to M. Importantly, for wit-
nesses outside [%− − z, %+ + z], for z the maximal rational
in Π, the exact ruler-intervals in which they hold are irrele-
vant and only their order on the timeline needs to be kept,
so the representation of M can be guessed in NP. Checking
whether M is an interpretation corresponding to W can be
clearly done in P.

As a result, checkingW |= D is in CONP for a windowW ,
since we can guess a representation of a ruler-interpretation
corresponding to W that does not satisfy D. Note also that
checking whether a window satisfies Π can be done in P.

A window W ′ over %′ is a prefix of W over % if %′ ⊆ %, the
first ruler-intervals contained in % and %′ are the same, and
W ′ coincides with W on %′; W ′ is a suffix of W if the same
holds when considering the last contained ruler-intervals.
Lemma 12. Let W be a window over interval % of length
` ≥ `min satisfying Π. Then, the prefix W ′ and the suffix W ′′
of W of length `min are windows satisfying Π such that the
languages of G←W and G←W ′ coincide, and the languages of
G→W and G→W ′′ coincide.

Proof sketch. Words accepted byG←W are clearly accepted by
G←W ′ . For the converse, let w by accepted by G←W ′ and let
W ∗ be the union of states in the run of G←W ′ on w. Then, as

in Lemma 9, we can show that the ruler-interpretation corre-
sponding toW ∗ is a model of Π, and it is possible to splitW ∗
into a sequence of windows of length ` that form an accepting
run of G←W on w. The case of W ′′ is symmetric.

We are ready to show our main result.

Theorem 13. Consistency checking and fact entailment in
DatalogMTL are PSPACE-complete in data complexity.

Proof sketch. The lower bound is inherited from the forward-
propagating fragment [Wałęga et al., 2019] (see also Sec-
tion 4). By Theorem 10, to check if Π and D are consistent
we can guess a set W of generalised facts and verify that W
is a window of length `D satisfying Π such that W |= D and
the languages of G←W and G→W are non-empty. Although W
may contain exponentially many elements, we can access it
by guessing fragments of length `min one-by-one. Then, by
Lemma 7, it suffices to check whether each such fragment is
a window satisfying Π; this can be done in NP by Lemma 11,
which also implies that W |= D is in CONP.

For the non-emptiness checks, by Lemma 12 it suffices to
verify, for the prefix W ′ and suffix W ′′ of W of length `min,
whether the languages of G←W ′ and G→W ′′ are non-empty. To
overcome the problem with unbounded number of states, we
obtain finite automata by merging states (i.e., windows) that
are equivalent modulo a shift of the intervals over which the
states are defined. Each of these finite automata is equivalent
to its infinite version and has exponential (in the size of D)
number of states. Hence we can check non-emptiness by the
standard ‘on-the-fly’ PSPACE procedure.

4 Forward-Propagating Fragments
In this section we revisit the forward-propagating fragment of
DatalogMTL proposed by Wałęga et al. (2019). In this frag-
ment, rules are syntactically restricted to allow for derivation
of facts into present and future time points, but precluding
propagation towards past (in fact, we consider a slight exten-
sion of the language of Wałęga et al., since we allow for ⊥).

Definition 14. A DatalogMTL rule of the form (4) is
forward-propagating if literal B does not mention �, and lit-
erals Ai do not mention |, �, and U . A program is forward-
propagating if so is each of its rules.

As follows from Theorem 13, fact entailment (and hence
consistency checking) for forward-propagating programs is in
PSPACE in data complexity. Moreover, Wałęga et al. (2019)
showed a matching lower bound for fact entailment that holds
even if⊥ and punctual intervals are disallowed (note that pro-
grams without ⊥ are always consistent).

Corollary 15. Fact entailment for forward-propagating pro-
grams is PSPACE-complete in data complexity and stays
PSPACE-hard if ⊥ and punctual intervals are disallowed.

Brandt et al. (2018) showed that fact entailment in the full
DatalogMTL language is EXPSPACE-complete in combined
complexity. The construction in their lower bound proof,
however, does not apply to forward-propagating programs
as it uses both past and future temporal operators. We next
show that the problem for forward-propagating DatalogMTL

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1890

is also EXPSPACE-hard in combined complexity (and hence
EXPSPACE-complete). Our proof, however, crucially relies
on the use of⊥ in rule heads; in fact, we can show that fact en-
tailment becomes EXPTIME-complete (and hence no harder
than for plain Datalog) for the language without ⊥.

Theorem 16. Fact entailment for forward-propagating pro-
grams is EXPSPACE-complete in combined complexity and
stays EXPSPACE-hard if punctual intervals are disallowed.
The problem is EXPTIME-complete if ⊥ is disallowed.

Proof sketch. The EXPSPACE lower bound is obtained by
reduction of the halting problem for Turing machines us-
ing exponential space. Our construction is a modification of
the PSPACE-hardness construction by Wałęga et al. (2019),
which reduces halting of polynomial-space bounded Turing
machines to fact entailment for fixed forward-propagating
programs without ⊥ in the heads. Since the program is no
longer fixed, we can use varying arity to encode binary rep-
resentations of the tape position numbers, and use ⊥ to de-
rive inconsistencies that correspond to input rejection on dou-
bly exponential steps of computation. The EXPTIME lower
bound for programs without ⊥ is a consequence of EXP-
TIME-hardness of fact entailment in plain Datalog; and the
EXPTIME upper bound is obtained by analysis of the algo-
rithm by Wałęga et al. (2019). Their algorithm for checking
fact entailment derives facts only up to time t in the checked
fact (given in binary). We can then show that the number of
time points at which the algorithm derives facts is exponential
in the value of t. In each of these time points at most expo-
nentially many facts can be derived, and the derivation of all
facts at a given time point is feasible in exponential time.

5 Expressive Power
We finally discuss the expressivity of (the adapted in an ap-
propriate way) DatalogMTL in the sense of descriptive com-
plexity [Immerman, 1999] and start with relevant definitions.

A logical language is a set of sentences that evalu-
ate on a finite set of ground atoms over input predicates
to either true or false; as usual, we also assume that the
input is ordered—that is, the set always contains atoms
first(c1), next(c1, c2), . . . , next(cn−1, cn), last(cn) for an
enumeration c1, . . . , cn of all constants in the set. Such a lan-
guage captures a complexity class C if evaluating every fixed
sentence in the language is in C, and for each problem in C
there is a sentence in the language that is true if and only
if its input encodes an instance of the problem. Under these
definitions, DatalogMTL and its fragments are not logical
languages, because atoms in their inputs have temporal la-
bels and their programs do not evaluate to Boolean values.
However, we can overcome these mismatches by adapting
DatalogMTL to a logical language DatalogMTLll as follows:

1. each Ai in a rule (4) may also be an atom over an input
predicate or the negation of such an atom;

2. B in a rule (4) may also be the special nullary atom
Goal, representing the positive answer.

Note that input predicates are not allowed in B and
in complex literals in Ai. The semantics is extended to
DatalogMTLll programs on ordered inputs (i.e., sets of

ground atoms over input predicates including the ordering
atoms) in the standard way [Dantsin et al., 2001], assuming
that the input atoms hold at time point 0. It is not difficult
to modify the PSPACE-completeness (i.e., both directions of
Corollary 15) proof to show the following theorem.
Theorem 17. DatalogMTLll and forward-propagating frag-
ment of DatalogMTLll capture PSPACE over ordered inputs.

6 Related Work
MTL is a prominent formalism for specifying and reasoning
over complex events in real-time systems. MTL is equipped
with two alternative semantics: pointwise and continuous,
where the latter is adopted in this paper. Under the pointwise
semantics, an interpretation is seen as a time-increasing se-
quence of pairs consisting of a time point and a set of propo-
sitional variables holding at that time point. In contrast, inter-
pretations under the continuous semantics are functions map-
ping each element of the (dense) temporal domain to a set of
propostional variables. Satisfiability and model checking of
unrestricted MTL formulas are undecidable under the contin-
uous semantics [Alur and Henzinger, 1993], but become de-
cidable (EXPSPACE-complete) if punctual intervals are disal-
lowed [Alur et al., 1996].

DatalogMTL is a Horn fragment of MTL that extends the
fundamental rule-based Datalog language [Abiteboul et al.,
1995; Dantsin et al., 2001]. It was first studied under the con-
tinuous semantics in [Brandt et al., 2017; Brandt et al., 2018].
The non-recursive and forward-propagating fragments were
studied in [Brandt et al., 2018] and [Wałęga et al., 2019] re-
spectively. Low complexity fragments under the alternative
pointwise semantics were investigated in [Kikot et al., 2018].

DatalogMTL has been proposed as a suitable alternative to
existing temporal languages for ontology-based data access
[Artale et al., 2017]. It has also found applications in the area
of stream reasoning [Wałęga et al., 2019], building on a long
tradition of applications of MTL model checking to monitor-
ing problems over data streams [Basin et al., 2018; Baldor
and Niu, 2012; Thati and Roşu, 2005; Doherty et al., 2009;
Ničković and Piterman, 2010; Ho et al., 2014].

7 Conclusions
In this paper we have closed the existing gaps in the com-
plexity of DatalogMTL and its forward-propagating fragment
under the continuous semantics.

We see several avenues for future work. First, it would
be interesting to investigate fragments of DatalogMTL with
tractable fact entailment—an important requirement for data-
intensive applications. Although Brandt et al. (2018) showed
that reasoning in the non-recursive fragment is in AC0, re-
cursion remains an important feature in many applications.
Second, it would be interesting to investigate the complexity
of DatalogMTL under the alternative point-based semantics.

Acknowledgments
Research supported by the SIRIUS Centre for Scalable Data
Access, the EPSRC projects DBOnto, MaSI3, and ED3, the
NCN grant 2016/23/N/HS1/02168, and the Foundation for
Polish Science (FNP).

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1891

References
[Abiteboul et al., 1995] Serge Abiteboul, Richard Hull, and

Victor Vianu. Foundations of Databases. Addison-Wesley,
1995.

[Alur and Henzinger, 1993] Rajeev Alur and Thomas A.
Henzinger. Real-time logics: Complexity and expressive-
ness. Inf. Comput., 104(1):35–77, 1993.

[Alur et al., 1996] Rajeev Alur, Tomás Feder, and Thomas A
Henzinger. The benefits of relaxing punctuality. J. ACM,
43(1):116–146, 1996.

[Artale et al., 2017] Alessandro Artale, Roman Kontchakov,
Alisa Kovtunova, Vladislav Ryzhikov, Frank Wolter, and
Michael Zakharyaschev. Ontology-mediated query an-
swering over temporal data: A survey (invited talk). In
LIPIcs-Leibniz International Proceedings in Informatics,
volume 90, 2017.

[Baldor and Niu, 2012] Kevin Baldor and Jianwei Niu.
Monitoring dense-time, continuous-semantics, metric
temporal logic. In RV, pages 245–259, 2012.

[Basin et al., 2018] David Basin, Felix Klaedtke, and Eugen
Zălinescu. Algorithms for monitoring real-time properties.
Acta Inform., 55(4):309–338, 2018.

[Brandt et al., 2017] Sebastian Brandt, R Kontchakov,
V Ryzhikov, G Xiao, and M Zakharyaschev. Ontology-
based data access with a Horn fragment of metric temporal
logic. In AAAI, pages 1070–1076. AAAI Press, 2017.

[Brandt et al., 2018] Sebastian Brandt, Elem Güzel Kalaycı,
Vladislav Ryzhikov, Guohui Xiao, and Michael Za-
kharyaschev. Querying log data with metric temporal
logic. J. Artif. Intell. Res., 62:829–877, 2018.

[Dantsin et al., 2001] Evgeny Dantsin, Thomas Eiter, Georg
Gottlob, and Andrei Voronkov. Complexity and expres-
sive power of logic programming. ACM Comput. Surv.,
33(3):374–425, 2001.

[Doherty et al., 2009] Patrick Doherty, Jonas Kvarnström,
and Fredrik Heintz. A temporal logic-based planning and
execution monitoring framework for unmanned aircraft
systems. Auton. Agents Multi-Agent Syst., 19(3):332–377,
2009.

[Ho et al., 2014] Hsi-Ming Ho, Joël Ouaknine, and James
Worrell. Online monitoring of metric temporal logic. In
RV, pages 178–192, 2014.

[Immerman, 1999] Neil Immerman. Descriptive Complex-
ity. Springer, 1999.

[Kikot et al., 2018] Stanislav Kikot, Vladislav Ryzhikov,
Przemysław Andrzej Wałęga, and Michael Zakharyaschev.
On the data complexity of ontology-mediated queries with
MTL operators over timed words. In DL, 2018.

[Ničković and Piterman, 2010] Dejan Ničković and Nir
Piterman. From MTL to deterministic timed automata. In
FORMATS, pages 152–167, 2010.

[Thati and Roşu, 2005] Prasanna Thati and Grigore Roşu.
Monitoring algorithms for metric temporal logic specifica-
tions. Electron. Notes Theor. Comput. Sci., 113:145–162,
2005.

[Wałęga et al., 2019] Przemysław Andrzej Wałęga,
Bernardo Cuenca Grau, and Mark Kaminski. Rea-
soning over streaming data in metric temporal datalog. In
AAAI, pages 1941–1948, 2019.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1892

