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Abstract
Declarative rules such as Prolog and Datalog are
common formalisms to express expert knowledge
and are used in a number of systems. Since de-
veloping such rules is time consuming and requires
scarce expert knowledge, it is essential to develop
algorithms for learning such rules. We address the
problem of learning existential rules, a richer class
of rules which found applications in many use-
cases such as Semantic Web and Web Data Extrac-
tion. In particular, we concentrate on developing
evolutionary learning algorithms for rule learning.

1 Introduction
Datalog rules are a common formalism for expressing expert
knowledge. For instance, the rule

grandpa(X, Y) :- parent(X, Z), parent(Z, Y), male(X) (1)

expresses the knowledge that if X is a parent of Z who in
turn is a parent of Y and, in addition, X is a male, then X
is a grandfather of Y . Such rules have found a number of
applications in expert and legal systems, medical diagnos-
ing and finance. Most recently, such declarative rules have
been used in expressing knowledge and inferring new infor-
mation in knowledge graph management systems. However,
it is known that Datalog rules are not able to express and rea-
son over unknown and incomplete information. For that rea-
son the formalism of Datalog+/- [Cal et al., 2010] has been
introduced which is able to express such information. For
instance, the rule

managerOf(X, Y) :- employee(Y) (2)

where the variable X is existentially quantified, expresses the
fact that each employee must have a manager even though
it is unknown who that manager is. Introducing existen-
tial quantifiers comes at a cost, however, since reasoning
w.r.t. Datalog+/- rules becomes undecidable, unlike in Dat-
alog. Hence, there have been a number of sublanguages of
Datalog+/- that have been proposed in which reasoning is not
only decidable but also tractable. Warded Datalog+/- [Bel-
lomarini et al., 2018] is one such sublanguage that subsumes
Datalog, and allows existential quantifiers, and moreover, rea-
soning in it is in polynomial time. Furthermore, this language

becomes the core of the Vadalog system which enables rea-
soning over large amount of data. Existential rules have been
used in a number of use-cases such as ontological reasoning
in Semantic Web, Web Data Extraction (where existentials
are used for ID creation) and Recommender Systems (where
existentials model liked items of new users).

The vast majority of development time of the rule-based
solutions is spent on writing the rules, as they can be quite in-
volved and demand scarce expert knowledge. This hampers
rule-based systems and solutions from being widely adopted.
However, availability of data and learning rules from this data
can significantly reduce the development time. Additional ad-
vantage of the process of learning rules is that the resulting
rules are interpretable, as opposed to many black-box ma-
chine learning models [Dai and Zhou, 2019].

During my doctoral research I intend to study the problem
of learning existential rules, in particular Warded Datalog+/-
rules, as well as how such rules can help in learning usual
(non-existential) rules.

Inductive Logic Programming (ILP) [Nienhuys-Cheng and
de Wolf, 1997] is the field that has been studying the problem
of learning (non-existential) rules. We can define ILP task as
follows: given background knowledge, a set of positive and
negative examples expressed as a set of facts, learn a set of
rules that entail all the positive and none of the negatives.

For example, assuming we have the following facts
constituting the background knowledge: parent("Bob",
"Sharon"). parent("Jane", "Bob"). parent("Victor", "Bob").
male("Victor"). and one positive example grandpa("Victor",
"Sharon"). An ILP system can learn the rule defined in (1).

Classical approaches to ILP perform search over the space
of all syntactically correct programs (sets of rules). Exhaus-
tive search such as depth-first search is guaranteed to find
the high quality rules, but suffers scalability problems as the
search space increases. Heuristic search strategies like hill-
climbing or greedy algorithms are efficient but can easily be
trapped in local optima, thus possibly missing the optimal so-
lution [Fürnkranz et al., 2012].

In my thesis I intend to study evolutionary algorithms for
ILP. These are a family of biology-inspired search algorithms
that optimize for most promising solutions, while exploring a
wide search space at the same time. In particular, in our set-
ting, atoms, partial or parameterized rules can be treated as
chromosomes, from which new population of chromosomes
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can be derived via the operations of mutation, crossover and
selection. While performing these operations, a quality mea-
sure, called fitness function is designed to judge whether an
obtained new generation of chromosomes is fit for continu-
ing the search. Such evolutionary algorithms typically do not
perform exhaustive search and at the same time are less likely
to fall into local optima. In addition, they are flexible as they
might not require imposed template on shape of rules, as it is
typically the case in other approaches to ILP.

2 Research Proposal
2.1 Evolutionary Algorithm for Existential Rules
We start our research by studying a family of evolutionary al-
gorithms for learning existential rules. There are a number of
parameters that give rise to multiple variations of such algo-
rithms. In particular, they are (i) initialization of initial popu-
lation, (ii) the operations of mutation, crossover and selection,
and (iii) fitness function. In all the aspects (i)-(iii) of evolu-
tionary algorithms, presence of existential quantifiers in the
rules gives rise to new challenges. Concerning (i), presence
of existentials leads to a much larger set of possible initial
populations which leads to the following research question.
RQ1 What is the best way to select the initial population of

existential (partial) rules to lead to faster convergence?
Similarly, the new operations of mutation, crossover and se-
lection have to be defined to capture meaningful transforma-
tions of existential rules.
RQ2 What are appropriate and meaningful operations of mu-

tation, crossover and selection and what is their impact
on the overall performance of the algorithm?

Next, typical fitness functions are based on the various perfor-
mance measures such as precision or f-score, i.e., that mea-
sure how well the inferred facts from the intermediate learned
rules match the training examples. However, existential rules
can result in inferred facts that contain marked nulls, i.e.,
placeholders for unknown values generated by applying the
rules. An example of such fact is managerOf(z, "Victor"),
where z is a marked null, obtained by applying the rule (2)
to the fact employee("Victor"). This leads to the question
of defining appropriate fitness functions that measure how
well such facts match training examples that do not contain
marked nulls.
RQ3 How to define meaningful fitness functions and what is

their impact on the overall learning performance?
We intend to find inspiration from the database theory liter-
ature (such as the notion of certain answer semantics) where
the question of query answering in presence of marked nulls
was extensively studied.

2.2 Improving Learning of Non-Existential Rules
We plan to study whether existential rules learning can im-
prove learning of Prolog or Datalog (non-existential) rules. In
particular, typically during a run of an evolutionary algorithm
for learning non-existential rules we may generate a rule of
the form grandpa(X,Y) :- male(X) which is considered as an
invalid Prolog or Datalog rule and thus rejected. But in fact

this rule is existential and can be considered as a valid rule
by the algorithms resulted from RQ1-RQ3. Adding ability of
learning algorithms for non-existential rules also accept exis-
tential rules as intermediate chromosomes can lead to faster
convergence. For instance, the example rule above can lead
to the desired rule (1) faster as it can start exploring most
promising chromosomes (with existentials) earlier.
RQ4 Can evolutionary algorithms for non-existential rules

be improved with allowing existential rules as interme-
diate chromosomes?

2.3 Parameterized Rules
Further research questions include extending the developed
algorithms to be able to deal with parameterized rules. This
can be useful in the scenarios when a structure of a desired
rule is known, but the needed names for predicates, variables
or constants are unknown. For instance, we might require
to learn the rule grandpa(X, Y) :- ?(X, Z), ?(Z, Y), male(X)
where only the predicate name for ? is unknown and can
match either an existing or a new predicate name.
RQ5 Can the evolutionary algorithms be extended to learn

parameters for given parameterized rules?

2.4 Additional Rule Features
Other language constructs besides the existentials are being
used in real industry use-cases, such as negation and aggre-
gation. We intend to study the following research question:
RQ6 Can the evolutionary algorithms be extended to learn

rules with negation or aggregation?
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