
Self-attentive Biaffine Dependency Parsing

Ying Li1 , Zhenghua Li1∗ , Min Zhang1 , Rui Wang2 , Sheng Li1 and Luo Si2
1Institute of Artificial Intelligence, School of Computer Science and Technology, Soochow University

2Alibaba Group, China
yingli hlt@foxmail.com, {zhli13, minzhang}@suda.edu.cn,

lisheng.ls89@gmail.com, {masi.wr, luo.si}@alibaba-inc.com

Abstract

The current state-of-the-art dependency parsing
approaches employ BiLSTMs to encode input
sentences. Motivated by the success of the
transformer-based machine translation, this work
for the first time applies the self-attention mech-
anism to dependency parsing as the replacement
of BiLSTM, leading to competitive performance
on both English and Chinese benchmark data.
Based on detailed error analysis, we then combine
the power of both BiLSTM and self-attention via
model ensembles, demonstrating their complemen-
tary capability of capturing contextual information.
Finally, we explore the recently proposed contextu-
alized word representations as extra input features,
and further improve the parsing performance.

1 Introduction
As a fundamental task in NLP, dependency parsing has at-
tracted a lot of research interest during the past decades due to
its simplicity and multi-lingual applicability in capturing both
syntactic and semantic information. Given an input sentence
s = w0w1 . . . wn, a dependency tree, as depicted in Figure 1,
is defined as d = {(h,m, l), 0 ≤ h ≤ n, 1 ≤ m ≤ n, l ∈ L},
where (h,m, l) is a dependency from the head wordwh to the
modifier word wm with the relation label l ∈ L, and w0 is a
pseudo word that points to the root word.

In recent years, neural network based approaches have
achieved remarkable improvement and outperformed the tra-
ditional discrete-feature based approaches in dependency
parsing by a large margin [Chen and Manning, 2014; Dyer
et al., 2015]. Most remarkably, Kiperwasser and Goldberg
[2016] utilize BiLSTM as an encoder and achieve excellent
results in both graph-based and transfer-based parsers. Based
on this work, Dozat and Manning [2017] propose a simple
yet effective deep biaffine graph-based parser and achieve
the state-of-the-art accuracy on a variety of datasets and lan-
guages. The key of the biaffine parser is the use of multi-
layer BiLSTMs to fully and globally encode the input sen-
tence, along with reasonable design of scoring architecture

∗Corresponding author

$ They are very friendly .

root
nsubj

cop
advmod punct

Figure 1: An example dependency parse tree.

and good settings of hyperparameters such as dropouts and
initialization choices.

As an alternative for encoding input sequences, the self-
attention mechanism has proven to be especially effective and
achieved much higher performance on machine translation
[Vaswani et al., 2017], known as the transformer. Intuitively,
the self-attention mechanism is more suitable for capturing
long-distance dependencies due to its capability of directly
building connections between distant word pairs via attend-
ing. By contrast, the long-distance information may fade in
the encoding process of BiLSTM. From another perspective,
self-attention is also more efficient than the sequential BiL-
STM since the attention computations of different tokens are
independent and thus parallelizable.

In this work, we for the first time apply the self-attention-
based encoder to dependency parsing as the replacement of
BiLSTMs and make an in-depth study on the the differences
between the two techniques. Our experiments on both the
English and Chinese datasets demonstrate that the two en-
coders achieve similar overall performance, but further de-
tailed analysis reveals a lot of local divergence with regard to
dependency distances.

We then employ model ensemble to combine the power of
the self-attention and BiLSTM encoders, leading to consis-
tent improvements over the homogeneous ensembles, which
indicates that the two encoders are complementary in captur-
ing contextual information.

Finally, we further improve parsing performance by mak-
ing good use of external contextualized word representations
(ELMo & BERT), and the new state-of-the-art parsing accu-
racy of 95.22 on English and 89.90 on Chinese.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5067

SelfAtt/BiLSTM Layer 1

xi xj

...

SelfAtt/BiLSTM Layer N

hi hj

MLPD

rD
i

MLPH

rH
j

Score(i j)

Biaffine

Encoder

Input

Figure 2: The framework of the biaffine parsing model

2 The Biaffine Parser
Given an input sentence s = w0w1 . . . wn, where w0 is a
pseudo word that represents the root node of the parse tree.
The goal of dependency parsing is to find the highest-scoring
dependency tree d∗.

d∗ = arg max
d

score(s,d) (1)

There exist two paradigms of dependency parsing, i.e.,
graph-based and transition-based approaches, depending on
the definition of the scoring function score(s,d). In this
work, we adopt the state-of-the-art deep biaffine parser as our
basic parsing framework, which belongs to the graph-based
paradigm and is proposed by Dozat and Manning [2017].

2.1 The Neural Network Architecture
Figure 2 shows the basic framework of the biaffine parser.

The input layer maps each input word wi into a dense vec-
tor representation xi. In the original biaffine parser, xi is the
concatenation of the word and the POS-tag embedding.

xi = embwordwi
⊕ embtagti (2)

where embwordwi
is the pre-trained word embedding and

embtagti is the randomly initialized POS-tag embedding,
which are both fine-tuned during training.

The encoder layer takes x0x1...xn as the input dense vec-
tors, and produces context-aware word representations hi of
all positions 0 ≤ i ≤ n. Presumably, the produced represen-
tation hi retains task-related sentence-level information and
long-distance dependencies for word wi after proper training.

The biaffine parser of Dozat and Manning [2017] employs
a multi-layer BiLSTM encoder. The first-layer BiLSTM se-
quentially encodes the input x0x1...xn in two independent
directions, and the concatenated outputs of both directions
are used as input for the second-layer BiLSTM, and so on.
Finally, the outputs of the top-layer BiLSTM are used as the
context-aware word representations hi. We omit the detailed
equations of BiLSTMs due to space limitation.

In this work, we propose to employ the self-attention-based
encoder instead of BiLSTMs, which will be introduced in
Section 3.1 in detail.

The MLP representation layer takes the context-aware
word representation hi as input, and use two separate MLPs
to get two lower-dimensional representation vectors for each
position 0 ≤ i ≤ n.

rH
i = MLPH (hi)

rD
i = MLPD (hi)

(3)

where rH
i is the representation vector of wi as a head word,

and rD
i as a dependent. The MLP layer on the one hand re-

duces the dimension of hi, and more importantly on the other
hand detains only syntax-related information in ri.

The biaffine scoring layer computes scores of all depen-
dencies via a biaffine operation.

score(i← j) =

[
rD
i

1

]T
WbrH

j (4)

where score(i ← j) is the score of the dependency (j, i)
and the matrix Wb is a biaffine parameter. Please note that
scores of all dependencies can be efficiently computed at the
same time in the matrix form.

2.2 Cross-entropy Training Loss
The parser defines a local cross-entropy loss for each position
i. Assuming wj is the gold-standard head of wi, the corre-
sponding loss is

loss(s, i) = − log
escore(i←j)∑

0≤k≤n,k 6=i

escore(i←k)
(5)

2.3 Viterbi Decoding
Given the scores of all dependencies, the arc-factorization
score of a dependency tree is

score(s,d) =
∑

(j,i)∈d

score(i← j) (6)

The highest-scoring tree d∗ can be decoded with the dynamic
programming algorithm known as maximum spanning tree
[McDonald et al., 2005].

2.4 Dependency Label Handling
The biaffine parser treats the classification of dependency la-
bels as a separate task after finding d∗. We denote the score of
assigning a label l to a dependency i← j as score(i← j, l),
which is also computed with biaffine operations. The unla-
beled parsing task and the label classification task share most
parameters except for the MLPs and biaffines.

3 Our Approach
In this work, we first propose to use the self-attention mech-
anism as the replacement of the BiLSTM-based encoder in
dependency parsing. Then we explore the encoding capacity
of both by model ensembles. Furthermore, we make in-depth
empirical study on the use of the recently proposed contextu-
alized word representations.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5068

SelfAtt Layer 1

xi xj

...

hi hj

SelfAtt Layer N

Multi-head
Attention

Add & Norm

Feed
Forward

Add & Norm

Figure 3: An overview of the self-attention encoder.

3.1 Self-Attention Encoder
As an encoding mechanism, self-attention has been success-
fully applied in several tasks. This work aims to make full
investigation on how to effectively use self-attention in de-
pendency parsing.

Similar to BiLSTM, the self-attention-based encoder takes
x0x1...xn as the inputs, and produces context-aware word
representations ri of all positions 0 ≤ i ≤ n. We employ a
stack of N identical self-attention layers, each having inde-
pendent parameters. Figure 3 illustrates the structure of an
N -layered self-attention-based encoder. Each layer is com-
posed of a multi-head attention sublayer and a feed-forward
sublayer. Residual connection and layer normalization are
applied to the outputs of the two sublayers.

In the following, we illustrate the first layer of the self-
attention-based encoder in detail:

Position Embedding as Extra Input
Unlike BiLSTMs, the self-attention mechanism need to use
an extra position embedding embposi , in order to inject rela-
tive or absolute position information.

xi = (embwordwi
⊕ embtagti) + embposi (7)

where embposi is called the position embedding of the i-th
position. We follow Vaswani et al. [2017] and use the sine
and cosine functions of different frequencies to compose po-
sition embeddings.

embposi [2j] = sin(
i

100002j/dmodel
)

embposi [2j + 1] = cos(
i

100002j/dmodel
)

(8)

where 2j and 2j + 1 are the even and odd indices of the po-
sition embedding, and dmodel is the dimension of embposi .1
In this way, each dimension of the positional encoding cor-
responds to a sinusoid, allowing the model to easily learn to
attend to relative positions.

Multi-Head Attention Sublayer
The inputs xi (0 ≤ i ≤ n) are then fed into a multi-head
attention layer. We use X ∈ R(n+1)×dmodel to represent the
inputs in the matrix form.

1 We have also tried using a learned table of position embeddings
as Kitaev and Klein [2018] did, but found a slight accuracy drop.

The basic idea of the self-attention mechanism is to re-
construct a representation vector for each position by attend-
ing to and aggregating the inputs of all positions. To be
clearer, we begin with the single-head attention mechanism.

First, each input xi is mapped into three vectors.

qi = xiWq

ki = xiWk

vi = xiWv

(9)

The resulting three vectors are called query, key, value vec-
tors respectively, and have the same dimension (denoted as
dhead).

Then, the query vector of the focused position i attends
to the key vectors of all positions, and the value vectors of
all positions are aggregated according to normalized atten-
tion weights, producing the single-head representation of i
(of dimension dhead).

SingleHead(X, i) =
n∑

j=0

vj ×
eqi·kj/

√
dhead

Z
(10)

where Z =
∑n

j=0 e
qi·kj/

√
dhead is the normalization factor,

also known as a softmax process.

Multi-head attention uses m separate sets of projection
matrices W1..m

q/k/v to produce m independent representations,
which are then concatenated as the representation of i.

MultiHead(X, i) = Concate(SingleHead1..m(X, i))
(11)

Compared with single-head attention, multi-head attention is
proven to be more effective due to the capability of repre-
senting the same position from different perspectives. Then,
a linear map is used to mix different channels from different
heads for each position i, following Tan et al. [2018].

ai = MultiHead(X, i)Wo (12)

where Wo ∈ Rmdhead×dmodel .
Finally, residual connection and layer normalization [Ba et

al., 2016] are performed.

yi = LayerNorm(ai + xi) (13)

Position-Wise Feed-Forward Sublayer
The outputs of the multi-head attention sublayer are then fed
into a fully connected feed-forward network for each position
i.

fi = W2ReLU(W1yi + b1) + b2 (14)
where W1 ∈ Rdff×dmodel , W2 ∈ Rdmodel×dff , b1 ∈ Rdff ,
and b2 ∈ Rdmodel are the parameters.

Similar to the multi-head attention sublayer, residual con-
nection and layer normalization are also performed.

zi = LayerNorm(fi + yi) (15)

3.2 Model Ensemble
Model ensemble has been extensively adopted in real-life ap-
plications and shared task competitions [Petrov and McDon-
ald, 2012; Zeman et al., 2018]. In this work, we employ

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5069

ensemble to combine the power of both self-attention- and
BiLSTM-based encoders due to their divergent but comple-
mentary capability of capturing contextual information.

In particular, we use the product of experts approach [Hin-
ton, 2002] to combine predictions of 6 models. First, we sep-
arately train 6 parsers in the n-fold jack-knifing way, where
each parser is trained on a 5/6 subset of the whole training
data. During evaluation, we employ the 6 parsers to indepen-
dently produce a probability for each dependency. We then
use the averaged probability as the final probability of a de-
pendency. Finally, we employ Viterbi decoding to produce
the optimal tree according to the aggregated probabilities.

3.3 Contextualized Word Representations
Recently proposed contextualized word representations, such
as ELMo [Peters et al., 2018] and BERT [Devlin et al., 2018],
have been shown to be extremely helpful in a variety of NLP
tasks. The basic idea is to train a multi-layer LSTM- or self-
attention-based encoder on large-scale unlabeled texts with
the natural language model (or next-sentence prediction) loss.

In this work, we replace the word embeddings with the
contextualized word representations as extra features without
fine-tuning. We make a thorough comparison between ELMo
and BERT for dependency parsing, and also experiment with
different ways to combine the different encoder layers.

4 Experiments
We conduct experiments on the English Penn Treebank (PTB)
dataset with Stanford dependencies and the Chinese dataset
of the 2009 CoNLL shared task. For PTB, we directly use the
data of Chen and Manning [2014], and they use the Stanford
POS tagger. For Chinese CoNLL-2009, we use the data split
and POS tags provided by the organizers [Hajic et al., 2009].

For evaluation metrics, we use the standard labeled at-
tachment score (LAS, percent of words that receives correct
heads and labels) and unlabeled attachment score (UAS, ig-
noring labels). Following previous work [Dozat and Man-
ning, 2017], we ignore all punctuation marks for PTB and
keep them for the Chinese CoNLL-2009 dataset.

Each parser is trained for at most 1, 000 iterations, and the
performance is evaluated on the dev data after each iteration
for model selection. We stop the training if the peak perfor-
mance does not increase in 100 consecutive iterations.

For pre-trained word embeddings, we directly adopt the
GloVe embeddings released by Stanford for English2, and
train word2vec embeddings on Chinese Gigaword Third Edi-
tion for Chinese.

We directly use the English ELMo model released by Al-
lenNLP3. For Chinese, we train ELMo for 10 iterations on
the Chinese Gigaword Third Edition, consisting of about 1.2
million sentences. It takes about 7 days using 6 GPU nodes
(GTX 1080Ti). For BERT, we use the released BERT-Base
models for English (uncased) and Chinese.4

2https://nlp.stanford.edu/projects/glove/
3https://github.com/allenai/allennlp/blob/master/tutorials/

how to/elmo.md
4https://github.com/google-research/bert

Depth N English Chinese
UAS LAS UAS LAS

10 95.57 93.72 88.35 85.20
8 95.67 93.83 88.52 85.36
6 95.45 93.55 88.30 85.12
4 95.31 93.33 87.90 84.66

Table 1: Results on the dev data regarding the depth (layer number
N) of the self-attention encoder.

4.1 Hyperparameter Choices
We mainly follow the work of Dozat and Manning [2017]
for most of the hyperparameter settings, which uses three
BiLSTM layers as the encoder. The dimensions of the
word/tag/position embeddings are 100/100/200; dmodel is
200; dff is 800; head number m is 8, and thus dhead is
25; dropout ratio before residual connection is 0.2; dropout
ratios before entering multi-head attention and feed-forward
are both 0.1; all other dropout ratios are 0.33; β1 = 0.9,
β2 = 0.98 and ε = 10−6 for the Adam optimizer.

Preliminary experiments show that the our parser using the
self-attention encoder is insensitive to most of the above pa-
rameters, while the number of self-attention layers and the
learning rate have larger impact on the performance as shown
in the following results.

Depth of the Self-attention Encoder (N)
Table 1 shows the results with different numbers of self-
attention layers on the dev data. Increasing the self-attention
layer number from 4 to 8 consistently improves the perfor-
mance on both English and Chinese datasets. The perfor-
mance drops slightly when using 10 self-attention layers.
These results indicate that the use of more self-attention lay-
ers increases the complexity of the model, allowing it to cap-
ture richer contextual information, but also makes the model
prone to overfit the training data, which is consistent with
previous findings [Vaswani et al., 2017; Tan et al., 2018].

Learning Rate
The results on the dev data with different learning rates are
shown in Table 2. When we use the same learning rate 0.002
(or larger) as the original biaffine parser of Dozat and Man-
ning [2017], the model converges quickly but achieves unsat-
isfactory performance. Reducing the value to certain extent
improves the parsing accuracy. Based on the results, we set
the learning rate to 0.0012 for English and 0.0011 for Chinese
afterwards.

4.2 Contextualized Word Representations
Instead of using the pretrained word embedding, we also ex-
periment with contextualized word representations from both
ELMo and BERT.

The results of ELMo are shown in Table 3. We can see
that it leads to much better performance using only the third
(top) layer outputs of ELMo than the first (bottom) layer out-
puts. We then use the weighted sum of all three layers, with
the weight values learned during training, leading to further
improvement on both English and Chinese. However, it is

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5070

English Chinese
UAS LAS UAS LAS

0.003 94.70 92.65 86.14 82.54
0.002 95.16 93.22 87.44 84.17
0.0015 95.29 93.45 87.99 84.90
0.0012 95.67 93.83 88.39 85.23
0.0011 95.58 93.71 88.52 85.36
0.001 95.42 93.57 88.16 85.03
0.0005 94.88 92.77 87.96 84.75

Table 2: The effect of different learning rates on the dev data.

English Chinese
UAS LAS UAS LAS

Basic Parser 95.67 93.83 88.52 85.36
Replace embword with ELMo outputs

Only layer #3 96.12 94.23 89.40 86.15
Only layer #2 95.98 94.07 89.55 86.21
Only layer #1 95.60 93.75 87.35 84.02
Weighted sum 96.36 94.54 90.16 87.06
Averaged sum 96.40 94.56 90.25 87.27

Concatenate embword with ELMo outputs
Averaged sum 96.22 94.37 89.41 86.32

Replace embword with BERT outputs
Averaged sum 96.57 94.69 92.01 89.20

Table 3: Results of the self-attentive parser on the dev data regarding
the different ways to use ELMo/BERT outputs.

interesting to see that the simple averaged sum even slightly
outperforms the weighted sum.

Instead of replacing word embeddings with ELMo outputs,
we also try to directly combine them, which decreases the
performance, especially for Chinese. The reason may be that
it is difficult for the model to reach a balance between word
embeddings as shallow and context-free representations and
ELMo outputs as deep and contextualized representations.

For BERT, We conduct the same experiments and find the
trends are similar: using the averaged sum of the top-4 layer
outputs is the best. We can see that BERT can greatly boost
parsing accuracy over ELMo by about 2% for Chinese. The
gain is much smaller (about 0.1−0.2%) for English since the
performance is already at a high level.

4.3 Model Ensemble
The results for the model ensemble experiments are shown in
Table 4. 3×SelfAtt+3×BiLSTM means among six training
data folds, three are used to train three parsers with the self-
attention encoder, and the remaining three are for those with
the BiLSTM encoder.

First, compared with the results of single self-attentive
parsers in Table 3, model ensemble can consistently improve
parsing accuracy on both languages. For example, 6×SelfAtt
with BERT outperforms the single self-attentive parser with
BERT by 0.18 (94.87 vs. 94.69) on English and 0.53 (89.73
vs. 89.20) on Chinese in LAS.

English Chinese
UAS LAS UAS LAS

Ensemble of basic parsers
6×SelfAtt 95.76 93.97 88.68 85.47
6×BiLSTM 95.76 94.01 88.63 85.44
3×SelfAtt+3×BiLSTM 95.89 94.12 88.90 85.77

Ensemble of parsers with ELMo outputs
6×SelfAtt 96.40 94.56 90.51 87.41
6×BiLSTM 96.42 94.65 90.34 87.37
3×SelfAtt+3×BiLSTM 96.54 94.74 90.72 87.72

Ensemble of parsers with BERT outputs
6×SelfAtt 96.63 94.87 92.39 89.62
6×BiLSTM 96.61 94.80 92.20 89.45
3×SelfAtt+3×BiLSTM 96.66 94.91 92.50 89.73

Table 4: Ensemble results on the dev data.

English Chinese
UAS LAS UAS LAS

Hajic et al. [2009] - - - 76.51
K&G [2016] 93.20 91.20 - -
Andor et al. [2016] 94.61 92.79 84.72 80.85
Ma et al. [2018] 95.87 94.19 - -
Clark et al. [2018] 96.60 95.00 - -
BiLSTM (D&M [2017]) 95.74 94.08 88.90 85.38
BiLSTM (our impl) 95.79 94.08 88.70 85.50
SelfAtt 95.93 94.19 88.77 85.58
SelfAtt w/ ELMo 96.59 94.91 90.32 87.27
SelfAtt w/ BERT 96.67 95.03 92.24 89.29
Ensemble 96.15 94.49 89.26 86.08
Ensemble w/ ELMo 96.68 95.07 90.76 87.75
Ensemble w/ BERT 96.83 95.22 92.76 89.90

Table 5: Final results on the test data.

Second, we can see that the 6×SelfAtt parsers achieve very
similar results (slightly higher in most cases) compared with
the 6×BiLSTM, showing that the two frameworks have sim-
ilar power of encoding contextual information.

Finally and most importantly, we find that the hy-
brid 3×SelfAtt+3×BiLSTM ensembles achieve consistently
higher accuracy than the homogeneous 6×SelfAtt/BiLSTM
ensembles. This clearly demonstrates that the two encoding
techniques are complementary and can certainly benefit from
each other.

4.4 Final Results on the Test Data
Table 5 shows the final results and makes comparison with
previous works on the test data. Our implemented biaffine
parser with the BiLSTM-based encoder achieves slightly
higher performance than the original results reported in Dozat
and Manning [2017], and our proposed self-attentive parser
outperforms our BiLSTM parser by small margin. In the en-
semble setting (3×SelfAtt+3×BiLSTM), the ensemble mod-
els with BERT achieve the best performance, leading to new

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5071

 75

 80

 85

 90

 95

1 2 3 4 5 6 7+

L
A

S

Dependency Distance

SelfAtt (English)
BiLSTM (English)
SelfAtt (Chinese)

BiLSTM (Chinese)

Figure 4: Accuracy curves regarding dependency distances.

state-of-the-art results on both languages.

4.5 Analysis
Although the self-attention and BiLSTM encoders achieve
very close overall parsing accuracy, we conduct more detailed
analysis in order to gain more insights on the differences be-
tween them. We divide the gold-standard dependencies into
seven subsets according to the absolute distance between the
two words, and calculate the accuracy for each subset. Fig-
ure 4 compares the accuracy curves of the two single parsers
with the self-attention or BiLSTM encoder with regard to the
dependency distance on the test data. On the one hand, we
can see that the two encoders actually exhibit divergent en-
coding power for dependencies of different distances. On the
other hand, there seems no clear pattern on the wins and loses,
indicating that self-attention and BiLSTM, as two different
encoders, both have the competitive capability of capturing
short- and long-range dependencies.

5 Related Work
LSTM, as the mainstream encoding technique, has been ex-
tensively used in many NLP tasks including parsing. Dyer et
al. [2015] first apply LSTMs to encode history actions and
partially built trees in a transition-based dependency parser.
Kiperwasser and Goldberg [2016] utilize BiLSTM to encode
the input sentence for both transition-based and graph-based
dependency parsing. As the baseline of this work, Dozat and
Manning [2017] propose a graph-based biaffine dependency
parser which largely relies on a multi-layer BiLSTM encoder.

Self-attention has been successfully applied to neural ma-
chine translation by Vaswani et al. [2017], leading to large
improvement on translation quality, known as the trans-
former. Foster et al. [2018] extend the transformer for ma-
chine translation by combining BiLSTM and self-attention
encoders in a cascaded stacking architecture. In this work,
we have also tried their method in dependency parsing, but
found little improvement. So far, self-attention has been suc-
cessfully applied to a variety of NLP tasks, such as language
understanding [Shen et al., 2018] and semantic role labeling
[Tan et al., 2018]. Most closely related to this work, Kitaev
and Klein [2018] replace BiLSTM with self-attention in the

constituent parser of Stern et al. [2017]. They propose two
useful techniques to improve parsing performance, i.e., fac-
tored content and position attention and replacing POS-tag
embeddings with CharLSTM word representations. In this
work, we have also implemented the two techniques of Ki-
taev and Klein [2018], but our preliminary experiments show
they are not helpful for dependency parsing.

Contextualized word representations are first proposed by
Peters et al. [2018]. They train LSTM encoders on large-
scale unlabeled data with language model loss to obtain
context-aware word representations, known as ELMo, which
is shown to be extensively helpful for many NLP tasks. Rad-
ford et al. [2018] propose to pre-train transformer instead
of the LSTM encoder on large-scale unlabeled corpus with
language model loss, and finetune the model on the labeled
data of the focused task, known as GPT. Devlin et al. [2018]
further extend the idea of ELMo and GPT by 1) replacing
the less efficient BiLSTM with self-attention, 2) using both
bidirectional masked language model loss and next-sentence
prediction loss, and 3) using a larger model and much more
data. As another interesting direction, Clark et al. [2018]
propose a semi-supervised learning framework to learn from
both labeled and unlabeled data by designing clever auxiliary
tasks, instead of using language model loss, leading to very
promising performance on English dependency parsing.

Model ensemble is a commonly used strategy to integrate
different parsing models in traditional discrete-feature depen-
dency parsing [Nivre and McDonald, 2008]. Kuncoro et
al. [2016] propose an knowledge distilling approach to train
a graph-based neural parser on the voting results of many
transition-based neural parsers trained with different initial-
ization starts. Liu et al. [2018] propose to distill knowledge
from the local classifiers employed by the transition-based
parser.

6 Conclusions
This work for the first time applies the self-attention en-
coder to dependency parsing under the state-of-the-art graph-
based biaffine parsing framework, obtaining competitive per-
formance on both English and Chinese benchmark data. The
comparative analysis shows that in spite of local divergences,
the two encoders actually both have the power of modeling
short- or long-range dependencies, which motivates us to ex-
tend our experiments into model ensembles. The hybrid en-
semble models achieve consistently higher performance than
the homogeneous ensemble ones, demonstrating that self-
attention and BiLSTM are complementary in encoding con-
textual information. Furthermore, we find that proper uti-
lization of the contextualized word representations substan-
tially improves parsing accuracy, leading to new state-of-the-
art parsing performance.

Acknowledgments
We thank our anonymous reviewers for their helpful com-
ments. This work was supported by National Natural Sci-
ence Foundation of China (Grant No. 61525205, 61876116,
61432013), and was partially supported by the joint research
project of Alibaba and Soochow University.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5072

References
[Andor et al., 2016] Daniel Andor, Chris Alberti, David

Weiss, Aliaksei Severyn, Alessandro Presta, Kuzman
Ganchev, Slav Petrov, and Michael Collins. Globally nor-
malized transition-based neural networks. In Proceedings
of ACL, pages 2442–2452, 2016.

[Ba et al., 2016] Lei Jimmy Ba, Ryan Kiros, and Geoffrey E.
Hinton. Layer normalization. CoRR, abs/1607.06450,
2016.

[Chen and Manning, 2014] Danqi Chen and Christopher D.
Manning. A fast and accurate dependency parser using
neural networks. In Proceedings of EMNLP, pages 740–
750, 2014.

[Clark et al., 2018] Kevin Clark, Minh-Thang Luong,
Christopher D. Manning, and Quoc V. Le. Semi-
supervised sequence modeling with cross-view training.
In Proceedings of EMNLP, pages 1914–1925, 2018.

[Devlin et al., 2018] Jacob Devlin, Ming-Wei Chang, Ken-
ton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805, 2018.

[Dozat and Manning, 2017] Timothy Dozat and Christopher
Manning. Deep biaffine attention for neural dependency
parsing. In Proceedings of ICLR, 2017.

[Dyer et al., 2015] Chris Dyer, Miguel Ballesteros, Wang
Ling, Austin Matthews, and Noah A. Smith. Transition-
based dependency parsing with stack long short-term
memory. In Proceedings of ACL, pages 334–343, 2015.

[Foster et al., 2018] George Foster, Ashish Vaswani, Jakob
Uszkoreit, Wolfgang Macherey, Lukasz Kaiser, Orhan Fi-
rat, Llion Jones, Noam Shazeer, Yonghui Wu, Ankur
Bapna, Melvin Johnson, Mike Schuster, Zhifeng Chen,
Macduff Hughes, Niki Parmar, and Mia Xu Chen. The
best of both worlds: Combining recent advances in neural
machine translation. In Proceedings of ACL, pages 76–86,
2018.

[Hajic et al., 2009] Jan Hajic, Massimiliano Ciaramita,
Richard Johansson, Daisuke Kawahara, Maria Antònia
Martı́, Lluı́s Màrquez, Adam Meyers, Joakim Nivre,
Sebastian Padó, Jan Stepánek, Pavel Stranák, Mihai
Surdeanu, Nianwen Xue, and Yi Zhang. The conll-2009
shared task: Syntactic and semantic dependencies in
multiple languages. In Proceedings of CoNLL: Shared
Task, pages 1–18, 2009.

[Hinton, 2002] Geoffrey E. Hinton. Training products of ex-
perts by minimizing contrastive divergence. Neural Com-
putation, 14(8):1771–1800, 2002.

[Kiperwasser and Goldberg, 2016] Eliyahu Kiperwasser and
Yoav Goldberg. Simple and accurate dependency parsing
using bidirectional LSTM feature representations. CoRR,
abs/1603.04351, 2016.

[Kitaev and Klein, 2018] Nikita Kitaev and Dan Klein. Con-
stituency parsing with a self-attentive encoder. In Proceed-
ings of ACL, pages 2675–2685, 2018.

[Kuncoro et al., 2016] Adhiguna Kuncoro, Miguel Balles-
teros, Lingpeng Kong, Chris Dyer, and Noah A. Smith.
Distilling an ensemble of greedy dependency parsers into
one MST parser. In Proceedings of EMNLP, pages 1744–
1753, 2016.

[Liu et al., 2018] Yijia Liu, Wanxiang Che, Huaipeng Zhao,
Bing Qin, and Ting Liu. Distilling knowledge for search-
based structured prediction. In Proceedings of ACL, pages
1393–1402, 2018.

[Ma et al., 2018] Xuezhe Ma, Zecong Hu, Jingzhou Liu,
Nanyun Peng, Graham Neubig, and Eduard H. Hovy.
Stack-pointer networks for dependency parsing. In Pro-
ceedings of ACL, pages 1403–1414, 2018.

[McDonald et al., 2005] Ryan T. McDonald, Fernando
Pereira, Kiril Ribarov, and Jan Hajic. Non-projective
dependency parsing using spanning tree algorithms. In
Proceedings of HLT/EMNLP, pages 523–530, 2005.

[Nivre and McDonald, 2008] Joakim Nivre and Ryan Mc-
Donald. Integrating graph-based and transition-based de-
pendency parsers. In Proceedings of ACL, pages 950–958,
2008.

[Peters et al., 2018] Matthew E. Peters, Mark Neumann,
Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton
Lee, and Luke Zettlemoyer. Deep contextualized word
representations. In Proceedings of NAACL-HLT, pages
2227–2237, 2018.

[Petrov and McDonald, 2012] Slav Petrov and Ryan Mc-
Donald. Overview of the 2012 shared task on parsing the
web. In Proceedings of SANCL, 2012.

[Radford et al., 2018] Alec Radford, Karthik Narasimhan,
Tim Salimans, and Ilya Sutskever. Improving language
understanding by generative pre-training. OpenAI Techni-
cal Report, 2018.

[Shen et al., 2018] Tao Shen, Tianyi Zhou, Guodong Long,
Jing Jiang, Shirui Pan, and Chengqi Zhang. Disan: Di-
rectional self-attention network for rnn/cnn-free language
understanding. In Proceedings of AAAI, pages 5446–5455,
2018.

[Stern et al., 2017] Mitchell Stern, Jacob Andreas, and Dan
Klein. A minimal span-based neural constituency parser.
In Proceedings of ACL, pages 818–827, 2017.

[Tan et al., 2018] Zhixing Tan, Mingxuan Wang, Jun Xie,
Yidong Chen, and Xiaodong Shi. Deep semantic role la-
beling with self-attention. In Proceedings of AAAI, pages
4929–4936, 2018.

[Vaswani et al., 2017] Ashish Vaswani, Noam Shazeer, Niki
Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In Proceedings of NIPS, pages 6000–6010, 2017.

[Zeman et al., 2018] Daniel Zeman, Jan Haji{č}, Martin
Popel, Martin Potthast, Milan Straka, Filip Ginter, Joakim
Nivre, and Slav Petrov. Conll 2018 shared task: Multilin-
gual parsing from raw text to universal dependencies. In
Proceedings of CoNLL, pages 1–21, 2018.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5073

