
Combining ADMM and the Augmented Lagrangian Method
for Efficiently Handling Many Constraints

Joachim Giesen1 and Sören Laue∗1,2
1Friedrich-Schiller-Universität Jena

2Data Assessment Solutions

Abstract

Many machine learning methods entail minimiz-
ing a loss-function that is the sum of the losses
for each data point. The form of the loss func-
tion is exploited algorithmically, for instance in
stochastic gradient descent (SGD) and in the alter-
nating direction method of multipliers (ADMM).
However, there are also machine learning meth-
ods where the entailed optimization problem fea-
tures the data points not in the objective function
but in the form of constraints, typically one con-
straint per data point. Here, we address the prob-
lem of solving convex optimization problems with
many convex constraints. Our approach is an ex-
tension of ADMM. The straightforward implemen-
tation of ADMM for solving constrained optimiza-
tion problems in a distributed fashion solves con-
strained subproblems on different compute nodes
that are aggregated until a consensus solution is
reached. Hence, the straightforward approach has
three nested loops: one for reaching consensus,
one for the constraints, and one for the uncon-
strained problems. Here, we show that solving the
costly constrained subproblems can be avoided. In
our approach, we combine the ability of ADMM
to solve convex optimization problems in a dis-
tributed setting with the ability of the augmented
Lagrangian method to solve constrained optimiza-
tion problems. Consequently, our algorithm only
needs two nested loops. We prove that it inher-
its the convergence guarantees of both ADMM and
the augmented Lagrangian method. Experimental
results corroborate our theoretical findings.

1 Introduction
Optimization problems with many constraints typically arise
from large data sets. An illustrative example is the core vector
machine [Tsang et al., 2007], where the smallest enclosing
ball for a given set of data points has to be computed. The
objective function here is the radius of the ball that needs to

∗Contact Author

be minimized, and every data point contributes a convex con-
straint, namely the distance of the point from the center must
be at most the radius.

The increasing availability of distributed hardware sug-
gests to address such problems by distributing the constraints
on different compute nodes. Unfortunately, to the best of our
knowledge, algorithmic schemes for distributing convex con-
straints are only known in a few special cases. Such a scheme
has not even been discussed for the well researched smallest
enclosing ball (core vector machine) problem. The situation
is vastly different when there is not a large number of con-
straints but a large number parameters. For instance, the al-
ternating direction method of multipliers (ADMM) that was
proposed by [Glowinski and Marroco, 1975] and by [Gabay
and Mercier, 1976] already decades ago obtained consider-
able attention, because it allows to solve convex optimiza-
tion problems with a large number of parameters in a dis-
tributed setting [Boyd et al., 2011]. For instance, the parame-
ters of any log-likelihood maximization problem like logistic
or ordinary least squares regression are just the data points.
The loss function of such problems, that is, the negative log-
likelihood function, is the sum of the losses for each data
point. In this case ADMM lends itself to a distributed imple-
mentation where the data points are distributed on different
compute nodes.

Surprisingly, so far no general convex inequality con-
straints have been considered directly in the context of
ADMM. Although, in principle, standard ADMM can also
be used for solving constrained optimization problems. A
distributed implementation of the straightforward extension
of ADMM leads to non-trivial constrained optimization sub-
problems that have to be solved in every iteration. Solving
constrained problems is typically transformed into a sequence
of unconstrained problems. Hence, this approach features
three nested loops, the outer loop for reaching consensus, one
loop for the constraints, and an inner loop for solving un-
constrained problems. Alternatively, one could use the stan-
dard augmented Lagrangian method, originally known as the
method of multipliers [Hestenes, 1969], that has been specifi-
cally designed for solving constrained optimization problems.
Combining the augmented Lagrangian method with ADMM
allows to solve general constrained problems in a distributed
fashion by running the augmented Lagrangian method in an
outer loop and ADMM in an inner loop. Again, we end up

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

4525



with three nested loops, the outer loop for the augmented
Lagrangian method and the standard two nested inner loops
for ADMM. Thus, one could assume that any distributed
solver for constrained optimization problems needs at least
three nested loops: one for reaching consensus, one for the
constraints, and one for the unconstrained problems. The
key contribution of our paper is showing that this is not the
case. One of the nested loops can be avoided by merging
the loops for reaching consensus and dealing with the con-
straints. Our approach, that only needs two nested loops,
combines ADMM with the augmented Lagrangian method
differently than the direct approach of running the augmented
Lagrangian method in the outer and ADMM in the inner loop.
The latter combination, that to our surprise has not been dis-
cussed in the literature before, still provides us with a good
baseline in the experimental section.

Related Work
To the best of our knowledge, our extension of ADMM
is the first distributed algorithm for solving general convex
optimization problems with no restrictions on the type of
constraints or assumptions on the structure of the problem.
The only special case, that we are aware of, are quadrati-
cally constrained quadratic problems that has been addressed
by [Huang and Sidiropoulos, 2016]. However, their ap-
proach, that builds on consensus ADMM, does not scale,
since every constraint gives rise to a new subproblem.

[Mosk-Aoyama et al., 2010] have designed and analyzed a
distributed algorithm for solving convex optimization prob-
lems with separable objective function and linear equality
constraints. Their algorithm blends a gossip-based informa-
tion spreading, iterative gradient ascent method with the bar-
rier method from interior-point algorithms. It is similar to
ADMM and can also handle only linear constraints.

[Zhu and Martı́nez, 2012] have introduced a distributed
multiagent algorithm for minimizing a convex function that
is the sum of local functions subject to a global equality or
inequality constraint. Their algorithm involves projections
onto local constraint sets that are usually as hard to compute
as solving the original problem with general constraints. For
instance, it is well known via standard duality theory that the
feasibility problem for linear programs is as hard as solving
linear programs. This holds true for general convex optimiza-
tion problems with vanishing duality gap.

In principle, the standard ADMM can also handle convex
constraints by transforming them into indicator functions that
are added to the objective function. However, this leads to
subproblems that need to be solved in each iteration that entail
computing a projection onto the feasible region. This entails
the same issues as the method by [Zhu and Martı́nez, 2012]
since computing these projections can be as hard as solving
the original problem.

The recent literature on ADMM is vast. Most papers
on ADMM stay in the standard framework of optimizing a
function or a sum of functions subject to linear constraints.
Exemplarily for many others, we just mention [Zhang and
Kwok, 2014] who provide convergence guarantees for asyn-
chronous ADMM and [Ghadimi et al., 2015] who study opti-
mal penalty parameter selection.

2 Alternating Direction Method of Multipliers
Here, we briefly review the alternating direction method of
multipliers (ADMM) and discuss how it can be adapted for
dealing with distributed data, before we extend it for handling
convex constraints in the next section.

ADMM is an iterative algorithm that in its most general
form can solve convex optimization problems of the form

minx,z f1(x) + f2(z)
s.t. Ax+Bz − c = 0,

(1)

where f1 : Rn1 → R ∪ {∞} and f2 : Rn2 → R ∪ {∞} are
convex functions,A ∈ Rm×n1 andB ∈ Rm×n2 are matrices,
and c ∈ Rm.

ADMM can obviously deal with linear equality con-
straints, but it can also handle linear inequality constraints.
The latter are reduced to linear equality constraints by replac-
ing constraints of the form Ax ≤ b by Ax + s = b, adding
the slack variable s to the set of optimization variables, and
setting f2(s) = 1Rm

+
(s), where

1Rm
+

(s) =

{
0, if s ≥ 0

∞, otherwise,

is the indicator function of the set Rm+ = {x ∈ Rm|x ≥ 0}.
Note that f1 and f2 are allowed to take the value∞.

Recently, ADMM regained a lot of attention, because it
allows to solve problems with separable objective function in
a distributed setting. Such problems are typically given as

minx
∑
i fi(x),

where fi corresponds to the i-th data point (or more generally
i-th data block) and x is a weight vector that describes the
data model. This problem can be transformed into an equiva-
lent optimization problem, with individual weight vectors xi
for each data point (data block) that are coupled through an
equality constraint,

minxi,z

∑
i fi(xi)

s.t. xi − z = 0 ∀ i,
which is a special case of Problem 1 that can be solved by
ADMM in a distributed setting by distributing the data.

3 ADMM Extension
Adding convex inequality constraints to Problem 1 does not
destroy convexity of the problem, but so far ADMM cannot
deal with such constraints. Note that the problem only re-
mains convex, if all equality constraints are induced by affine
functions. That is, we cannot add convex equality constraints
in general without destroying convexity. Hence, here we con-
sider convex optimization problems in its most general form

minx,z f1(x) + f2(z)
s.t. g0(x) ≤ 0

h1(x) + h2(z) = 0,
(2)

where f1 and f2 are as in Problem 1, g0 : Rn1 → Rp
is convex in every component, and h1 : Rn1 → Rm and
h2 : Rn2 → Rm are affine functions. In the following we as-
sume that the problem is feasible, i.e., that a feasible solution

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

4526



exists, and that strong duality holds. A sufficient condition
for strong duality is that the interior of the feasible region is
non-empty. This condition is known as Slater’s condition for
convex optimization problems [Slater, 1950].

Our extension of ADMM for solving Problem 2 and its
convergence analysis works with an equivalent reformulation
of Problem, where we replace g0(x) by

g(x) = max{0, g0(x)}2,
with componentwise maximum, and turn the convex inequal-
ity constraints into convex equality constraints. Thus, in the
following we consider optimization problems of the form

minx,z f1(x) + f2(z)
s.t. g(x) = 0

h1(x) + h2(z) = 0,
(3)

where g(x) = max{0, g0(x)}2, which by construction is
again convex in every component. Note, though, that the con-
straint g(x) = 0 is no longer affine. However, we show in the
following that Problem 3 can still be solved efficiently.

Analogously to ADMM our extension builds on the Aug-
mented Lagrangian for Problem 3 which is the following
function

Lρ(x, z, µ, λ) = f1(x) + f2(z) +
ρ

2
‖g(x)‖2 + µ>g(x)

+
ρ

2
‖h1(x) + h2(z)‖2 + λ> (h1(x) + h2(z)) ,

where µ ∈ Rp and λ ∈ Rm are Lagrange multipliers, ρ > 0
is some constant, and ‖·‖ denotes the Euclidean norm. The
Lagrange multipliers are also referred to as dual variables.

Algorithm 1 is our extension of ADMM for solving in-
stances of Problem 3. It runs in iterations. In the (k + 1)-th
iteration the primal variables xk and zk as well as the dual
variables µk and λk are updated.

Algorithm 1 ADMM for problems with non-linear con-
straints

1: input: instance of Problem 3
2: output: approximate solution x ∈ Rn1 , z ∈ Rn2 , µ ∈

Rp, λ ∈ Rm
3: initialize x0 = 0, z0 = 0, µ0 = 0, λ0 = 0, and ρ to some

constant > 0
4: repeat
5: xk+1 := argminx Lρ(x, z

k, µk, λk)
6: zk+1 := argminz Lρ(x

k+1, z, µk, λk)
7: µk+1 := µk + ρg(xk+1)
8: λk+1 := λk + ρ

(
h1(xk+1) + h2(zk+1)

)
9: until convergence

10: return xk, zk, µk, λk

4 Convergence Analysis
From duality theory we know that for all x ∈ Rn1 and z ∈
Rn2

L0(x∗, z∗, µ∗, λ∗) ≤ L0(x, z, µ∗, λ∗), (4)
where L0 is the Lagrangian of Problem 3 and x∗, z∗, µ∗,
and λ∗ are optimal primal and dual variables. Note, that

x∗, z∗, µ∗, and λ∗ are not necessarily unique. Here, they refer
just to one optimal solution. Also note that the Lagrangian is
identical to the Augmented Lagrangian with ρ = 0. Given
that strong duality holds, the optimal solution to the origi-
nal Problem 3 is identical to the optimal solution of the La-
grangian dual.

We need a few more definitions. Let fk = f1(xk)+f2(zk)
be the objective function value at the k-th iterate (xk, zk) and
let f∗ be the optimal function value. Let rkg = g(xk) be the
residual of the nonlinear equality constraints, i.e., the con-
straints originating from the convex inequality constraints,
and let rkh = h1(xk) + h2(zk) be the residual of the linear
equality constraints in iteration k.

Our goal in this section is to prove the following theorem.

Theorem 1. When Algorithm 1 is applied to an instance of
Problem 3, then

lim
k→∞

rkg = 0, lim
k→∞

rkh = 0, and lim
k→∞

fk = f∗.

The theorem states primal feasibility and convergence of
the primal objective function value. Note, however, that con-
vergence to primal optimal points x∗ and z∗ cannot be guar-
anteed. This is the case for the original ADMM as well.
Additional assumptions on the problem, like, for instance, a
unique optimum, are necessary to guarantee convergence to
the primal optimal points. However, the points xk, zk will be
primal optimal and feasible up to an arbitrarily small error for
sufficiently large k.

The proof of Theorem 1 can be found in the full version of
this paper [Giesen and Laue, 2016].

5 Distributing Constraints
Finally, we are ready to discuss the main problem that we set
out to address in this paper, namely solving general convex
optimization problems with many constraints in a distributed
setting by distributing the constraints. That is, we want to
address optimization problems of the form

minx f(x)
s.t. gi(x) ≤ 0 i = 1 . . . p

hi(x) = 0 i = 1 . . .m,
(5)

where f : Rn → R and gi : Rn → Rpi are convex functions,
and hi : Rn → Rmi are affine functions. In total, we have
p1 + p2 + . . . + pp inequality constraints that are grouped
together into p batches and m1 + m2 + . . . + mm equality
constraints that are subdivided into m groups. For distribut-
ing the constraints we can assume without loss of generality
that m = p. That is, we have m batches that each contain pi
inequality and mi equality constraints.

Again it is easier to work with an equivalent reformulation
of Problem 5, where each batch of equality and inequality
constraints shares the same variables xi, namely problems of
the form

minxi,z

∑m
i=1 f(xi)

s.t. max{0, gi(xi)}2 = 0 i = 1 . . .m
hi(xi) = 0 i = 1 . . .m
xi = z,

(6)

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

4527



where all the variables xi are coupled through the affine con-
straints xi = z. To keep our exposition simple, the objective
function has been scaled by m in the reformulation.

For specializing our extension of ADMM to instances of
Problem 6 we need the Augmented Lagrangian of this prob-
lem, which reads as

Lρ(xi, z, µi,g, µi,h, λ) =
m∑
i=1

f(xi) +
ρ

2

m∑
i=1

‖max{0, gi(xi)}2‖2

+
m∑
i

(µi,g)
>max{0, gi(xi)}2

+
ρ

2

m∑
i=1

‖hi(xi)‖2 +
m∑
i

(µi,h)>hi(xi)

+
ρ

2

m∑
i=1

‖xi − z‖2 +
m∑
i

(λi)
>(xi − z),

where µi,g, µi,h, and λi are the Lagrange multipliers (dual
variables).

Note that the Lagrange function is separable. Hence, the
update of the x variables in Line 5 of Algorithm 1 decom-
poses into the following m independent updates

xk+1
i = argminxi

f(xi) +
ρ

2
‖max{0, gi(xi)}2‖2

+ (µki,g)
>max{0, gi(xi)}2

+
ρ

2
‖hi(xi)‖2 + (µki,h)>hi(xi)

+
ρ

2
‖xi − zk‖2 + (λki )>(xi − zk),

that can be solved in parallel once the constraints gi(xi) and
hi(xi) have been distributed on m different, distributed com-
pute nodes. Note that each update is an unconstrained, con-
vex optimization problem, because the functions that need to
be minimized are sums of convex functions. The only two
summands where this might not be obvious, are
ρ

2
‖max{0, gi(xi)}2‖2 and (µki,g)

>max{0, gi(xi)}2.
For the first term note that the squared norm of a non-
negative, convex function is always convex again. The second
term is convex, because it can be shown by induction that the
µki,g are always non-negative.

The update of the z variable in Line 6 of Algorithm 1
amounts to solving the following unconstrained optimization
problems

zk+1 = argminz

m∑
i=1

ρ

2
‖xk+1

i − z‖2 +
m∑
i=1

(λki )>(xk+1
i − z)

=
ρ
∑m
i=1 x

k+1
i +

∑m
i=1 λ

k
i

ρ ·m ,

and the updates of the dual variables µi and λi are as follows

µk+1
i,g = µki,g + ρ max{0, gi(xk+1

i )}2,
µk+1
i,h = µki + ρ hi(x

k+1
i ),

λk+1
i = λki + ρ

(
xk+1
i − zk+1

)
.

That is, in each iteration there are m independent, uncon-
strained minimization problems that can be solved in parallel
on different compute nodes. The solutions of the independent
subproblems are then combined on a central node through the
update of the z variables and the Lagrange multipliers. Ac-
tually, since the Lagrange multipliers µi,g and µi,h are also
local, i.e., involve only the variables xk+1

i for any given index
i, they can also be updated in parallel on the same compute
nodes where the xki updates take place. Only the variables z
and the Lagrange multipliers λi need to be updated centrally.

Looking at the update rules it becomes apparent that Al-
gorithm 1 when applied to instances of Problem 6 is basi-
cally a combination of the standard Augmented Lagrangian
method [Hestenes, 1969; Powell, 1969] for solving convex,
constrained optimization problems and ADMM for solving
convex optimization problems in a distributed fashion.

6 Experiments
We have implemented our extension of ADMM in Python
using the NumPy and SciPy libraries, and tested this im-
plementation on the robust SVM problem [Shivaswamy et
al., 2006] that has a second order cone constraint for ev-
ery data point. In our experiments we distributed these
constraints onto different compute nodes, where we had to
solve an unconstrained optimization problem in every itera-
tion. Since there is no other approach available that could
deal with a large number of arbitrary constraints in a dis-
tributed manner we compare our approach to the baseline
approach of running an Augmented Lagrangian method in
an outer loop and standard ADMM in an inner loop. Note
that this approach has three nested loops. The outer loop
turns the constrained problem into a sequence of uncon-
strained problems (Augmented Lagrangians), the next loop
distributes the problem using distributed ADMM, and the
final inner loop solves the unconstrained subproblems us-
ing the L-BFGS-B algorithm [Morales and Nocedal, 2011;
Zhu et al., 1997] in our implementation.

Robust SVMs
The robust SVM problem has been designed to deal with bi-
nary classification problems whose input are not just labeled
data points (x(1), y(1)), . . . , (x(n), y(n)), where the x(i) are
feature vectors and the y(i) are binary labels, but a distribu-
tion over the feature vectors. That is, the labels are assumed to
be known precisely and the uncertainty is only in the features.
The idea behind the robust SVM is replacing the constraints
(for feature vectors without uncertainty) of the standard linear
soft-margin SVM by their probabilistic counterparts

Pr
[
y(i)w>x(i) ≥ 1− ξi

]
≥ 1− δi

that require the now random variable x(i) with probability at
least 1 − δi ≥ 0 to be on the correct side of the hyperplane
whose normal vector is w. Shivaswamy et al. show that the
probabilistic constraints can be written as second order cone
constraints

y(i)w>x̄(i) ≥ 1− ξi +
√
δi/(1− δi)

∥∥Σ
1/2
i w

∥∥,
under the assumption that the mean of the random variable
x(i) is the empirical mean x̄(i) and the covariance matrix of

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

4528



Figure 1: Various statistics for the performance of the distributed ADMM extension on an instance of the robust SVM problem. The
convergence proof only states that the value V k must be monotonically decreasing. This can be observed also experimentally in the figure on
the bottom right. Neither the primal function value nor the residuals need to be monotonically decreasing, and as can be seen in the figures
on the top, they actually do not decrease monotonically.

x(i) is Σi. The robust SVM problem is then the following
SOCP (second order cone program)

min
w,ξ

1

2
‖w‖2 + c

n∑
i=1

ξi

s.t. y(i)w>x̄(i) ≥ 1− ξi +
√
δi/(1− δi)

∥∥Σ
1/2
i w

∥∥
ξi ≥ 0, i = 1 . . . n.

This problem can be reformulated into the form of Problem 6
and is thus amenable to a distributed implementation of our
extension of ADMM.

Experimental Setup
We generated random data sets similarly to [Andersen et al.,
2012], where an interior point solver has been described for
solving the robust SVM problem. The set of feature vectors
was sampled from a uniform distribution on [−1, 1]n. The
covariance matrices Σi were randomly chosen from the cone
of positive semidefinite matrices with entries in the interval
[−1, 1] and δi has been set to 1

2 . Each data point contributes
exactly one constraint to the problem and is assigned to only
one of the compute nodes.

In the following, the primal optimization variables are w
and ξ, the consensus variables for the primal optimization
variables w are still denoted as z, and also the dual variables
are still denoted as λ for the consensus constraints and µ for
the convex constraints, respectively.

Convergence Results
Figure 1 shows the primal objective function value fk, the
norm of the residuals rkg and rkh, the distances ‖zk − z∗‖,
‖λk − λ∗‖, and the value V k of one run of our algorithm

for two compute nodes. Note, that only V k must be strictly
monotonically decreasing according to our convergence anal-
ysis. The proof does not make any statement about the mono-
tonicity of the other values, and as can be seen in Figure 1,
such statements would actually not be true. All values de-
crease in the long run, but are not necessarily monotonically
decreasing.

As can be seen in Figure 1 (top-left), the function value
fk is actually increasing for the first few iterations, while the
residuals rkg for the inequality constraints become very small,
see Figure 1 (top-middle). That is, within the first iterations
each compute node finds a solution to its share of the data
that is almost feasible but has a higher function value than
the true optimal solution. This basically means that the errors
ξi for the data points are over-estimated. After a few more
iterations the primal function value drops and the inequality
residuals increase meaning that the error terms ξi as well as
the individual estimators wi converge to their optimal values.

In the long run, the local estimators at the different com-
pute nodes converge to the same solution. This is witnessed
in Figure 1 (top-right), where one can see that the residuals rkh
for the consensus constraints converge to zero, i.e., consensus
among the compute nodes is reached in the long run.

Finally, it can be seen that the consensus estimator zk con-
verges to its unique optimal point z∗. Note that in general we
cannot guarantee such a convergence since the optimal point
does not need to be unique. In the special case that the opti-
mal point is unique we always have convergence to this point.

Scalability Results
Figure 2 shows the scalability of our extension of ADMM
in terms of the number of compute nodes, data points, and
approximation quality, respectively. All running times were

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

4529



2 4 6 8 10 12 14 16

compute nodes

0

5

10

15

20

25

30

35

40
it

er
at

io
ns

baseline
this paper

103 104 105

data points

0

10

20

30

40

50

60

70

80

it
er

at
io

ns

baseline
this paper

10−3 10−2 10−1

‖zk − z∗‖∞

0

50

100

150

200

it
er

at
io

ns

baseline
this paper

Figure 2: Running times of the algorithm on the robust SVM problem. The figure on the left shows that the number of iterations increases
mildly with the number of compute nodes. The middle picture shows that the number of iterations is decreasing with increasing number of
data points. The figure on the right shows the dependency of the distance of the consensus estimator zk in iteration k to the optimal estimator
z∗. It can be seen that our extension of ADMM outperforms the baseline approach with three nested loops.

measured in terms of iterations and averaged over runs for
ten randomly generated data sets. For the baseline we used
the straightforward three nested loops approach.

(1) For measuring the scalability in terms of employed
compute nodes, we generated 10,000 data points with 10,000
features. As stopping criterion we used ‖zk − z∗‖∞ ≤
5 · 10−3, i.e., the predictor zk had to be close to the opti-
mum. Here we use the infinity norm to be independent from
the number of dimensions. The data set was split into four,
eight, twelve, and 16 equal sized batches that were distributed
among the compute nodes. Note that every batch had much
fewer data points than features, and thus the optimal solu-
tions to the respective problems at the compute nodes were
quite different from each other. Nevertheless, our algorithm
converged very well to the globally optimal solution. Only
the convergence speed was affected by the diversity of the lo-
cal solutions at the different compute nodes. Since we kept
the total number of data points in our experiments fixed, the
diversity was increasing with the number of compute nodes
that were assigned fewer data points each. Hence it was ex-
pected that the convergence speed decreases, i.e., the number
of iterations increases, with a growing number of compute
nodes. The expected behavior can be seen in Figure 2 (left).

(2) For measuring the scalability in terms of the number
of data points we increased the number of data points but kept
the number of features fixed at 200. The stopping criterion
for our algorithm was again ‖zk − z∗‖∞ ≤ 5 · 10−3. We
used eight compute nodes to compute the solutions. Again,
the points were distributed equally among the compute nodes.
This time one would expect a decreasing running time with an
increasing number of data points, because the number of data
points per machine is increasing and thus also the diversity
of the local solutions at the different compute nodes is de-
creasing. That is, with an increasing number of data points it
should take fewer iterations to reach an approximate consen-
sus about the global solution among the compute nodes. The
results of the experiment that are shown in Figure 2 (middle)
confirm this expectation. The number of iterations indeed
decreases with a growing number of data points. This is sim-
ilar to [Shalev-Shwartz and Srebro, 2008] who have also ob-
served that an increasing number of data points can decrease
the work required for a good predictor.

(3) For measuring the scalability in terms of the approxi-
mation quality, we generated 8000 data points in 200 dimen-
sions. Again, eight compute nodes were used for the exper-
iments whose results are shown in Figure 2 (right). As ex-
pected the number of iterations (running time) increases with
increasing approximation quality that was again measured in
terms of the infinity norm. In this paper we are not providing
a theoretical convergence rate analysis, which we leave for
future work, but the experimental results shown here already
provide some intuition on the dependency of the number of
iterations in terms of the approximation quality: It seems that
our extension of ADMM can solve problems to a medium ac-
curacy within a reasonable number of iterations, but higher
accuracy requires a significant increase in the number of iter-
ations. Such a behavior is well known for standard ADMM
without constraints. In the context of our example applica-
tion, robust SVMs, medium accuracy usually is sufficient as
often higher accuracy solutions do not provide better predic-
tors, a phenomenon that is also known as regularization by
early stopping.

7 Conclusions
Despite the vast literature on ADMM, to the best of our
knowledge, no scheme for distributing general convex con-
straints has been studied before. Here we have closed this
gap by combining ADMM and the augmented Lagrangian
method for solving general convex optimization problems
with many convex constraints. The straightforward combi-
nation of ADMM and the augmented Lagrangian method en-
tails three nested loops, an outer loop for reaching consensus,
one loop for the constraints, and an inner loop for solving un-
constrained problems. Our main contribution is showing that
the loops for reaching consensus and for handling constraints
can be merged, resulting in a scheme with only two nested
loops. We provide the first convergence proof for such a lazy
algorithmic scheme.

Acknowledgments
This work has been supported by the DFG grant GI-711/5-1
within the Priority Program 1736 Algorithms for Big Data.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

4530



References
[Andersen et al., 2012] Martin Andersen, Joachim Dahl,

Zhang Liu, and Lieven Vandenberghe. Interior-Point
Methods for Large-Scale Cone Programming, pages 55–
84. MIT Press, 2012.

[Boyd et al., 2011] Stephen P. Boyd, Neal Parikh, Eric Chu,
Borja Peleato, and Jonathan Eckstein. Distributed opti-
mization and statistical learning via the alternating direc-
tion method of multipliers. Foundations and Trends in Ma-
chine Learning, 3(1):1–122, 2011.

[Gabay and Mercier, 1976] Daniel Gabay and Bertrand
Mercier. A dual algorithm for the solution of nonlinear
variational problems via finite element approximation.
Computers & Mathematics with Applications, 2(1):17 –
40, 1976.

[Ghadimi et al., 2015] Euhanna Ghadimi, André Teixeira,
Iman Shames, and Mikael Johansson. Optimal parameter
selection for the alternating direction method of multipli-
ers (admm): Quadratic problems. IEEE Trans. Automat.
Contr., 60(3):644–658, 2015.

[Giesen and Laue, 2016] Joachim Giesen and Sören Laue.
Distributed convex optimization with many convex con-
straints. CoRR, abs/1610.02967, 2016.

[Glowinski and Marroco, 1975] R. Glowinski and A. Mar-
roco. Sur l’approximation, par éléments finis d’ordre
un, et la résolution, par pénalisation-dualité d’une classe
de problèmes de dirichlet non linéaires. ESAIM: Mathe-
matical Modelling and Numerical Analysis - Modélisation
Mathématique et Analyse Numérique, 9(R2):41–76, 1975.

[Hestenes, 1969] Magnus R. Hestenes. Multiplier and gradi-
ent methods. Journal of Optimization Theory and Appli-
cations, 4(5):303–320, 1969.

[Huang and Sidiropoulos, 2016] Kejun Huang and
Nicholas D Sidiropoulos. Consensus-admm for general
quadratically constrained quadratic programming. IEEE
Transactions on Signal Processing, 64(20):5297–5310,
2016.

[Morales and Nocedal, 2011] José Luis Morales and Jorge
Nocedal. Remark on ”algorithm 778: L-BFGS-B: fortran
subroutines for large-scale bound constrained optimiza-
tion”. ACM Trans. Math. Softw., 38(1):7:1–7:4, 2011.

[Mosk-Aoyama et al., 2010] Damon Mosk-Aoyama, Tim
Roughgarden, and Devavrat Shah. Fully distributed algo-
rithms for convex optimization problems. SIAM Journal
on Optimization, 20(6):3260–3279, 2010.

[Powell, 1969] M. J. D. Powell. Algorithms for nonlinear
constraints that use lagrangian functions. Mathematical
Programming, 14(1):224–248, 1969.

[Shalev-Shwartz and Srebro, 2008] Shai Shalev-Shwartz
and Nathan Srebro. SVM optimization: inverse depen-
dence on training set size. In International Conference on
Machine Learning (ICML), pages 928–935, 2008.

[Shivaswamy et al., 2006] Pannagadatta K. Shivaswamy,
Chiranjib Bhattacharyya, and Alexander J. Smola. Sec-
ond order cone programming approaches for handling

missing and uncertain data. Journal of Machine Learning
Research, 7:1283–1314, 2006.

[Slater, 1950] Morton Slater. Lagrange multipliers revisited.
Cowles Foundation Discussion Papers 80, Cowles Foun-
dation for Research in Economics, Yale University, 1950.

[Tsang et al., 2007] Ivor W. Tsang, András Kocsor, and
James T. Kwok. Simpler core vector machines with en-
closing balls. In International Conference on Machine
Learning (ICML), pages 911–918, 2007.

[Zhang and Kwok, 2014] Ruiliang Zhang and James T
Kwok. Asynchronous distributed admm for consensus
optimization. In International Conference on Machine
Learning (ICML), pages 1701–1709, 2014.

[Zhu and Martı́nez, 2012] Minghui Zhu and Sonia Martı́nez.
On distributed convex optimization under inequality and
equality constraints. IEEE Trans. Automat. Contr.,
57(1):151–164, 2012.

[Zhu et al., 1997] Ciyou Zhu, Richard H. Byrd, Peihuang
Lu, and Jorge Nocedal. Algorithm 778: L-BFGS-B: for-
tran subroutines for large-scale bound-constrained opti-
mization. ACM Trans. Math. Softw., 23(4):550–560, 1997.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

4531


