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Abstract

3D point cloud semantic segmentation has attracted
wide attention with its extensive applications in
autonomous driving, AR/VR, and robot sensing
fields. However, in existing methods, each point
in the segmentation results is predicted indepen-
dently from each other. This property causes the
non-contiguity of label sets in three-dimensional
space and produces many noisy label points, which
hinders the improvement of segmentation accuracy.
To address this problem, we first extend adver-
sarial learning to this task and propose a novel
framework Attention Adversarial Networks (At-
tAN). With high-order correlations in label sets
learned from the adversarial learning, segmentation
network can predict labels closer to the real ones
and correct noisy results. Moreover, we design an
additive attention block for the segmentation net-
work, which is used to automatically focus on re-
gions critical to the segmentation task by learning
the correlation between multi-scale features. Ad-
versarial learning, which explores the underlying
relationship between labels in high-dimensional
space, opens up a new way in 3D point cloud
semantic segmentation. Experimental results on
ScanNet and S3DIS datasets show that this frame-
work effectively improves the segmentation quality
and outperforms other state-of-the-art methods.

1

In recent years, 3D point cloud data has quickly become a re-
search hotspot due to its abundant scene information. With
extensive applications in autonomous driving, AR/VR in-
dustry and robot sensing, 3D vision tasks attract many re-
searchers to make great efforts, e.g., 3D object detection
[Shi et al., 2019], 3D object classification [Thomas et al.,
2019] and 3D semantic segmentation [Wang et al., 2019;
Huang et al., 2019]. Among them, 3D point cloud seman-
tic segmentation which assigns semantic labels to points is
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a challenging task. Because of the unsorted and unstruc-
tured characteristics of point clouds, it is difficult to learn
the feature representation between points. In earlier works,
researchers first transform original point clouds into hand-
crafted voxel [Tchapmi et al., 2017] or multi-view image [Su
et al., 2015] features before feeding them to Deep Convo-
lution Neural Networks. However, these methods introduce
extra computation, while also changing the raw data format.

Recently, PointNet [Qi et al., 2017a] and PointNet++ [Qi
et al., 2017b] as pioneering works use a symmetric function
and a hierarchical neural network separately to process point
clouds directly. Moreover, many works [Wang et al., 2019;
Huang et al., 2019] related to graph structure also preform
well in this task. Nevertheless, a common property across
all these methods is that labels are predicted independently
from each other, ignoring the correlation between adjacent
labels. This case results in spatial non-contiguity of label
sets and produces many noisy label points. But the high-
order features extracted by adversarial networks can serve
as extra supervised information for the training of the main
task network [Luc et al., 2016]. This motivates us to fur-
ther explore underlying relationships among predicted labels
in high-dimensional space by adversarial learning.

In this paper, we design a framework Attention Adversar-
ial Networks (AttAN) for 3D point cloud semantic segmenta-
tion. It consists of the segmentation network .S, the Gumbel-
Softmax estimator GS and the adversarial network A. During
the adversarial training between S and A, high-order correla-
tions in predicted label sets and real ones are understood by
A, guiding S to predict labels following consistent distribu-
tion of the real ones [Li et al., 2019]. This adversarial training
process corrects noisy results, thereby effectively improves
the segmentation quality. Besides, additive attention, inte-
grating multi-scale local features for different regions, is ex-
ploited in S to improve model sensitivity. The contributions
of our work are summarized as follows:

1. We first propose a novel framework Attention Adversar-
ial Networks (AttAN), based on adversarial learning, to
capture the spatial contiguity between predicted labels
for 3D point cloud semantic segmentation task.

. We propose an effective additive attention block for seg-
mentation network to automatically focus on different
regional features that are beneficial to the segmentation.
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3. We conduct experiments on two public datasets Scan-
Net [Dai et al., 2017] and Stanford Large-Scale 3D In-
door Spaces (S3DIS) [Armeni ef al., 2016]. The results
demonstrate the effectiveness of our proposed approach.

2 Related Work

3D Point Cloud Segmentation. Recent works on this issue
can be mainly summarized as point-based methods [Qi er al.,
2017b; Li et al., 2018b], graph-based methods [Wang et al.,
2019; Huang et al., 2019] and other methods [Tatarchenko et
al., 2018; Thomas er al., 2019]. The most groundbreaking
point-based works are PointNet [Qi et al., 2017a] and Point-
Net++ [Qi et al., 2017b], proposing a symmetric transforma-
tion and a hierarchical neural network to capture local fea-
tures separately. Then PointCNN [Li ez al., 2018b] introduces
X-transformation learned from point cloud itself to transform
point clouds and make them satisfy certain canonical order.
The above mentioned works are committed to aggregating
local neighborhoods features. Besides, graph-based meth-
ods use graph structure to learn correlation in local surface
patches. For example, TextureNet [Huang ef al., 2019] ex-
ploits high resolution signals with a new 4-RoSy surface con-
volution kernel on 3D surface meshes. Moreover, some other
works adopt different methods for tackling orderless point
clouds. For instance, Tangent Convolutions [Tatarchenko et
al., 2018] projects local neighborhoods to tangent planes and
uses traditional 2D convolutions to process them.

Adversarial Learning. Attracted by the excellent perfor-
mance of adversarial learning, the work [Luc et al., 2016]
uses the adversarial network in the semantic segmentation
task for the first time. In text generation task, SentiGAN
[Wang and Wan, 2018] combines adversarial network with re-
inforcement learning (RL), considering the process of gener-
ating discrete text data as a decision-making process with re-
ward. [Chen et al., 2018] applies adversarial training to gen-
erate discrete text by providing a differentiable approximation
sampled from the Gumbel-Softmax estimator [Jang et al.,
2016]. Compared to high-variance gradient estimates existed
in RL-based methods, Gumbel-Softmax is more friendly for
optimizing networks with low-variance gradients, which can
improve stability and speed of training [Chen et al., 2018].
Previous works mostly focus on applying adversarial learn-
ing to 2D image segmentation or text generation. Addition-
ally, PC-GAN [Li er al., 2018a] applies adversarial learning
to point cloud generation, but here we discuss the usage of
adversarial pattern in labeling 3D point cloud datasets.

Attention Modules. Attention modules originate from hu-
man visual attention mechanism, representing the behavior
that human focus on representative characteristics in images
while ignoring other irrelevant information. They have been
commonly applied in Natural Language Processing field. For
instance, [Anderson ef al., 2018] designs a combined bottom-
up and top-down attention mechanism, extracting features at
the level of objects for image captioning and visual Q&A
tasks. The architecture [Vaswani et al., 2017], combining
self-attention mechanism with other recurrence and convo-
lution layers, has been successfully applied to machine trans-
lation. In image vision field, the work [Wang er al., 2017]
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uses additive soft probabilistic attention to achieve more ac-
curate image classification performance. The work [Oktay et
al., 2018] proposes a flexible attention gate model for medi-
cal image segmentation, where these gates can automatically
learn to focus on targets. The work [Fu et al., 2018] proposes
a position attention module and a channel attention module
to integrate local features with their global dependencies for
scene segmentation.

3 Approach

In this paper, we propose a novel method called AttAN (illus-
trated in Figure 1) for segmenting raw point cloud data. Inno-
vatively, adversarial learning is first introduced to 3D point
cloud semantic segmentation, refining results by strength-
ening high-dimensional consistency. Specifically, the K-
dimensional feature vectors produced by S are first sampled
into one-hot encoding by G.S. Then the fake labels and the
real ones are sent to A to extract high-order features. Since
they are separately considered as a whole rather than indepen-
dent individuals, correlation between labels can be learned by
A. The characteristics of fake labels as extra supervised in-
formation are delivered back to S and gradually become con-
sistent with the ones of real.

In adversarial training, the discreteness of segmentation
results can greatly hinder the back propagation of gradients
from the adversarial network to the segmentation network, re-
straining the improvement of accuracy. To address this prob-
lem, the Gumbel-Softmax estimator is adopted to connect S
and A. In addition, to enhance feature representation for crit-
ical areas, we recursively apply our proposed attention block
in skip connections of .S. Additional details are discussed in
three parts below: the segmentation network, the Gumbel-
Softmax estimator and the adversarial network.

3.1 The Segmentation Network

The segmentation network shown in Figure 1 adopts an
encode-decode framework, following [Qi et al., 2017b].
It takes point clouds as input directly and produces K-
dimensional feature vectors. In the encoding stage, set ab-
straction (SA) modules [Qi et al., 2017b] are used for hier-
archical feature embedding. In the decoding stage, feature
propagation (FP) modules [Qi et al., 2017b] propagate fea-
tures from sampled points to the origin points. Specially, one
main component of S is the attention block, which is designed
to learn dependency relationship between features on multi-
ple scales in skip connection. In the following subsections,
we first introduce the block, and then present the architecture
of S with attention blocks .

Attention Block

Attention mechanism is usually achieved by weighted atten-
tion vectors and mainly works in three forms: hard atten-
tion mechanism, soft attention mechanism and self-attention
mechanism. Among them, soft attention is probabilistic and
can spread gradient to the other parts of the network. In addi-
tion, it can model the relationship between features on multi-
ple scales and focus on useful regions. Specifically, additive
attention has higher accuracy than multiplicative attention ex-
perimentally [Oktay er al., 2018]. Therefore, our attention
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Figure 1: The overview of AttAN. It consists of three parts: the segmentation network S, the Gumbel-Softmax estimator G'S' and the

adversarial network A.

Figure 2: Schematic of the proposed attention block.

block is designed based on additive soft attention to learn
critical features of objects for segmentation. As illustrated

in Figure 2, note F' € RY O g high level features and

X! e RN'™*C g5 the output low level features of layer [ — 1
in the encoding stage, where N' is the point set size. C'*!
and C! (with C**1 > C') represent the number of feature
maps in different layers. We first use a 1D convolution layer

Wy € RC%C" to reduce the dimension of F' and obtain

features G € RV xct Next, we calculate attention masks o
between G and X' as follows:

a; = oo (W, (1(W i + W gi))) (1
where i = 1,..., N', oy is the non-linear function relu, and
oy corresponds to the sigmoid activation function. W, €
Rclxcl, W, € RC' *C" and W, € RC' xC! represent 1D
convolution layers. The attention masks « indicate the sig-
nificance of different regions. Then we perform element-wise
multiply operation between o and X'. Finally, the residual
connection similar to [Wang et al., 2017] is employed to re-
tain original features, so the final output X' of attention block
is defined as:

1
€Ly

@)

The attention block can act like a feature selector to aug-
ment the useful structure features automatically during for-
ward process by replacing X! with the weighted attention

features X'. Additionally, it is a gradient update filter during

ol !
= o;x; + T
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back propagation. The update rule for convolution parame-
ters ¢!~ ! in layer [ — 1 is:

oX! 9 (X' + (XY el h)
dpi—1 - -1 3
o Xl_l; -1 o l
= (al +1) f 5‘¢l*1¢ ) + 3¢(1)11Xl

Such a block allows the neural network to highlight salient
regional features passing through the skip connections and
can achieve better segmentation results.

The Architecture of Segmentation Network with
Attention Blocks

SA and FP modules are two significant parts proposed in
PointNet++ [Qi ef al., 2017b]. The SA module in layer [ — 1
takes point cloud data with shape N'~1 x C'~! as input. By
means of the farthest point sampling, grouping as well as
a unit pointnet!, it generates output feature embedding vec-
tors of sampling centroids with shape N! x C!, which will
be sent to the attention block as X'. To get point-wise pre-
diction results, the FP module first interpolates inverse dis-
tance weighted feature values of the input Nt points at
the coordinates of N points based on k-nearest neighbors
and generates interpolated features of size N x C!*+1 (with
N! > N'1) These features are sent to our proposed at-
tention block as F', to calculate the attention masks with X L
Then the output weighted attention features X' concatenated
with F' are sent to a unit pointnet. The process is recursively
performed until we have features with same size as the orig-
inal point set. Then fully connected layers are used for seg-
mentation. The attention blocks can aggregate information
from multiple scales and eliminate responses of irrelevant and
noisy parts in skip connections, which contributes to the seg-
mentation task.

' An architecture defined in PointNet [Qi ez al., 2017al.
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3.2 The Gumbel-Softmax Estimator

The exploration of adversarial learning is not straightforward,
owing to the problems interpreted next. Note o, € RV*X as
the output feature vectors of .S , we calculate the segmenta-
tion results [y = argmax(os) € RV*1 Assuming I, are
sent into A for training, the standard backward propagation
of gradients from A to S cannot be applied since the non-
differentiable argmaax function. Besides, numerical values
of [, also implicitly increase the between-class distance.

Alternately, the differentiable probability values vy are
generated by softmaz?: v softmax(os) € RNXK,
They can approximate one-hot distribution by enlarging the
difference between elements of o; and maintain original
between-class distance. However, they can be distinguished
by A from the one-hot encoding of ground truth labels y, €
RN*K because these two distributions have no overlap and
the training samples based on softmax lack of randomness.

To address the above obstacles, we apply a straight-through
Gumbel-Softmax estimator [Jang et al., 2016] to sample the
output o, of S:

(4a)
(4b)

ys = softmax((os + g)/T)
y¢ = onehot(argmax(ys))

where g represents the Gumbel noise sampled from the i.i.d
standard Gumbel distribution [Jang et al., 2016], 7 € (0, 00)
is the temperature , 37, € RV > X is re-parameterized probabil-
ity of o5 and yy € RV*X is one-hot encoding of ys. With the
decrease of temperature, Gumbel-Softmax distribution can be
smoothly annealed into categorical distribution. However,
straight-through Gumbel-Softmax estimator allows samples
to be sparse even when the temperature is high [Jang ef al.,
2016]. In our experiments, 7 is set to 1.0. Due to the “onehot
with argmax” in Eq.4b is non-differentiable, we use contin-
uous probability in the backward pass by approximating:

&)

The Gumbel-Softmax estimator makes probabilities mean-
ingful since it can randomly generate some non-maximum
probability category samples according to its random noise,
which is essential for training models in adversarial pattern.

3.3 The Adversarial Network

In this work, the aim of adversarial network is to distinguish
the inconsistencies in high-dimensional space between the in-
puts y,- and y for label refining. As illustrated in Figure 1, we
add noise to the inputs artificially for stabilizing training [Ar-
jovsky et al., 2017]. Then the new real input encoding ,. and
fake input encoding 7y will concatenate with point clouds as
real and fake input tuples of A separately. The overall struc-
ture of A consists of four SA modules and a 2D convolution
layer. As an important cue, A can extract high-dimensional
features of input tuples and generate the probabilities that in-
put tuples are real.

Specially, the SA modules can be used in A, due to i, and
1y both represent extra information of point cloud. However,
we remove the batch normalization layers of SA modules to

Voys = Voyy

2 - exp(z;) -
softmax(x); SE erp(e)) can@y) 1,...,.K
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Algorithm 1 The adversarial training process in AttAN

Input: Input point clouds p; The number of batches M;
Learning rate n; Maximum epoch F
Parameter: 6, ¢
Output: Well trained Sy
1: Initialize Sp, A, with random weights 6, .

2: Pre-train Sy by minimizing the first term of Eq.6.
3: fori =0to £ —1do

4: forj=0to M —1do
5 Sample a minibatch of point clouds p’ and the cor-
responding ground truth labels 7.
6: Obtain the output feature vectors of Sp:
ol = Sp(p’)
7: Apply Gumbel-Softmax estimator to sample o/ and
obtain y using the Eq.4.
8: Add noise to both real labels 7 and fake labels y}
9: if i is Fven then
10: Update ¢ by minimizing the Eq.7.
11: end if
12: Update 6 by minimizing the Eq.6.
13:  end for
14: end for

15: return well trained Sy

train A effectively. It is worth mentioning that the coordinates
of same sampling centroids are shared by S and A for provid-
ing sampling related information. Getting through the archi-
tecture of A, y; and its corresponding ground truth y, have
comparative characteristics in high-dimensional space. The
adversarial network can detect mismatches between charac-
teristics flexibly without manual work. At the same time, it
considers labels as a whole and learns the correlation between
labels, which is utilized in the training of .S. In this way, ad-
versarial training provides strong regularization for deep net-
works and revises unreasonable segmentation results.

4 Objectives and Optimization

In this section, we introduce the objective functions for seg-
mentation network and adversarial network. In addition, the
optimization algorithm is described in detail.

Objective for Segmentation Network. The objective of
segmentation network is defined as:

Ls = £CT055(057 yr) + Lmse(A(pa if); 1) (6)

where p represents the input point cloud. We use multi-class
cross entropy loss to encourage the segmentation network to
predict the right labels. In addition, mean square error (MSE)
function, as the adversarial part, provides a stronger gradient
term when A makes accurate predictions on input tuples. So
that it can push the segmentation network to predict labels
which are hard to distinguish from the ground truth ones for
the adversarial network. Training the segmentation network
is equal to minimizing the above objective function.

Objective for Adversarial Network. The adversarial net-
work learns to discriminate the real and the fake tuples using
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the following objective function:
£A = ‘Cmse(A(pa ’Lf),O) +Emse(A(p7 Zr)yl) (7)

Both terms use MSE as loss function. We optimize the adver-
sarial network by minimizing the above objective function.
The adversarial training is reflected in the second term of Eq.6
and the first term of Eq.7.

We optimize the proposed networks in the following ap-
proach: Firstly, to provide a good initialization of S for a
good convergence behavior in adversarial training, we pre-
train S by minimizing the first term of Eq.6. Then training
process is executed in way of training A on every even epoch
and S on every epoch, which can reduce the learning speed of
A to avoid overfitting and give .S certain space to grow. The
detailed algorithm is described in Algorithm 1.

We use an Adam optimizer with momentum parameters
B1 = 0.5,82 = 0.999, and a batch size of 16 to train the
model. In addition, following prior works [Qi et al., 2017a;
Qi et al., 2017b], we apply exponential decay learning rate
policy to adjust learning rate in every batch. The base learn-
ing rate is set to 0.001. Specially, we employ exponential
moving average strategy with decay rate of 0.99 to reduce
fluctuations in the training procedure. At inference time, we
only run the segmentation network in exactly the same way as
during the training phase. After getting o,, we use argmazx
function to obtain the final segmentation results.

5 Experiments

To evaluate our approach, we conduct extensive and com-
prehensive experiments on public semantic segmentation
datasets ScanNet [Dai et al., 2017] and S3DIS [Armeni et al.,
2016]. Experimental results show that AttAN achieves state-
of-the-art performance. In the following subsections, we first
introduce these datasets, and then analyze a series of ablation
experimental results to demonstrate the effectiveness of our
proposed architecture on ScanNet dataset. Finally, we show
segmentation results on S3DIS dataset.

5.1 Datasets

ScanNet. The newest version of this dataset includes 1513
scanned and reconstructed scenes with 21 semantic classes
and 100 new test scenes with all semantic labels publicly un-
available. During the training phase, we use 1201 scenes
for training and 312 scenes for validating, both without ex-
tra RGB information. Then we submit our results on test
scenes to the official benchmark evaluation server® to com-
pare against other methods. In this dataset, we use the mean
of intersection over union (mloU) across all the categories as
evaluation metric, which is same as the benchmark.

Stanford Large-Scale 3D Indoor Spaces (S3DIS). This
dataset contains scanned point cloud data of 271 rooms in
6 areas. Each point in the point cloud sets is assigned a la-
bel from 13 categories. We process the dataset similar as
[Qi et al., 2017al. Firstly, we split points by rooms, and
then sample rooms into blocks with area Im by Im. In the

3http://kaldir.vc.in.tum.de/scannet_benchmark/semantic_label_
3d
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Method Gumbel-Softmax  Add Noise \ mloU(%)
PointNet++ 49.89
PANet v 50.20
PANet-noise 4 v 50.70

Table 1: Ablation study on ScanNet for adversarial learning.

PointNet++

PANet-noise

Ground Truth

table M cabinet ™ counter
chair M other furniture

floor ™ door
desk ™ sofa

wall
bed
Figure 3: The segmentation results using different networks. Left:

The segmentation results of PointNet++. Middle: The segmentation
results of PANet-noise. Right: Ground Truth.

training stage we randomly sample 4096 points in each block
while in the testing stage we test on all points. Area 5 with
some different objects is not the same building as other areas,
which as test set could better measure the generalization abil-
ity of our method. Moreover, following [Armeni et al., 2016;
Qi et al., 2017al, 6-fold cross validation on all areas is
adopted for further evaluation.

5.2 Results on ScanNet Dataset

Ablation Study for Adversarial Learning. To verify the
effectiveness of adversarial learning, we design a framework
named PointNet++ Adversarial Networks (PANet). It com-
bines the segmentation network PointNet++ [Qi et al., 2017b]
with our Gumbel-Softmax estimator and adversarial network.
Then we conduct experiments on ScanNet [Dai et al., 2017]
validation scenes with different strategies in Table 1. We
can see that PANet improves mloU by about 0.3% against
baseline PointNet++, which proves that the adversarial pat-
tern can be extended in 3D point cloud semantic segmenta-
tion task with the Gumbel-Softmax estimator. In addition,
PANet-noise (with noise added to both real one-hot encoding
and fake one-hot encoding of PANet) raises the mIoU contin-
uously by 0.5%. This demonstrates that it is necessary and
effective to add noise in adversarial training process. The
segmentation results on some validation scenes using Point-
Net++ and PANet-noise are visualized in Figure 3. The mis-
classified and unreasonable labels pointed by red arrows can
be correctly classified using adversarial learning.
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Method Attention Blocks | mIoU(%)
PointNet++ 49.89
AttPointNet++ Vv 50.12
PANet-noise 50.70
AttAN 4 51.18

Table 2: Ablation study on ScanNet for attention blocks. AttPoint-
Net++ represents PointNet++ with attention blocks.

Attention Masks

Figure 4: The visualization of attention masks in last attention block.
Left: Ground Truth. Right: Attention masks of different feature
channels. The color from blue to red indicates different weight val-
ues for each point feature.

Ablation Study for Attention Blocks. We design atten-
tion blocks to capture more useful information during training
stage. To verify the effectiveness of attention blocks, we con-
duct ablation experiments with different settings on ScanNet
[Dai ef al., 2017] validation scenes. The segmentation re-
sults are described in Table 2. We can observe that the atten-
tion blocks improve the performance remarkably. Compared
with the baseline PointNet++, the model AttPointNet++ can
bring nearly 0.25% improvement in mloU. We also employ
attention blocks in PANet-noise mentioned above and get the
model AttAN. These blocks result in almost 0.5% promo-
tion in mloU. Furthermore, to better analyze the effects of
attention blocks, we visualize attention masks in last atten-
tion block in Figure 4. It can be seen that the attention masks
in different feature channels focus on diverse regions or ge-
ometry structures, which are of great help for the semantic
segmentation. That means attention blocks can learn to assign
low weights for unimportant point features and high weights
for more discriminative point features. Concretely, the first
column of attention masks indicates that vertical outlines are
enhanced. The second column pays more attention to the hor-
izontal planes of objects. From the third column, we can ob-
serve sofas, tables and chairs obviously, which indicates the
masks contribute to segmenting these categories.

Comparison with State-of-the-art. We compare our
method against other existing methods and results are shown
in Table 3. All other methods use both color and geometry
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Method mloU(%)
PointNet++ [Qi et al., 2017b] 339
SPLAT Net [Su et al., 2018] 39.3
Tangent Convolutions [Tatarchenko e al., 2018] 43.8
3DMV [Dai and NieBner, 2018] 48.4
TextureNet [Huang et al., 2019] 56.6
AttAN 60.9

Table 3: Comparison with the state-of-the-art methods for 3D se-
mantic segmentation on the ScanNet test scenes.

Point Cloud Prediction Ground Truth

wall beam =N column
door mmm table W= chair mm sofa
N clutter MW bookcase

mmwm ceiling == floor

= window
board

Figure 5: The visualization results on Area 5 of S3DIS.

in naive formats of 3D point cloud and report their results on
ScanNet test scenes to the benchmark. In our experiments,
we use 3D coordinates data without extra RGB information.
AttAN outperforms these state-of-the-art methods by a sig-
nificant margin. Specifically, the mIoU of ours is 27% higher
than baseline PointNet++ (33.9% vs. 60.9%), and it exceeds
the previous state-of-the-art method TextureNet (56.6% vs.
60.9%) by around 4%.

5.3 Results on S3DIS Dataset

In this subsection, we conduct experiments on S3DIS dataset
to further evaluate the effectiveness of our proposed method.
First, comparison with previous state-of-the-art methods on
Area 5 are showed in Table 4. AttAN outperforms other
methods with dominant advantage, achieving the best OA and
mloU. Concretely, 7 of 13 categories achieve the best perfor-
mance. For “beam” with few points (0.029%), other state-
of-the-art methods cannot perform well compared to AttAN,
which also demonstrates the robustness of our method. Ad-
ditional qualitative segmentation results on Area 5 are visu-
alized in Figure 5. The rooms from top to bottom represent
office, lobby, storage and hallway respectively. Among them,
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Method \ OA \ mloU \ ceiling floor  wall beam column window door chair table bookcase sofa  board clutter
PointNet [Qi et al., 2017a] 41.09 | 8880 9733 69.80 005 392 4626 1076 5893 5261 585 4028 2638 33.22
SegCloud [Tchapmi et al., 20171 4892 | 90.06 96.05 69.86 0.00 1837 3835 23.12 7589 7040 5842 4088 1296 41.60
PointCNN [Li e al., 2018b] 8591 | 57.26 | 9231 9824 7941 000 1760 2277 6209 7439 8059 3167 6667 62.05 5674
HPEIN [Jiang et al., 2019] 87.18 | 61.85 | 9147 9816 8138 000 2334 6530 4002 8770 7546 6778 5845 6561 49.36
GACNet [Wang et al., 2019] 87.79 | 62.85 | 9228 9827 8190 0.00 2035  59.07 4085 7854 8580 6170 7075 74.66 52.82
KPConv [Thomas et al., 2019] 67.1 | 928 973 824 000 239 580  69.0 910 815 75.3 754 667 589
AttAN | 90.51 | 74.68 | 9503 97.24 8174 8736 66.13 8549 7609 7328 9218 6334 5628 2949 67.28
Table 4: The comparisons on the S3DIS Area 5 in overall accuracy (OA, %), mloU (%), and per-class IoU (%).

Method | OA(%) mlIoU(%) of China (Nos. U1701267, 61871310, 61773304, 61806154,
PointNet [Qi ef al., 2017al 78.62 4771 61802295 and 61801351), the Fund for Foreign Scholars in
SPGraph [Landrieu and Simonovsky, 2018] | 85.5 62.1 University Research and Teaching Programs (the 111 Project)
PointCNN [Li et al., 2018b] 88.14 65.39 (No. B07048), the Major Research Plan of the National
HPEIN [Jiang et al., 2019] 88.20 67.83 Natural Science Foundation of China (Nos. 91438201 and
KPConv [Thomas e al., 2019] ) 70.6 91438103), the Program for Cheung Kong Scholars and In-
AttAN | 90.26 72.39 novative Research Team in University (No. IRT_15R53).

Table 5: Comparison with the state-of-the-art methods on the S3DIS
dataset with 6-fold cross validation.

the office room have most “beam” points of the whole area
that can be predicted decently by AttAN. Although several
noisy points haven’t been corrected by the adversarial learn-
ing yet, the regular geometry structure of different objects are
recognized well, which also proves the advantage of attention
blocks in 3D point cloud segmentation. Table 5 provides the
comparison among different methods with 6-fold cross vali-
dation. Our method still reaches the best performance on two
metrics.

6 Conclusion

In this paper, we propose a novel framework AttAN for 3D
point cloud semantic segmentation. It is endowed with two
key properties: First, the adversarial learning leads the seg-
mentation network to take the correlations between labels
into consideration, and thus corrects the segmentation results.
Second, the attention blocks in the segmentation network au-
tomatically capture information of salient positions, giving
more useful details for the segmentation task. To demon-
strate the superiority of our proposed framework, we conduct
quantitative experiments on two public datasets, ScanNet and
S3DIS. Results show that AttAN outperforms other state-of-
the-art methods. We also investigate the effectiveness of ad-
versarial learning and attention blocks independently by ab-
lation experiments. Specially, the Gumbel-Softmax estima-
tor is applied to introduce adversarial learning into 3D point
cloud semantic segmentation. Our method provides promis-
ing results for future work. The application of more and better
estimators is still an open question worth researching.
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