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Abstract

Cross-lingual entity alignment identifies entity
pairs that share the same meanings but locate in
different language knowledge graphs (KGs). The
study in this paper is to address two limitations that
widely exist in current solutions: 1) the alignment
loss functions defined at the entity level serve well
the purpose of aligning labeled entities but fail to
match the whole picture of labeled and unlabeled
entities in different KGs; 2) the translation from
one domain to the other has been considered (e.g.,
X to Y by M1 or Y to X by M2). However, the
important duality of alignment between different
KGs (X to Y by M1 and Y to X by M2) is ig-
nored. We propose a novel entity alignment frame-
work (OTEA), which dually optimizes the entity-
level loss and group-level loss via optimal transport
theory. We also impose a regularizer on the dual
translation matrices to mitigate the effect of noise
during transformation. Extensive experimental re-
sults show that our model consistently outperforms
the state-of-the-arts with significant improvements
on alignment accuracy.

1 Introduction
Along with the fast development of knowledge graphs (KGs)
in different languages, cross-lingual entity alignment has be-
come increasingly important due to its substantial assistance
to many NLP applications. The mission is to align two enti-
ties in different KGs if they share the same semantic mean-
ing. Given a number of labeled entity pairs, the alignment
problem can be addressed in supervised ways with entity
vectors described by human-designed features [Mahdisoltani
et al., 2013; Nguyen et al., 2011] or with entity embed-
dings learned from KG embedding models [Chen et al., 2016;
Sun et al., 2017; Wang et al., 2018], as shown in Figure 1(a).
However, labeled entity pairs are often difficult to obtain,
and thus much less than unlabeled entities. Following ideas
in semi-supervised learning, representative works like [Zhu
et al., 2017; Chen et al., 2018b; Sun et al., 2018] employ
self-training to iteratively retrieval potentially aligned enti-
ties from unlabeled samples, then feed them back to update
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Figure 1: Toy examples of cross-lingual entity alignment in two
knowledge graphs X and Y. (a) With a set of labeled entity pairs, the
alignment is to match more entities in X with those in Y. (b) Duality
in entity alignment, where the distribution of entities in X overlaps
that of Y after taking a rotation on X or Y. (c) Labeled entities are
well aligned, while others (like 1, 2, and 3) are not.

the alignment models. In spite of their success, current so-
lutions minimize the alignment loss function defined at the
entity level (focusing on the distance of given or augmented
aligned entities), and thus suffer from the following short-
comings:

• Limited gain due to the shortage of labeled entity
pairs: labeled entities usually take only a small portion
of the entity set. Even though we can iteratively do data
augmentation with learned alignment function, the map-
ping error will be accumulated along with the depth of
augmentation. There will be no benefits to gain from data
augmentation after certain iterations.

• Ignorance of duality: alignment models through entity
embedding map entities of different KGs to the shared
concept space. Hence, the distribution of entity embed-
ding should be similar in cross-lingual KGs. From the toy
example shown in Figure 1(b), we can see that learned
representations of entities in X and Y appear with similar
shapes. One overlaps the other by taking a rotation. Such
similarity between two distributions has been only ex-

plored by learning a translation function from X
M1

−−→ Y

or Y M2

−−→ X , without investigating the dual alignment

(X
M1

�
M2

Y ) of entities from different KGs.

• Failure on matching the whole distribution: alignment
loss functions defined at the entity level serve well the

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

3231



purpose of aligning labeled entities but fail to match the
whole picture of labeled and unlabeled entities in different
KGs. In Figure 1(c), the learned mapping function works
well on labeled entities, but unlabeled samples in the red
circle will impose a large loss since no objective functions
of entity alignment have incorporated the group-level loss
between embeddings of different KGs.

The aforementioned problems motivate us to design a
novel Optimal Transport-based Entity Alignment (OTEA)
model that learns the translation matrix by dually minimizing
both entity-level and group-level loss. The group-level loss
describes the discrepancy between two distributions of differ-
ent embeddings. However, unlike entity-level loss, the group-
level loss is difficult to measure using a statistical distance be-
tween two probability distributions, because the marginal dis-
tributions of two embedding sets are not available. Recently,
adversarial training has emerged as a powerful paradigm to
address this issue. Generative Adversarial Network (GAN)
[Goodfellow et al., 2014] is the representative work for distri-
bution matching. However, GAN still suffers from an unsta-
bly weak learning signal due to the problem of JS divergence
and the gradient vanishing effect. Inspired by the progress of
Optimal Transport (OT), we set group-level loss by the mini-
mum cost of transporting mass in converting the distribution
of embedding in X to the distribution of embedding in Y. By
jointly minimizing the entity-level and group-level loss, the
entity alignment model can improve its generalization ability,
and thus the accuracy of entity alignment.

We also propose to impose L2,1 norm of the translation
matrix as a regularizer in the alignment loss function, in order
to force the translation matrix to be orthogonal. Orthogonal
translation matrix is desirable when transforming one isomor-
phic embedding to another, as theoretically proved in [Smith
et al., 2017]. However, it is difficult to enforce the orthogo-
nality of the translation matrix. L2,1 norm has been widely
used in machine learning community [Nie et al., 2010] and
compressed sensing theory [Yin et al., 2015]. It plays here
a new role on regularizing the translation matrix to make or-
thogonal transformation between two KG embeddings.

Our contributions in this work are summarized as follows:

• We propose to solve entity alignment by dually minimiz-
ing both the entity-level loss and the group-level loss via
optimal transport theory.

• We impose L2,1 norm on the dual translation matrices,
which can enforce the translation matrix to be close to
orthogonal.

• We conduct extensive experiments on six real-world
datasets and show the superior performance of our pro-
posed model over the state-of-the-art methods, with sig-
nificant improvement on entity alignment accuracy.

2 Related Work

2.1 KG Embedding
Knowledge graph (KG) embedding has been developed as
a fundamental tool to analyze and model the structure and

semantic information in KG. Researchers explored seman-
tic matching models which employ the similarity-based scor-
ing functions, like DistMult [Yang et al., 2014]. Many
translational distance based models have been developed re-
cently. The most representative translational distance model
is TransE [Bordes et al., 2013]. Several approaches improved
TransE by introducing relation-specific hyperplanes [Wang et
al., 2014], relation-specific spaces [Lin et al., 2015], decom-
posing the projection matrix into a product of two vectors in
TransD [Ji et al., 2015].

2.2 Entity Alignment
Pioneering work proposed to address entity alignment by
hand-crafted features [Mahdisoltani et al., 2013]. Crowd-
sourcing [Vrandečić and Krötzsch, 2014] was also employed.
These methods suffer from the requirement of heavy human
efforts. Alignment by leveraging extra resources was studied
in OWL properties [Hu et al., 2011], and entity descriptions
[Yang et al., 2015]. However, it is hard to obtain the extra
resources for all KGs and modeling different extra resources
is a complex process.

Recently, finding alignment using KG embeddings be-
comes the most popular solution. MTransE [Chen et al.,
2016] is the earliest work which encodes entities and rela-
tions of languages in a separated embedding space. Encod-
ing entities and relations of different KGs into a unified low-
dimensional space jointly [Zhu et al., 2017] is the other way
to do alignment. BootEA [Sun et al., 2018] mitigated the
problem of lacking labeled data by bootstrapping strategy
and achieved a significant performance improvement. Fur-
ther, JAPE [Sun et al., 2017], KDCoE [Chen et al., 2018b],
GCN-based approach [Wang et al., 2018] jointly modeled the
structure and attributes information of KGs. However, all
these models suffer from the three limitations discussed in
the Introduction section.

It is worth noting that entity alignment differs from entity
co-reference resolution [Ng and Cardie, 2002] and link dis-
covery [Nentwig et al., 2017] problem, because entity align-
ment focuses on the alignment of the entity in KGs, rather
than text and knowledge bases.

2.3 Optimal Transport
Optimal transport (OT) is the natural geometry for probability
measures supported on a geometric space [Peyré and Cuturi,
2018]. [Cuturi, 2013] proposed sinkhorn distance to improve
the computational problem of OT, and [Arjovsky et al., 2017]
views the learning of generative adversarial networks (GANs)
as a transportation problem by introducing the Wasserstein
distances. OT has been widely used in many tasks which in-
clude, but not limited to, image segmentation [Peyré et al.,
2012], word embedding [Xu et al., 2018] and text generation
[Chen et al., 2018a]. Yet, to the best of our knowledge, we
are the first to adapt the theory of optimal transport for cross-
lingual entity alignment between KGs.

3 Methodology
A knowledge graph can be denoted as G = (E,R, T ), where
E is the set of entities, R is the set of relations, and T is the
set of triples, each of which is a triple (h, r, t), including the
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Figure 2: Framework of the proposed model for cross-lingual entity
alignment. In detail, E1 and E2 are the embedding of KG1 and
KG2. Entity-level loss measures the distance between aligned entity
pairs, while group-level loss measures the distance between E1 and
M2E2, E2 and M1E1. Both distances are modeled dually.

head entity h, the relation r and the tail entity t. By using
KG embedding, each triple can be presented as (h, r, t), in
which boldfaced h, r, and t represent the embedding vectors
of head h, relation r, and tail t, respectively. Cross-lingual
knowledge graphs are a set of KGs with the language set LA
denoted as GLA = {G1, G2, ..., Gi}, where Gi denotes the
KG with language i ∈ LA. In our work, we only consider the
1-to-1 entity alignment between two cross-lingual KGs.

Let Gi = (Ei, Ri, Ti) and Gj = (Ej , Rj , Tj)
be two KGs in different language i and j. AS ={

(ei, ej)|ei ∈ ELi , ej ∈ ELj
}

is a set of labeled entity pairs
that have same meaning, e.g., ei in Gi shares same mean-
ing with its counterpart ej in Gj . Entity alignment is a
task to find and align the remaining entities {ei ∈ EUi } and
{ej ∈ EUj }which share same meaning, whereEUi = Ei\ELi
and EUj = Ej \ ELj .

Fig.2 shows the overall framework of our approach. The
whole process involves minimizing the loss for knowledge
graph embeddings (Lk), the entity-level alignment loss (Le),
the group-level alignment loss (Lg) and a regularizer (Lr).

3.1 Knowledge Graph Embedding
We build our model based on the basic TransE [Bordes et
al., 2013], like the previous works in [Chen et al., 2016;
Zhu et al., 2017; Chen et al., 2018b], as we focus on the
alignment problem, rather than KG embedding that has a
number of candidate solutions. When employing TransE on
both knowledge graphs Gi and Gj , entities and relations are
projected into the same low-dimensional space by encoding
the triples (h, r, t), and making h + r ≈ t when (h, r, t)
holds. Specifically, the embeddings of relations can translate
the embeddings of head entities to tail entities. The margin-
based ranking objective function minimized by TransE over
a knowledge graph Gi is defined as:

LGi(Gi; θ
i
e) =

∑
(h,r,t)∈Ti

Lt(h, r, t) (1)

where θie presents the learned embedding from Gi, and
Lt(h, r, t) is the objective function defined for a triple
(h, r, t):

Lt(h, r, t) =
∑

(h′,r,t′)∈T ′
(h,r,t)

[
γ + E(h, r, t)− E(h′, r, t′)

]
+

(2)

where [x]+ = max {0, x} denotes the positive part of x,
γ is a margin hyper-parameter which is greater than 0, and
E(h, r, t) indicates the energy function:

E(h, r, t) = ‖h + r− t‖2 (3)

and T ′ denotes the negative sample set for the triple (h, r, t):

T ′(h,r,t) =
{
(h′, r, t)|h′ ∈ E

}
∪
{
(h, r, t′)|t′ ∈ E

}
(4)

where (h′, r, t) and (h, r, t′) are the Bernoulli negative-
sampled triples by replacing h or t in (h, r, t). The loss func-
tion of KG embedding for Gi and Gj together is:

Lk = LGi + LGj (5)

3.2 Entity-level Loss
We first define the entity-level loss. After obtaining entity em-
beddings of graph Gi and Gj from TransE, we make labeled
entities aligned by dually minimizing

Le = α1

∑
(ei,ej)∈AS

∥∥∥M1θiei − θ
j
ej

∥∥∥
2
+
∥∥∥M2θjej − θ

i
ei

∥∥∥
2 (6)

where M1 and M2 are the d×d translation matrices, d is the
dimension of entity embedding, and α1 is a trade-off param-
eter. Note that our model dually learns the two translations of
two embedding spaces in both directions. That is to say, M1

is learned to transfer the embeddings of Gi into the embed-
ding space of Gj , and M2 is to transfer the embeddings of
Gj into the embedding space of Gi.

3.3 Group-level Loss
Then, we define the group-level loss. SettingGi as the source
KG, andGj is the target KG, as an example. After translating,
we can measure how M1θie and θje are close. At the group-
level, the embedding distribution of θje should be similar to
the distribution of M1θie. Let p be the distribution of M1θie,
and q be the distribution of θje. We define the group-level loss
by measuring the difference between p and q with optimal
transport distance, which is [Peyré and Cuturi, 2018]:

Dc(p,q) = inf
γ∈
∏

(p,q)
E(x,y)∼γ [c(x,y)] (7)

where
∏

(p,q) denotes the set of all joint distributions
γ(p,q) with marginals p(x) and q(y); c(x,y) : G×G→ R
indicates the transportation cost function for moving x to y.

Since p and q are discrete distributions, they can be rep-
resented by a sum of Dirac delta functions. That is, p =∑n
i=1 uiδxi and q =

∑m
i=1 viδyi with the Dirac function δ.

The weight vectors u = {ui}ni=1 ∈ ∆n and v = {vi}mi=1 ∈
∆m belong to the n and m-dimensional simplex. Then, the
distance measure defined in Eq. (7) is equivalent to solving
the following network-flow problem [Luise et al., 2018]:

Lot(p,q) = min
T∈
∏

(p,q)

n∑
i=1

m∑
j=1

Tij · c(xi,yj) (8)

where T denotes the transport matrix,
∏

(p,q)
is the transport polytope, defined as:

∏
(p,q) ={

T ∈ Rn×m+ |T1m = u,TT1n = v
}

, where 1n indi-
cates an n-dimensional all-one vector. The transport matrix
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T stores information of the transport plan, a non-zero Tij
denotes the amount of probability mass transported from xi
to yj . When c(x,y) is a metric on G, Dc(p,q) induces a
proper metric on the space of probability distribution sup-
ported on G, commonly known as the Wasserstein distance
[Villani, 2008].

The group-level loss measured by Eq. (8) is hard to cal-
culate directly due to its high computational complexity. Ac-
cording to Kantorovich-Robinstein duality and Farkas Theo-
rem [Villani, 2008], Eq. (8) is equivalent to as follow:

Lot(pM1θie ,qθ
j
e) =

1

K
sup

‖f‖L≤K
E
y∼qθ

j
e
[f(y)]−E

y∼pM1θie
[f(y)]

(9)
where the supremum is over all K-Lipschitz functions f .
Hence, solving the optimal transport problem has been tran-
formed to optimize Wasserstein GAN [Arjovsky et al., 2017].
We adopt a neural network to approximate the function f ,
since the neural networks are universal function approxima-
tors. A simple MLP can be used as the approximator, also
called critic D1. Similar to [Arjovsky et al., 2017], we em-
ploy weight clipping to ensure the function family is K-
Lipschitz. The loss function of the critic is defined as:

max
D1

E
y∼qθ

j
e
[fD1(y)]− E

x∼pθ
i
e
[fD1(M

1x)] (10)

It means that the critic D1 tries to distinguish the target em-
beddings and the transferred source embeddings. The D1 de-
notes the distance between two sets of embeddings. The loss
function of the translation matrix is defined as:

min
M1∈Rd×d

−E
x∼pθ

i
e
[fD1(M

1x)] (11)

where the M1 aims to minimize the approximate distance to
fool the critic, such that the critic cannot distinguish the target
embeddings and the transferred source embeddings.

Finally, the minimax loss function for group-level loss is
defined as follow:

Lg1 = min
M1

max
D1

E
y∼qθ

j
e
[fD1(y)]− E

x∼pθ
i
e
[fD1(M

1x)] (12)

The similar idea applies for the other direction, transfer-
ring from target KG to the source KG. We define the similar
minimax loss function:

Lg2 = min
M2

max
D2

E
y∼qθ

i
e
[fD2(y)]− E

x∼pθ
j
e
[fD2(M

2x)] (13)

Therefore, we convert the calculation and optimization of
group-level loss to the problem of directly optimizing the
Wasserstein GAN. By skipping the calculation step, the high
computational of OT is avoidable.

3.4 Regularizer
As the discussion in Section 1, the translation matrix is de-
sired to be orthogonal by enforcing the translation matrix to
be a sparse matrix, or controlling the trend to be a dense ma-
trix. In our work, we employ L2,1 norm as the regularizer to
prevent the translation matrix to be dense.

We define the regularizer (for two translation matrices) as:

Lr = α
∥∥∥M1

∥∥∥
2,1

+ α
∥∥∥M2

∥∥∥
2,1

= α(
n∑
i=1

∥∥∥m1i
∥∥∥
2
+

n∑
i=1

∥∥∥m2i
∥∥∥
2
) (14)

Figure 3: The impact of L2,1 norm. The
∥∥MMT − I

∥∥
F

curves of
different datasets (left: En-Fr 15K, right: En-De 15K) with training
epochs. M1 and M2 are the translation matrices.

Algorithm 1: OTEA
Input: KG Gi and Gj , the set of aligned entity pairs AS.
Output: Mappings M1, M2.

1 Initialize parameters of critics D1 and D2, embeddings θie, θje,
and mappings M1, M2 ;

2 for iteration = 1, ... MaxIter do
3 for batch = 1, ... NumBatch K do
4 Sample a batch T̂i of triples (h, r, t) in Gi and T̂j in

Gj ;
5 Update θie and θje, according to Lk with the batch T̂i

and T̂j ;
6 end
7 for batch = 1, ... NumBatch AS do
8 Sample a batch ÂS from AS;
9 Update M1, M2, θie, θje according to {Lr + Le} with

the batch ÂS.
10 end
11 for batch = 1, ... NumBatch G do
12 Sample a batch Êi from Ei, and Êj from Ej ;
13 Update D1, D2 by fixing M1, θie, M2, θje, according

to Lg1 and Lg2, with weight clipping c;
14 Update M1, M2, θie, θje by fixing D1, D2, according

to Lg1 and Lg2;
15 end
16 end

where α is the tradeoff parameter.
To demonstrate the effectiveness of L2,1 norm, we show

v =
∥∥MMT − I

∥∥
F

which measures how matrix M is far
from an orthogonal matrix, in the training process on two
datasets in Figure 3. We can observe that M1 and M2 regu-
larized by L2,1 norm are closer to orthogonal than those with-
out regularization. The results demonstrate that theL2,1 norm
as a regularizer can effectively prevent the matrix to be dense,
and mitigating the error induced by dense matrix.

The overall optimization process of our model is given in
Algorithm 1. The embeddings of KGs and matrices are ini-
tialized by drawing from a Gaussian and orthogonal initial-
ization, respectively. We use SGD as our optimizers, and nor-
malize all embeddings by L2 norm. The tradeoff parameters
are set by grid search. In the testing stage, an entity e in Gi
can be aligned by first transferring to Gj as M1θe and then
selecting the most similar entity in Gj . Similarly, an entity e
in Gj can be aligned by first transferring to Gi as M2θe and
then selecting the most similar entity in Gi.
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dataset #Triple #Entity #Relation #Aligned Entitiy

WK31-15K En-Fr En: 203,502
Fr: 170,605

En: 15,170
Fr: 15,393

En: 2,228
Fr: 2,422

En-Fr: 10,108
Fr-En: 10,164

WK31-15K En-De En: 203,502
De: 145,616

En: 15,127
De: 14,603

En: 1,841
De: 596

En-De: 11,594
De-En: 11,445

WK31-60K En-Fr En: 569,393
Fr: 258,337

En: 64,539
Fr: 45,255

En: 458
Fr: 277

En-Fr: 48,851
Fr-En: 48,851

WK31-60K En-De En: 569,393
De: 244,647

En: 64,539
De: 43,503

En: 458
De: 172

En-De: 46,195
De-En: 46,195

WK31-120K En-Fr En: 1,376,011
Fr: 767,750

En: 119,749
Fr: 118,591

En:3,109
Fr:2,336

En-Fr: 117,947
Fr-En: 117,212

WK31-120K En-De En: 1,376,011
De: 391,108

En: 67,650
De: 61,942

En: 2,393
De: 861

En-De: 55,640
De-En: 54,287

Table 1: Statistics of the WK31 dataset

4 Experiments
In this section, we conduct experiments on several real-
world datasets with different sizes, and evaluate our proposed
method for entity alignment. Specifically, we attempt to an-
swer the following research questions:
(RQ1) Can our approach OTEA (OT-based Entity Align-
ment) outperform the state-of-the-art approaches?
(RQ2) How important the dual alignment is? comparing with
the single translation.
(RQ3) How important the L2,1 regularizer is?
(RQ4) Sensitivity of the parameter settings and complexity.

4.1 Experimental Design
Datasets. We used three trilingual knowledge graph
datasets from WK31 provided in [Chen et al., 2016; Chen
et al., 2018b]. English(En), French(Fr), and German(De)
knowledge graphs are included in WK31 datasets, and the
KGs are extracted from Person domain of DBpedia with
known aligned entities as the ground truth. WK31 includes
three datasets with different sizes, as shown in Table 1.

Baselines. To comprehensively evaluate the effectiveness
of our proposed method, we include the following methods
for performance comparison, including: MTransE [Chen et
al., 2016] and ITransE [Zhu et al., 2017] encode the KGs in
separated embedding space or unified embedding space, re-
spectively. JAPE [Sun et al., 2017] and GCN-based method
jointly model the KGs and attributes, we only use the struc-
ture part of their models, and BootEA [Sun et al., 2018] it-
eratively enlarges the labeled entity pairs based on the boot-
strapping strategy.

Experimental settings. In this work, we adopt popular
metrics, Hits@k and MRR for evaluating entity alignment
results. We find the optimal parameters or follow the settings
in original papers of baselines. For our OTEA method, the
best configuration is γ = 0.5, α = 0.025, α1 = 2.5, weight
clippling c = 0.01. Critics are set as two-layers MLPs with
500 hidden units. We use Adam [Kingma and Ba, 2014] to
optimize the Lk, Le+Lr with lr = 0.001, and use RMSProp
[Hinton et al., 2012] to optimize the Lg with lr = 5e − 5.
Meanwhile, we use L2 norm to avoid potential over-fitting.
We randomly sample 30% of the aligned entities as the train-
ing set, and the rest aligned entities for testing. Each evalua-
tion is repeated 5 times and we report the averaged Hits@k
and MRR.

4.2 Performance Evaluation Results (RQ1)
Table 2 shows the experimental results of baselines and our
method. We can find that our proposed method consistently
outperforms all baselines methods on all datasets under dif-
ferent evaluation metrics. Especially, we have significant
improvement (10%∼50%) of Hits@1 value on almost all
datasets, it means that our method achieves the better per-
formance on directly successful aligning entities.

In the largest dataset WK31-120K, our method improves
the best baseline with 33%∼59% under different metrics,
indicating the significant advantage of our method works
in the large KGs scenario. BootEA is the best baseline
method in the results, since it improves the KG embedding
method and also employs improved bootstrapping strategy
with an alignment editing method to reduce the error ac-
cumulation. The results show that the improved bootstrap-
ping strategy has better performance than the original boot-
strapping method (ITransE). However, the error is not avoid-
able even though the improved method is adopted. On the
largest dataset WK31-120k, it sometimes performs worse
than MTransE. All the results demonstrate the advantage of
our OTEA method.

4.3 Components Analysis (RQ2, RQ3)
To answer RQ2 and RQ3, we compare OTEA with its vari-
ant without dual alignment (only single translation), noted
at “OTEA w/o dual”, and another variant without the L2,1

regularizer, noted at “OTEA w/o reg”. The performance of
“OTEA w/o dual” and “OTEA w/o reg” in Table 2 shows that
these components are important for OTEA to achieve supe-
rior results. The “OTEA w/o reg” results in dense translation
matrices, which introduce increased noise into the translation
(demonstrated also in Figure 3). The “OTEA w/o dual” is
harder than OTEA to reach the optimal and convergence, be-
cause it needs to search in a broader parameter space.

4.4 Parameter Sensitivity and Complexity (RQ4)
Sensitivity to the Proportion of Prior Aligned Entities
We randomly sample 10%, 30%, 50% and 70% of the
aligned entities from WK31-15K(En-Fr) and WK31-60K(En-
Fr) datasets as the training samples, and compare the perfor-
mance of our model to that of other baseline models. Figure 4
shows Hits@10 of different methods when varying the pro-
portion of prior aligned entities. First, as expected, all meth-
ods have better performance with the growth of the proportion
of aligned entities, because more information has been pro-
vided to align the entities. Second, OTEA and BootEA have
much better performance than other baselines, due to the em-
ployment of unlabeled data and the selection of labeled data,
respectively. Last, OTEA is persistently better than all other
baselines, including BootEA, when varying the proportion of
aligned entities on two datasets.

Sensitivity to the Dimension of KG Embeddings
Figure 5(a) shows how the dimensionality of embeddings in-
fluences the performance of different entity alignment meth-
ods on WK31-15K(En-Fr) dataset. We can see that our OTEA
method is consistently better than all other baselines. In ad-
dition, its performance is quite stable when varying d.
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WK31-15K dataset
Language En-Fr Fr-En En-De De-En

Metric Hits@1 Hits@5 MRR Hits@1 Hits@5 MRR Hits@1 Hits@5 MRR Hits@1 Hits@5 MRR
MTransE 16.77 21.64 0.198 19.85 31.27 0.261 6.17 8.48 0.078 4.69 6.61 0.059
ITransE 18.21 24.34 0.214 18.61 33.64 0.248 15.98 28.63 0.218 13.42 25.63 0.205
JAPE 15.68 23.45 0.208 16.22 28.93 0.219 16.85 27.32 0.226 13.92 22.15 0.189
GCN 17.24 27.29 0.220 17.58 30.82 0.237 18.25 31.30 0.248 15.70 27.53 0.217

OTEA w/o reg 34.06 53.74 0.432 36.96 57.09 0.457 32.56 53.68 0.421 31.86 47.61 0.394
OTEA w/o dual 32.49 52.43 0.411 34.84 55.21 0.443 31.21 52.78 0.409 31.54 45.86 0.378

BootEA 29.72 52.92 0.395 30.77 55.44 0.428 33.13 54.13 0.435 30.47 45.33 0.381
OTEA 37.53 57.74 0.472 40.47 60.90 0.502 37.41 57.19 0.470 36.80 56.79 0.465

Improv. % 26.28 9.11 19.50 31.52 9.85 17.30 12.92 5.65 8.04 20.77 25.28 22.05

WK31-60K dataset
Language En-Fr Fr-En En-De De-En

Metric Hits@1 Hits@5 MRR Hits@1 Hits@5 MRR Hits@1 Hits@5 MRR Hits@1 Hits@5 MRR
MTransE 12.05 14.94 0.141 13.95 20.25 0.177 0.86 2.15 0.017 3.37 10.07 0.072
ITransE 17.27 25.31 0.192 18.72 32.96 0.263 15.53 24.61 0.204 16.74 24.96 0.215
JAPE 15.32 27.63 0.226 16.85 35.41 0.271 12.52 22.74 0.171 14.71 23.86 0.192
GCN 18.35 32.35 0.250 21.47 37.81 0.293 14.48 23.54 0.189 13.8 24.55 0.190

OTEA w/o reg 31.41 48.23 0.412 34.18 49.48 0.428 23.59 35.78 0.286 22.46 38.94 0.306
OTEA w/o dual 31.35 47.47 0.398 32.98 48.51 0.413 22.90 35.27 0.282 21.07 36.99 0.287

BootEA 30.82 49.42 0.406 33.31 51.14 0.425 24.45 37.63 0.308 23.28 39.29 0.316
OTEA 34.47 51.51 0.428 36.07 54.08 0.447 27.05 42.12 0.345 26.97 43.97 0.352

Improv. % 11.84 4.23 5.42 8.28 5.75 5.17 10.63 11.93 12.01 15.85 11.91 11.39

WK31-120K dataset
Language En-Fr Fr-En En-De De-En

Metric Hits@1 Hits@5 MRR Hits@1 Hits@5 MRR Hits@1 Hits@5 MRR Hits@1 Hits@5 MRR
MTransE 21.01 22.24 0.217 21.11 23.63 0.227 5.38 6.53 0.062 4.97 7.39 0.066
ITransE 11.54 20.41 0.176 13.35 21.20 0.197 7.62 15.54 0.112 6.41 12.82 0.085
JAPE 6.98 16.10 0.127 8.64 17.85 0.134 4.37 12.91 0.076 5.23 10.46 0.071
GCN 9.32 18.62 0.146 10.81 18.22 0.153 6.32 15.14 0.109 5.91 13.85 0.092

OTEA w/o reg 24.71 33.84 0.302 25.13 33.32 0.291 14.81 26.60 0.217 14.06 26.43 0.214
OTEA w/o dual 23.06 33.17 0.287 23.58 33.50 0.289 14.40 26.15 0.208 13.14 25.42 0.395

BootEA 17.56 27.41 0.235 18.46 28.65 0.241 11.57 22.08 0.179 10.32 22.11 0.169
OTEA 27.92 37.33 0.328 28.07 37.41 0.332 17.98 30.41 0.244 17.00 29.46 0.235

Improv. % 59.00 36.20 39.57 52.06 30.58 37.76 55.40 37.73 36.31 64.73 33.24 39.05

Table 2: Entity alignment results of different methods. The best results are in bold, along with the percentage of improvement when comparing
OTEA with the best baseline method.
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Figure 4: Hits@10 of different methods when varying the propor-
tion of prior aligned entities.

Time Complexity Comparison
Figure 5(b) shows the running time comparison of the best
baseline (BootEA), simplest method (MTransE) and our
method (OTEA). We set same batch size for all methods and
run them on a same GPU device, then record the running time
of each iteration. The results show that OTEA is (3 times)
faster than BootEA, because the bootstrapping based method
need to propose the new aligned entities by calculating the
similarity with all unaligned entities. Our method need more
time than MTransE, but it is worthwhile to spend the time to
achieve significant improvement on the task.

5 Conclusion
We introduced a novel framework for cross-lingual entity
alignment in knowledge graphs. We proposed to solve the
entity alignment by dually minimizing both the entity-level
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Figure 5: (a) Hits@10 of different methods on WK31-15K(En-Fr)
when varying dimension d. The % of prior aligned entities is 30%.
(b) Accumulated running times of three methods on WK31-15K(En-
Fr) with # of iterations.

loss and the group-level loss via optimal transport theory, in
order to model the whole picture of labeled and unlabeled en-
tities in different language KGs. We also imposeL2,1 regular-
izer on the dual translation matrices to mitigate the effect of
noise during transformation. Our experiments on real-world
datasets demonstrated that our approach achieved superior re-
sults comparing with other state-of-the-art methods on align-
ment accuracy.
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