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Abstract

Identifying discourse structures and coherence rela-
tions in a piece of text is a fundamental task in nat-
ural language processing. The first step of this pro-
cess is segmenting sentences into clause-like units
called elementary discourse units (EDUs). Tradi-
tional solutions to discourse segmentation heavily
rely on carefully designed features. In this demon-
stration, we present SEGBOT, a system to split a
given piece of text into sequence of EDUs by us-
ing an end-to-end neural segmentation model.! Our
model does not require hand-crafted features or ex-
ternal knowledge except word embeddings, yet it
outperforms state-of-the-art solutions to discourse
segmentation.

1 Introduction

Identifying discourse structures and coherence relations has
an important role in various natural language processing
(NLP) applications such as text summarization [Durrett et
al., 2016; Li et al., 2018d], information extraction [Li et al.,
2018al, question answering [Li et al., 2018c] and passage re-
trieval [Dias et al., 2007; Li et al., 2018e]. The first neces-
sary step of this process is to perform discourse segmenta-
tion, which refers to the task of breaking a piece of text into
a sequence of elementary discourse units or EDUs [Marcu,
2000]. As exemplified in Figure 1, EDUs are clause-like units
that serve as building blocks for discourse parsing in Rhetor-
ical Structure Theory or RST [Mann and Thompson, 1988].
If the given text is wrongly segmented in this stage, the error
propagates to the subsequent steps and it becomes unreliable
to assign correct discourse relations. Thus, discourse segmen-
tation is a crucial step for effective discourse parsing [Joty et
al., 2015]. Tt is also important for downstream applications
like text compression [Sporleder and Lapata, 2005] and ma-
chine translation [Joty et al., 2017].

Discourse segmentation can be treated as a sequence la-
beling problem, where the task is to predict a sequence
of ‘yes/no’ boundary tags. Traditional approaches to se-
quence labeling use conditional random fields (CRFs) with

'The online demonstration of SEGBOT can be accessed at
http://138.197.118.157:8000/segbot/
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Figure 1: A sentence with three elementary discourse units (EDUs).

hand-crafted features. Recent methods use recurrent neu-
ral networks (RNNs) with possibly a CRF layer at the out-
put [Lample et al., 2016; Xu et al., 2019]. However, when
it comes to EDU segmentation, studies have shown that se-
quence labeling does not provide any additional gain over
simple binary classification (e.g.,, using MaxEnt) due to the
sparsity of ‘yes’ boundary tags [Fisher and Roark, 2007;
Joty et al., 2015]. Therefore, in our work, we frame the
task as a sequence generation task with a seq2seq model
[Sutskever et al., 2014]. Our goal is to generate a sequence
of indices in the input text each indicating an EDU bound-
ary; see Figure 2(a). Notice that the set of candidate positions
changes at each decoding step. This is unlike the existing
seq2seq model, where the output vocabulary of the decoder
RNN is fixed at each decoding step.

To alleviate these issues, we propose SEGBOT, an end-to-
end neural system for discourse segmentation. SEGBOT uses
distributed representations to better capture lexical semantics,
and employs a bidirectional RNN to model sequential depen-
dencies while encoding the given text. The decoder, which is
a unidirectional RNN, uses a poinfer mechanism [Vinyals et
al., 2015; Li et al., 2018b] to infer the segment boundaries.
SEGBOT effectively handles variable size vocabulary in the
output, to produce segment boundaries depending on the in-
put sequence. Experiments show that SEGBOT outperforms
state-of-the-art results on discourse segmentation.

Note that SEGBOT is a generic neural segmenter, and it can
also be applied to topic segmentation (i.e., breaking a docu-
ment into a sequence of topically coherent segments). In this
demonstration, we focus on EDU segmentation.

2 The SEGBOT Model

Encoding Phase. For the task of discourse segmentation, the
units in the input (U0 to U8 in Figure 2(a)) are words in a sen-
tence. Each word is represented with a distributed represen-
tation. We use the pretrained word vectors from GloVe [Pen-
nington ef al., 2014], which are validated on various NLP
tasks including text classification [Iyyer et al., 2015] and
reading comprehension [Wang er al., 2017].
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Sheraton and Pan Am said they are
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Sheraton and Pan Am said they are assured under
the Soviet joint-venture law that they can repatriate
profits from their hotel venture

List of Elementary Discourse Units:
1. Sheraton and Pan Am said

~ 2. they are assured under the Soviet joint-venture
law

3. that they can repatriate profits from their hotel
venture .

(b) The Web interface: http://138.197.118.157:8000/segbot/

Figure 2: The SEGBOT model architecture, and the Web interface for demonstration (input panel on the left and output panel on the right).

Formally, given an input sequence U = (U1, Us, ..., Un)
of length N, we get its distributed representations X =
(z1,22,...,25) by looking up the corresponding embed-
ding matrix, where x,, € RX is the representation for the
unit U,, with K being the dimensions. Our ultimate goal is to
split the input sequence into contiguous segments by identi-
fying the boundaries (e.g., U3, U5 and U10 in Figure 2(a))

SEGBOT encodes the input sequence X
(r1,22,...,2y) by using bidirectional gated recurrent
units (GRUSs) [Cho er al., 2014], which are similar to long
short-term memory (LSTM) but are computationally cheaper.
GRUs are able to capture long distance dependencies without
running into the problems of gradient vanishing or explosion.

Decoding Phase. The decoder of SEGBOT takes a start unit
(i.e., start of a segment) U, in the input sequence as input and
transforms it to its distributed representation «,,, by looking
up the corresponding embedding matrix. It then passes x,,
through a GRU-based (unidirectional) hidden layer. We use
“teacher forcing” [Lamb et al., 2016] to train our model by
supplying the ground-truth start units to decoder RNNs.

Pointing Phase. The output layer of our decoder computes a
distribution over the possible positions in the input sequence
for a possible segment boundary. For example, considering
Figure 2(a), as the decoder starts with input U1, it computes
an output distribution over all positions (U1 to U10) in the
input sequence. Then, for U4 as input, it computes an output
distribution over positions U4 to U'10, and finally for U6 as
input, it computes a distribution over U6 to U 10.

3 Interface and Demonstration

We demonstrate the effectiveness of SEGBOT for discourse
segmentation by developing a concise web interface, as
shown in Figure 2(b). The interface consists of two panels:
the input panel and the output panel.

The input panel takes sentences from users. Once a user
clicks the button labeled with a right arrow, the input sen-
tence is passed to the SEGBOT model, where each word in
the sentence is an input unit (e.g., U0 to U8 in Figure 2(a)).

The output panel displays the segmentation results in two
forms. As shown in the output panel in Figure 2(b), on the top
is the color-coded sentence where each EDU is displayed in
a different color. The color-coded sentence presents EDUs in
its context to facilitate easy interpretation for the user. On the
bottom of the output panel, is the list of segmented EDUs, as
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Method \ Precision Recall F-score
HILDA [Hernault et al., 2010] 77.9 70.6 74.1
SPADE [Soricut and Marcu, 2003] 83.8 86.8 85.2
F&R [Fisher and Roark, 2007] 91.3 89.7 90.5
DS [Joty er al., 2015] 88.0 92.3 90.1
BiLSTM-CRF [Lample et al., 2016] 89.1 878 88.5
SEGBOT (our model) 91.6° 92.8" 922"

Table 1: Segmentation results on RST-DT Dataset. Significant im-
provements over the underlined methods are marked with * (¢-test,
p-value < 0.01).

shown in Figure 2(b). The order of the EDUs are determined
by their positions in the original sentence. The list of EDUs
allows user to consider individual EDUs and to pay more at-
tention to their boundaries.

SEGBOT allows all valid English sentences as input. In
our demonstration, we provide an example sentence “Shera-
ton and Pan Am said they are assured under the Soviet joint-
venture law that they can repatriate profits from their hotel
venture” for users to begin with. The three elementary dis-
course units are displayed in the output panel as shown in
Figure 2(b). Clicking the reset button results in clearing the
input panel to take in the next sentence.

4 Effectiveness Evaluation

The RST Discourse Treebank (RST-DT) [Carlson et al.,
2002] is a publicly available corpus manually annotated with
EDUs and relations according to RST. We use GloVe 300-
dimensional pre-trained word embeddings released by Stan-
ford, and the word vectors are ketp fixed during training.
Following previous work [Hernault er al., 2010; Joty et al.,
2015], we measure segmentation performance using Preci-
sion, Recall, and F-score, reported in Table 1.

Comparing against six baselines, SEGBOT consistently
outperforms all baselines on all measures. The improvement
against baselines is from 0.3% to 17.6% on precision, and
0.5%-31.4% on recall, 1.8%-24.4% on F-score. It is worth
mentioning that SEGBOT does not require any feature engi-
neering. Simply taking pre-trained word embeddings as in-
put, SEGBOT outperforms all models with carefully designed
features, such as HILDA, SPADE, F&R and DS. The state-
of-the-art neural model (BiLSTM-CRF) takes the same input
as our model, i.e., pre-trained word embeddings. SEGBOT
beats BILSTM-CRF with an absolute F-score improvement
of 4.2% (p-value < 0.01).
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