Multichannel Color Image Denoising via Weighted Schatten p-norm Minimization

Xinjian Huang, Bo Du* and Weiwei Liu*

School of Computer Science, Institute of Artificial Intelligence and National Engineering Research Center for Multimedia Software, Wuhan University, Wuhan, China

Corresponding Author.

h_xj525279@outlook.com, dubo@whu.edu.cn, liuweiwei863@gmail.com

Abstract

The R, G and B channels of a color image generally have different noise statistical properties or noise strengths. It is thus problematic to apply grayscale image denoising algorithms to color image denoising. In this paper, based on the non-local self-similarity of an image and the different noise strength across each channel, we propose a Multichannel Weighted Schatten p-Norm Minimization (MCWSNM) model for RGB color image denoising. More specifically, considering a small local RGB patch in a noisy image, we first find its non-local similar cubic patches in a search window with an appropriate size. These similar cubic patches are then vectorized and grouped to construct a noisy low-rank matrix, which can be recovered using the Schatten p-norm minimization framework. Moreover, a weight matrix is introduced to balance each channel's contribution to the final denoising results. The proposed MCWSNM can be solved via the alternating direction method of multipliers. Convergence property of the proposed method is also theoretically analyzed. Experiments conducted on both synthetic and real noisy color image datasets demonstrate highly competitive denoising performance, outperforming comparison algorithms, including several methods based on neural networks.

1 Introduction

Noise corruption is inevitable during the image acquisition process and may heavily degrade the visual quality of an acquired image. Image denoising is thus an essential preprocessing step in various image processing and computer vision tasks [Chatterjee and Milanfar, 2010; Ye et al., 2018; Wang et al., 2018b]; moreover, it is also an ideal test platform for evaluating image prior models and optimization methods [Roth and Black, 2005]. As a result, image denoising remains a challenging yet fundamental problem. Early denoising algorithms were mainly devised on the basis of filter and transformation [Dabov et al., 2007b], such as wavelet transform and curvelet transform [Starck et al., 2002]. State-of-the-art denoising methods are mainly based on sparse representation [Dabov et al., 2007b], low-rank approximation [Gu et al., 2017; Xie et al., 2016], dictionary learning [Zhang and Aeron, 2016; Marsoussi et al., 2014; Mairal et al., 2012], non-local self-similarity [Buades et al., 2005; Dong et al., 2013a; Hu et al., 2019] and neural networks [Liu et al., 2018; Zhang et al., 2017a; Zhang et al., 2017b; Zhang et al., 2018].

Current methods for RGB color image denoising can be categorized into three classes. The first kind involves applying grayscale image denoising algorithms to each channel in a channel-wise manner. However, these methods ignore the correlations between R, G and B channels, meaning that unsatisfactory results may be obtained. The second method is to transform the RGB color image into other color spaces [Dabov et al., 2007a]. This transform, however, may change the noise distribution of the original observation data and introduce artifacts. The third type of method involves making full use of the correlation information across each channel and conduct the denoising task on R, G and B channels simultaneously [Zhang et al., 2017a].

Similar to the case of grayscale images, noise from each channel can be generally, regarded as additive white Gaussian noise. However, the noise levels of each channel are diverse due to camera sensor characteristics and the imagery environment, such as fog, haze, illumination intensity, etc. Moreover, the on-board processing steps in digital camera pipelines may also introduce different noise strength assigned to different channels [Nam et al., 2016]. This reveals the difficulties and challenges faced by RGB color image denoising. Intuitively, if we apply the grayscale image denoising algorithm to color images in a band-wise manner without considering the mutual information and noise difference between each channel, artifacts or false colors could be generated [Mairal et al., 2008]. An example of this is presented in Fig.1. Here, we apply a representative low-rank-based method, WSNM [Xie et al., 2016], and our proposed method, MCWSNM (see Section 2), to the Kodak PhotoCD Dataset1. It can be seen from the figure that WSNM retains a large amount of noise and, to some extent, introduces some artifacts. Thus, the issue of how noise differences in each channel should be modeled is key to designing a good RGB color denoising algorithm.

One well-known color image denoising method is color

1 http://r0k.us/graphics/kodak/
block-matching 3D (CBM3D) [Dabov et al., 2007a]. This is a transformation field method that may destroy the noise distribution across each channel and introduce artifacts. The method in [Zhu et al., 2016] concatenates similar patches of RGB channels into a long vector. However, this concatenation operation regards each channel equally and ignores the noise level differences across each channel. For a long time, low-rank theory has been widely used in many fields, such as recommendation system [Wang et al. 2018], community search [Fang et al., 2020b; Fang et al., 2020a], multi-out task [Liu et al., 2019] and multi-label[Liu et al., 2017], etc.

Recently, based on the non-local self-similarity of an image and SVD, several low-rank-based denoising algorithms have been proposed, such as weighted nuclear norm minimization (WNNM) [Gu et al., 2017] and WSNM [Xie et al., 2016]. The nuclear norm and Schatten p-norm [Xie et al., 2016] are two surrogates of the rank function [Xu et al., 2017a]. In WNNM and WSNM, singular values are assigned different weights using a weight vector. It has been proven that WNNM is a special case of WSNM and that WSNM outperforms WNNM. Multi-channel WNNM (MCWNNM) [Xu et al., 2017b] is an extension of WNNM from grayscale image to color image that operates by introducing a weight matrix to adjust each channel’s contribution to the final results based on noise level.

In this paper, based on the low-rank property of the non-local self-similar patches and the different noise strength across each channel, we propose a multi-channel weighted Schatten p-norm minimization (MCWSNM) model to recover the local low-rank patches vector column by column to obtain the noisy patch matrix $Y = X + N \in \mathbb{R}^{3s^2 \times M}$, where X and N are the corresponding clean and noise patch matrix, respectively. It is clear that Y is a low-rank matrix and X can be recovered using a low-rank approximation algorithm.

As a nonconvex surrogate of the rank function, the weighted Schatten p-norm of a matrix $Z \in \mathbb{R}^{m \times n}$ is defined as $\|Z\|_{w,S_p} = (\sum_{i=1}^{\text{min}(m,n)} w_i \sigma_i^p)^{\frac{1}{p}}, 0 < p < 1$, where $w = (w_1, w_2, \ldots, w_{\text{min}(m,n)})^T$ is a non-negative weight vector and σ_i is the i-th singular value of Z. The weighted nuclear norm [Gu et al., 2017] is a special case of the weighted Schatten p-norm when the power $p = 1$. It has been proven that the Schatten p-norm with $0 < p < 1$ is a better approximation of rank function than the nuclear norm [Zhang et al., 2013].

Intuitively, when denoising a noisy color image, if a channel is heavily polluted, the contribution of this channel to the final denoised results should be less, and vice versa. Thus, a weight matrix W assigned to the noise strength of each channel is introduced. Based on the low-rank property of the non-local self-similarity, we propose the following multi-channel WSNM (MCWSNM) model to recover the local low-rank patch X:

$$\min_X \|W(Y - X)\|^2_F + \lambda\|X\|_{w,S_p}$$

where $\lambda > 0$ is a tradeoff parameter used to balance the
Algorithm 1 \(\min_{X} \| Y - X \|_F^2 + \lambda \| X \|_w,S_p \) via GST

Input: \(Y \), weight \(\{ w_i \}_{i=1}^{r} \), \(\lambda, p, K \)
1: Singular value decomposition \(Y = U \Sigma V^T \), \(\Sigma = \text{diag} \{ \sigma_1, \sigma_2, \ldots, \sigma_r \} \);
2: for \(i = 1 : r \) do
3: \(\tau^G_{i} \) \(\text{ST}(w_i, \lambda) = (2\lambda w_i(1 - p))^{\frac{1}{1 - p}} + \lambda w_i p^2 (2\lambda w_i(1 - p))^{\frac{1}{1 - p}} \);
4: if \(|\sigma_i| \leq \tau^G_{i} \) then
5: \(\delta_i = 0 \);
6: else
7: \(\delta_i = |\sigma_i| \);
8: for \(k = 0, 1, \ldots, K \) do
9: \(\delta^i_{k+1} = |\sigma_i| - w_ip^2 (\delta^i_{k})^{p-1} \);
10: \(k = k + 1 \);
11: end for
12: \(\delta_i = \text{sgn}(\sigma_i) \delta^i_{k+1} \);
13: end if
14: end for
15: \(\Delta = \text{diag} (\delta_1, \delta_2, \ldots, \delta_r) \);
Output: \(X^* = U \Delta V^T \)

The global optima of which can be efficiently solved by the generalized soft-thresholding (GST) algorithm. This is summarized in Algorithm 1.

(3) \(L_{k+1} = L_k + \rho_k (X_{k+1} - Z_{k+1}) \).
(4) \(\rho_{k+1} = \rho \mu \), \((\mu > 1) \).

The above alternative updating steps are repeated until either the convergence condition is satisfied or the number of iterations exceeds a preset \(K_1 \). The ADMM algorithm converges when 1) \(\| X_{k+1} - Z_{k+1} \|_F \leq \text{tol} \), 2) \(\| X_{k+1} - X_k \|_F \leq \text{tol} \) and 3) \(\| Z_{k+1} - Z_k \|_F \leq \text{tol} \) are simultaneously satisfied; here, \(\text{tol} \) is a small tolerance value. The complete updating procedures are summarized in Algorithm 2.

Algorithm 2 Solve MCWSNM via ADMM

Input: data \(Y \), weight \(W \), \(\rho, K \), \(\mu > 1 \), \(\text{tol} \) > 0;
1: Initialization: \(X_0 = Z_0 = 0 \), \(L_0 = 0 \), \(\rho_0 > 0 \), flag = False, \(k = 0 \);
2: while flag == False do
3: Update \(X \) by using (4);
4: Update \(Z \) by solving (5);
5: Update \(L \): \(L_{k+1} = L_k + \rho_k (X_{k+1} - Z_{k+1}) \);
6: Update \(\rho \): \(\rho_{k+1} = \mu \rho_k \);
7: \(k = k + 1 \);
8: if (Convergence condition is satisfied) or (\(k \geq K_1 \)) then
9: flag = True;
10: end if
11: end while
Output: \(X^* \).

2.3 Convergence and Complexity

Although the proposed MCWSNM (1) is nonconvex, the global optimum also can be obtained for the limitations of weights permutation in GST. From Fig 3, it can be seen that \(\| X_{k+1} - X_k \|_2 \), \(\| Z_{k+1} - Z_k \|_2 \) and \(\| X_{k+1} - Z_{k+1} \|_2 \) simultaneously approach 0 during the iteration process. This curve is based on a synthetic experiment on Kodak PhotocD Dataset and the test image is "kodim01" (see Experiments Section in detail).
We next provide a theorem that theoretically guarantees the convergence property of Algorithm 2.

Theorem 1. Assume that the weights \(w \) are sorted in a non-descending order and the parameter \(\rho_k \) is unbounded; then the sequences \(\{X_k\}, \{Z_k\} \) and \(\{L_k\} \) generated in Algorithm 2 satisfy: (a) \(\lim_{k \to +\infty} \|X_{k+1} - Z_{k+1}\|_F = 0 \); (b) \(\lim_{k \to +\infty} \|X_{k+1} - X_k\|_F = 0 \); (c) \(\lim_{k \to +\infty} \|Z_{k+1} - Z_k\|_F = 0 \).

Proof. We first prove that the sequence \(\{L_k\} \) generated by Algorithm 2 is upper bounded. \(U_kA_kV_k^T \) denotes the SVD of matrix \(\frac{1}{\rho_k}L_k + X_{k+1} \) in the \(k+1 \) iteration, where \(\Lambda_k \) is the diagonal singular value matrix. By using the GST algorithm for WSNN, we have \(Z_{k+1} = U_k\Lambda_kV_k^T \), where \(\Lambda_k = \{\text{diag}(\delta_k^1, \delta_k^2, \ldots, \delta_k^n)\} \) is the diagonal singular value matrix after generalized soft-thresholding operation. Then:

\[
\begin{align*}
\|L_{k+1}\|^2_F &= L_k + \rho_k(X_{k+1} - Z_{k+1})\|^2_F \\
&= \frac{\rho_k^2}{\rho_k}||L_k + X_{k+1} - Z_{k+1}||^2_F \\
&= \frac{\rho_k^2}{\rho_k}||U_k\Lambda_kV_k^T - U_k\Lambda_k\delta_k^2V_k^T||^2_F = \rho_k^2||\Lambda_k - \delta_k^2||_F \\
&= \rho_k^2 \sum_i r_wi/\rho_k||_F = \rho_k^2 \sum_i r_wi/||_F.
\end{align*}
\]

Hence, the sequence \(\{L_k\} \) is upper bounded.

We then prove that the sequence of the Lagrange function \(\{L(X_{k+1}, Z_{k+1}, L_{k+1}, \rho_{k+1})\} \) is also upper bounded. The inequality \(L(X_{k+1}, Z_{k+1}, L_k, \rho_k) \leq L(X_k, Z_k, L_k, \rho_k) \) always holds since we have the globally optimal solution of \(X \) and \(Z \) in their corresponding subproblems (step 3 and step 4 in Algorithm 2). Based on the updating rule of \(L \), it yields

\[
\begin{align*}
L(X_{k+1}, Z_{k+1}, L_{k+1}, \rho_{k+1}) &= \|W(Y - X_{k+1})\|^2_F + \|Z_{k+1}\|^2_{\text{p},S_p} \\
&\quad + \langle L_{k+1}, X_{k+1} - Z_{k+1} \rangle + \frac{\rho_{k+1} + \rho_k}{2}\|X_{k+1} - Z_{k+1}\|^2_F \\
&= \frac{\rho_{k+1} + \rho_k}{2}\|X_{k+1} - Z_{k+1}\|^2_F \\
&\quad + \frac{\rho_{k+1} + \rho_k}{\rho_k}\|L_{k+1} - L_k\|^2_F \\
&= \frac{\rho_{k+1} + \rho_k}{\rho_k}\|L_{k+1} - L_k\|^2_F.
\end{align*}
\]

Since \(\{L_k\} \) is upper bounded, the sequence \(\{L_{k+1} - L_k\} \) is also upper bounded. Denote by \(a \) the upper bound of \(\|L_{k+1} - L_k\| \) for all \(k \geq 0 \), i.e. \(\{L_{k+1} - L_k\} \leq a, \forall k \geq 0 \). We therefore conclude that

\[
\begin{align*}
\{L(X_{k+1}, Z_{k+1}, L_{k+1}, \rho_{k+1}) \leq L(X_{k+1}, Z_{k+1}, L_k, \rho_k) + \frac{\rho_{k+1} + \rho_k}{2\rho_k^2} a^2
\end{align*}
\]

Thus, \(\{L(X_{k+1}, Z_{k+1}, L_{k+1}, \rho_{k+1})\} \) is upper bounded.

We next prove the sequences of \(\{X_k\} \) and \(\{Z_k\} \) are upper bounded. Since \(\{L(X_k, Z_k, L_k, \rho_k)\} \) and \(\{L_k\} \) are upper bounded and

\[
\begin{align*}
\|W(Y - X_k)\|^2_F + \|Z_k\|^2_{\text{p},S_p} &= \langle L(X_k, Z_k, L_k - 1, \rho_k - 1) - (L_{k-1}, X_k - Z_k) \\
&\quad - \frac{\rho_{k-1}}{2}\|L_k - L_{k-1}\|^2_F \\
&\quad = \langle L(X_k, Z_k, L_k - 1, \rho_k - 1) - (L_{k-1}, (L_k - L_{k-1})/\rho_{k-1}) \\
&\quad - \frac{\rho_{k-1}}{2}\|L_k - L_{k-1}\|^2_F \\
&\quad = \langle L(X_k, Z_k, L_k - 1, \rho_k - 1) + \|L_{k-1}\|^2_F - \|L_k\|^2_F.\frac{2\rho_{k-1}}{\rho_k},
\end{align*}
\]

and the sequence \(\{W(Y - X_k)\} \) and \(\{Z_k\} \) are upper bounded. Since \(L_{k+1} = L_k + \rho_k(X_{k+1} - Z_{k+1}) \). \(\{X_k\} \) is also upper bounded. Thus, there exists at least one accumulation point for \(\{X_k, Z_k\} \). More specifically, we obtain that

\[
\lim_{k \to +\infty} \|X_{k+1} - Z_{k+1}\|_F = \lim_{k \to +\infty} \|L_{k+1} - L_k\|_F = 0
\]

and that the accumulation point is a feasible solution to the objective function. Thus, equation (a) is proved.

Finally, we prove that the change of sequence \(\{X_k\} \) and \(\{Z_k\} \) in adjacent iterations tends to be 0. For \(X_{k+1} \) and \(X_k \), we have

\[
\lim_{k \to +\infty} \|X_{k+1} - X_k\|_F
\]

\[
= \lim_{k \to +\infty} \|W^TY + \frac{\rho_k}{2}I - 1)(W^TWY + \frac{\rho_k}{2}Z_k - \frac{1}{2}L_k \\
+ \frac{\rho_k}{\rho_{k-1}}(L_k - L_{k-1}) - Z_k\|_F
\]

and

\[
= \lim_{k \to +\infty} \|W^TY + \frac{\rho_k}{2}I - 1)(W^TWY - W^TWZ_k \\
+ \frac{1}{\rho_{k-1}}(L_k - L_{k-1})\|_F
\]

\[
\leq \lim_{k \to +\infty} \|W^TY + \frac{\rho_k}{2}I - 1)(W^TWY - W^TWZ_k \\
+ \frac{1}{\rho_{k-1}}(L_k)\|_F + \frac{1}{\rho_{k-1}}\|(L_k - L_{k-1})\|_F
\]

\[
= 0.
\]
Since $Z_{k+1} = \frac{1}{\rho_k} L_k - \frac{1}{\rho_k} L_{k+1} + X_{k+1}$, we conclude that
\[
\lim_{k \to \infty} \|Z_{k+1} - Z_k\|_F = \lim_{k \to \infty} \|\frac{1}{\rho_k} L_k - \frac{1}{\rho_k} L_{k+1} + X_{k+1} - Z_k\|_F = \lim_{k \to \infty} \|X_k + \frac{1}{\rho_k} L_{k-1} - X_{k-1}\|_F + \|X_{k+1} - X_k\|_F + \frac{1}{\rho_k} L_{k-1} - \frac{1}{\rho_k} L_k - \frac{1}{\rho_k} L_{k+1} = 0.
\]
This completes the proof.

The main computational cost in a single iteration of Algorithm 2 consists of two parts. The first part involves updating X, in which the time complexity is $O(\max\{s^2M, M^3\})$. The second part involves updating Z. The predominant cost of this updating is the SVD and the calculation of X^*. Its complexity is $O(\min\{s^2M, s^2M^2\} + s^2r^2M)$. The costs for updating L and ρ can be ignored. Therefore, the total time complexity of our MCWSNM for solving problem (1) is about $O(K_1M^3)$.

3 Experiments

To illustrate the performance of the proposed MCWSNM, we implement MCWSNM on synthetic and real color noisy images. We also compare the proposed method with several recent proposed methods, including NC [Lebrun et al., 2015], NCSR [Dong et al., 2013b], PGPD [Xu et al., 2015], MCWNNM [Xu et al., 2017b], DnCNN [Zhang et al., 2017a], FFDNet [Zhang et al., 2018] and IRCNN [Zhang et al., 2017b]. In more detail, NC is an online blind image denoising platform, NCSR and PGPD are designed for grayscale images and MCWNNM is a color image denoising method while DnCNN, FFDNet, and IRCNN are three methods that operate on the basis of convolutional neural networks. All the parameters of the comparison algorithms are either optimally assigned, or chosen as described in the reference papers.

Noise level of MCWSNM and most comparative methods should be provided as parameters. In the synthetic experimental case, the noise $(\sigma_r, \sigma_g, \sigma_b)$ in the R, G and B channels are assumed to be known. In the case involving real noise, we utilize the noise estimation method outlined in [Chen et al., 2015] to estimate the noise level of the noisy image for each channel. We implement the grayscale denoising methods, NCSR and PGPD, on the color noisy images in a band-wise manner with the corresponding channel noise level.

3.1 Synthetic Noisy Color Image Experiments

The Kodak PhotoCD Dataset is first utilized in our synthetic experiments. It includes 24 color images, each of which is either 768×512 or 512×768 in size. The noisy image is generated by adding zero mean Gaussian noise with $\sigma_r = 40$, $\sigma_g = 20$ and $\sigma_b = 30$. In MCWSNM, we set the local search window size of each patch as 20, the similar patch number $M = 70$, each patch size $s = 6$, $K_1 = 10$, $K = 4$, $c = 2\sqrt{2}$, $\lambda = 0.6$, $p = 0.999$ and $\rho = 3$.

The line graph of the PSNR results for MCWSNM and the comparison methods are presented in Fig.4. It can be seen from this graph that our proposed method outperforms the other competing methods in most cases. Moreover, Fig.5 and Fig.6 show the denoised results of "kodim1" and "kodim3" images.
in Kodak PhotoCD Dataset, respectively. Visual inspection reveals that MCWSNM can obtain the best visual result and clear texture information. Color artifacts are generated by NCSR and PGPD, while NC over-smooths the image. While MCWNNM, DnCNN, FFDNet and IRCNN can get a clean image, some of the detailed information is lost compared with the original image.

3.2 Real Noisy Color Image Experiments

We implement the WCWSNM on a real noisy color image dataset, CC [Nam et al., 2016], to evaluate the method’s performance. This dataset includes 11 static scenes. The noisy images were captured in an indoor environment with different cameras and camera settings. For each scene, 500 images were taken using the same camera and camera settings. The mean image of each scene was then calculated to generate ground truth (GT). As the size of the original image is very large, 60 cropped smaller images with size 512 × 512 were provided in [Nam et al., 2016]. In this paper, we select 10 cropped images (see Fig.7) to conduct the experiment.

For MCWSNM, we set the local search window size for each patch as 20, the similar patch number \(M = 60 \), each patch size \(s = 5 \), \(K_1 = 10 \), \(K = 4 \), \(c = 2\sqrt{2} \), \(\lambda = 0.6 \), \(p = 0.999 \) and \(p = 3 \). Because the GT are provided, a quantitative assessment of each method is accessible. PSNR results for different cameras and camera settings are provided in Table 1. It can be seen from the table that the proposed MCWSNM obtains the highest PSNR value in most noisy images. Fig. 8 and Fig. 9 show the visual results of #7 and #10 images in CC dataset, respectively. Compared with other methods, MCWSNM gets the best visual effect. It not only remove the noise completely, but also preserve the detailed information effectively.

<table>
<thead>
<tr>
<th>Camera Settings</th>
<th>#</th>
<th>NC</th>
<th>NCSR</th>
<th>PGPD</th>
<th>MCWNNM</th>
<th>DnCNN</th>
<th>FFDNET</th>
<th>IRCNN</th>
<th>MCWSNM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canon 5D, ISO=3200</td>
<td>1</td>
<td>38.5689</td>
<td>37.8693</td>
<td>36.8979</td>
<td>40.8160</td>
<td>40.8445</td>
<td>40.6137</td>
<td>41.3212</td>
<td>42.1242</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>35.0985</td>
<td>34.7144</td>
<td>33.8614</td>
<td>36.5158</td>
<td>35.7199</td>
<td>35.6380</td>
<td>36.0826</td>
<td>35.8209</td>
</tr>
<tr>
<td>Nikon D600, ISO=3200</td>
<td>3</td>
<td>36.8310</td>
<td>36.4562</td>
<td>35.8916</td>
<td>38.9327</td>
<td>38.9287</td>
<td>38.7748</td>
<td>39.3098</td>
<td>37.9467</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>38.6322</td>
<td>36.3762</td>
<td>35.9296</td>
<td>40.1002</td>
<td>39.3217</td>
<td>38.7881</td>
<td>40.4201</td>
<td>40.4434</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>39.0023</td>
<td>37.3847</td>
<td>36.4443</td>
<td>42.3815</td>
<td>40.6930</td>
<td>40.2738</td>
<td>42.8365</td>
<td>41.9094</td>
</tr>
<tr>
<td>Nikon D800, ISO=3200</td>
<td>7</td>
<td>36.5622</td>
<td>34.2501</td>
<td>33.9318</td>
<td>39.5804</td>
<td>36.7582</td>
<td>36.2557</td>
<td>38.9257</td>
<td>41.5596</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>35.9500</td>
<td>33.8988</td>
<td>33.5135</td>
<td>36.7548</td>
<td>36.0972</td>
<td>35.8297</td>
<td>38.2784</td>
<td>37.8922</td>
</tr>
<tr>
<td>Nikon D600, ISO=6400</td>
<td>9</td>
<td>33.2295</td>
<td>31.1022</td>
<td>30.7797</td>
<td>36.5241</td>
<td>32.1810</td>
<td>31.9962</td>
<td>33.4272</td>
<td>38.2520</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>32.2609</td>
<td>30.6858</td>
<td>30.4058</td>
<td>32.2105</td>
<td>31.6635</td>
<td>31.4748</td>
<td>32.7171</td>
<td>32.4324</td>
</tr>
</tbody>
</table>

Table 1: PSNR results (dB) of real color image CC Dataset.

3.3 Analysis of Power p

It is necessary to analyze the most appropriate setting of power p for different noise levels ($\sigma_r, \sigma_g, \sigma_b$). We utilize 24 images in Kodak PhotoCD Dataset to test the proposed MCWSNM with different p under different noise levels added to the R, G and B channels. The results are presented in Fig.10. In each subfigure, the vertical coordinate represents the average PSNR value under a certain noise level, while the horizontal coordinate denotes the values of p changing from 0.1 to 1 with interval 0.05. We use six levels in this test: $\sigma_c = \{(10, 15, 20), (30, 35, 40), \ldots, (60, 65, 70), (80, 85, 90)\}$. It is clear from the histogram that at low and medium noise levels, the best value for p is 1, while at a high noise level, the best value of p is 0.1. This is mainly because, in the strong noise case (which means more rank components of the data are contaminated) highly ranked parts should penalized heavily, while lower-ranked parts should be penalized less.

4 Conclusion

In this paper, based on the low-rank property of the non-local self-similarity, we propose a MCWSNM method for color image denoising. For noisy color images, which generally hold different noise strength in each band, a weight matrix assigned to the noise level of each channel is introduced in order balance each channel’s the contribution to the final estimation result. MCWSNM can be efficiently solved via ADMM optimization framework. Theorem 1 theoretically analyzes the convergence property of our proposed algorithm. Experiments on synthetic and real datasets demonstrate that the proposed method can obtain satisfactory results on the color image denoising task.

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China under Grants 61822113, 61976161, 62041105, the Science and Technology Major Project of Hubei Province (Next-Generation AI Technologies) under Grant 2019AEA170, the Natural Science Foundation of Hubei Province under Grants 2018CFA050, the Fundamental Research Funds for the Central Universities under Grant 413000092 and 413000082.

References

[Fang et al., 2020b] Yixiang Fang, Yixing Yang, Wenjie Zhang, Xueimin Lin, and Xin Gao. Effective and efficient community search over large heterogeneous infor-

