Exploiting Visual Semantic Reasoning for Video-Text Retrieval

Zerun Feng1, Zhimin Zeng1,2, Caili Guo1,2* and Zheng Li1

1Beijing Key Laboratory of Network System Architecture and Convergence, School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing, China
2Beijing Laboratory of Advanced Information Networks, Beijing, China
\{fengzerun,zengzm, guocaili, lizhengzachary\}@bupt.edu.cn

Abstract

Video retrieval is a challenging research topic bridging the vision and language areas and has attracted broad attention in recent years. Previous works have been devoted to representing videos by directly encoding from frame-level features. In fact, videos consist of various and abundant semantic relations to which existing methods pay less attention. To address this issue, we propose a Visual Semantic Enhanced Reasoning Network (ViSERN) to exploit reasoning between frame regions. Specifically, we consider frame regions as vertices and construct a fully-connected semantic correlation graph. Then, we perform reasoning by novel random walk rule-based graph convolutional networks to generate region features involved with semantic relations. With the benefit of reasoning, semantic interactions between regions are considered, while the impact of redundancy is suppressed. Finally, the region features are aggregated to form frame-level features for further encoding to measure video-text similarity. Extensive experiments on two public benchmark datasets validate the effectiveness of our method by achieving state-of-the-art performance due to the powerful semantic reasoning.

1 Introduction

Vision and language are two fundamental bridges for humans to access the real world. In the research community, video retrieval is one of the active topics to make connections between these two counterparts, which aims to measure the semantic similarity between a video and its corresponding caption in an embedding space. Semantic-based video retrieval can reduce the effort of manual annotations to improve productiveness.

Lately, with the dramatic development of visual understanding tasks, various video retrieval methods have been proposed and achieved promising performance. Most of them [Mithun et al., 2018; Dong et al., 2018] utilize pre-trained Convolutional Neural Network (CNN) to extract mid-level features as the representations of frames for further manipulating to calculate similarity scores between videos and texts. More recently, [Dong et al., 2019] encode frame-level features in a multi-level way for video retrieval. Because of the existing huge video-text representation discrepancy, it is still an enormous challenge to predict the accurate video-text retrieval results. To lift this limitation in a principled way, we need to take a deeper insight into videos. The most basic unit of videos is a series of regions (such as persons, objects and landscapes). We human beings understand the videos by observing and reasoning semantic relation evolution between these regions during the timeline. Recall that if we describe video contents using a sentence, we will not only focus on objects, but also care about motions, interactions, relative positions and other high-level semantic concepts (e.g., “mixing”, “in” and “together”, the highlighted words shown in Figure 1), which lack apparent correspondence between visual representations and word descriptions. Moreover, videos have spatial-temporal redundancy information (e.g., “lemon” and “chopping board” denoted by black boxes shown in Figure 1), which is not always mentioned in captions. The intuitionistic phenomena indicate that visual semantic reasoning is fundamental for humans to understand the real world [Katsuki and Constantinidis, 2014]. However, the current existing video retrieval methods lack such kind of reasoning mechanism. Although these representations can obtain global visual information from the frames, they fail to capture high-level semantic interactions and treat discriminative regions equally. Thus, the semantic gap between videos and texts is not well addressed, and it leads to limited performance when matching videos and texts.

In this paper, we propose a Visual Semantic Enhanced Rea-
soning Network (ViSERN) to generate visual representations by exploiting semantic relations. After sampling frames, our model detects frame regions by bottom-up attention [Anderson et al., 2018] and extract region features. In this way, each frame can be represented by several regions. Specifically, the bottom-up attention module is implemented with Faster R-CNN [Ren et al., 2015] pre-trained on Visual Genome [Krishna et al., 2017], an image region relation annotated dataset. Then, we build up a fully-connected graph with these regions as vertices and their semantic relevance as edges. We perform reasoning by novel random walk [Perozzi et al., 2014] rule-based Graph Convolutional Networks (GCN) [Kipf and Welling, 2017] to produce region features with semantic relations.

We suppose that the regions with intensely semantic relations would be beneficial to infer video-text similarity. Therefore, we combine random walks with GCN and perform reasoning to enhance the effect of the most valuable ones. The random walks are a rule for vertices to access their neighbors. The transition probability is determined by the weights of edges. The neighbor vertices with higher weight are more likely to be visited. By this means, we can choose the discriminative regions and drop the insignificant ones by performing reasoning according to the random walk rule. Finally, the region features are passed by mean pooling layer to generate frame-level features for further manipulating to obtain retrieval results.

To illustrate intuitively, we also design a visualization map to analyze what has been learned after reasoning, in addition to the quantitative assessment of our method on standard benchmarks. Correlations between the frame-level feature and each reasoning region feature belonging to the same frames are calculated and visualized in an attention form. As shown in Figure 1, we find that pivotal semantic interactions can be well captured, while redundant frame regions cause low responses.

The main contributions of our work are summarized as follows:

- We propose a novel Visual Semantic Enhanced Reasoning Network (ViSERN) based on GCN to explore semantic correlations between regions within frames for measuring video-text similarity. As far as we know, ViSERN is the first video-text retrieval model which focuses on visual semantic reasoning.
- To further enhance the reasoning capacity, we observe that it is powerful to introduce the random walk rule into GCN. The regions with high semantic relevance are more possibly to access each other for better reasoning by preserving the structure graph topology.
- Experimental results conducted on two publicly available datasets demonstrate the effectiveness of the proposed model by achieving a new state-of-the-art due to the powerful semantic reasoning.

2 Related Work

Video Retrieval. Over the past several years, with big advances of deep learning in computer vision and natural language processing, we observe that embedding based methods have been proposed for video retrieval. [Dong et al., 2018] leverage pre-trained CNN models to extract features from frames and aggregate the frame-level features into a video-level feature by mean pooling. [Dong et al., 2019] use mean pooling, bidirectional GRU, and 1-D CNN to encode global, temporal and local pattern information respectively for both video and text ends. However, to the best of our knowledge, no study has attempted to incorporate visual semantic reasoning when learning embedding for video retrieval.

Visual Semantic Reasoning. As an emerging research area, graph-based methods have been popular in recent years and shown to be an efficient approach to semantic relation reasoning. Graph Convolution Network (GCN) [Kipf and Welling, 2017] is first proposed for semi-supervised classification. Graph convolution extends the applicable scope of standard convolution from regular grids to more general pre-defined graphs by manipulating in the spectral domain, which is also proved to be powerful in video understanding. Wang and Gupta, 2018 represent videos as similarity graphs and bi-directional spatial-temporal graphs to perform reasoning via GCN for video classification. Liu et al., 2019 design a graph model to capture social relations from videos and perform temporal reasoning with multi-scale receptive fields on the graph by GCN. Inspired by the above studies, we propose to represent the frames as fully-connected semantic correlation graphs, on which reasoning is performed by novel random walk rule-based graph convolutional networks for video retrieval.

Random Walks. Random walks on a graph is a rule to visit a sequence of vertices together with a sequence of edges and widely applied in network representation learning. [Perozzi et al., 2014] treat nodes as words and sentences by truncated random walks to bridge the gap between network embeddings and word embeddings. [Grover and Leskovec, 2016] define a flexible notion of a node’s network neighborhood and design a biased random walk procedure for learning representations in complex networks. Since networks and graphs have similar topological structures, we argue that it is reasonable to introduce random walk statistics into GCN to enhance its visual reasoning ability.

3 Proposed Method

In order to capture visual semantic correlations for video feature representations, we propose a Visual Semantic Enhanced Reasoning Network (ViSERN). The architecture of ViSERN is shown in Figure 2. Concretely, our goal is to measure the similarity between video-text pairs by common space learning. We utilize the bottom-up attention model to generate frame regions and extract features from frames (Sec. 3.1). For the regions, we construct a graph to model semantic correlations (Sec. 3.2). Subsequently, we do semantic reasoning between these regions by leveraging random walk rule-based Graph Convolutional Networks (GCN) to generate re-
3.1 Region Features Extraction

After sampling frames from videos, we use the bottom-up attention model [Anderson et al., 2018] to extract a set of salient frame regions (e.g., person, cars and sky). We implement the bottom-up attention model with the same configuration in [Lee et al., 2018]. The model is pre-trained on Visual Genomes [Krishna et al., 2017], a large-scale image dataset annotating the interactions/relationships between objects. Objects and their relationships within each image in the dataset are densely annotated. Specifically, with the benefit of

3.2 Semantic Correlation Graph Construction

In our work, a relation graph is designed to conduct semantic reasoning between regions. Particularly, we construct a fully-connected semantic correlation graph \(G = (V, E) \) on a frame with \(n \) region features.

In the graph, \(V = \{v_1, ..., v_n\}, v_i \in \mathbb{R}^d \) is the collection of region features as depicted above. As for edge set \(E \), each two vertices exist a link, we suppose \(\forall (v_i, v_j) \in E \). To construct an adjacency matrix \(R \) representing the edge set \(E \), dot-product attention mechanism [Vaswani et al., 2017] is implemented in an embedding space. We formulate \(R \) in a form of symmetric adjacency matrix following the definition of undirected graph to measure semantic relations between regions:

\[
R(v_i, v_j) = \phi(v_i)^T \theta(v_j) + \theta(v_i)^T \phi(v_j),
\]

where \(\phi(\cdot) = W_\phi(\cdot) + b_\phi \) and \(\theta(\cdot) = W_\theta(\cdot) + b_\theta \) are two linear embeddings with bias. In this way, the two regions can be connected with a higher weight edge if they have more intensely semantic correlations.

3.3 Reasoning by Random Walk Rule-Based GCN

At the heart of our approach, we propose a module based on Graph Convolutional Networks (GCN) [Kipf and Welling, 2017] to perform semantic reasoning between regions. To process region features in a spectral domain, we consider spectral convolutions on the graph \(G \). For concise descriptions, we start with the set of vertices \(x \in \mathbb{R}^n \), i.e., a scalar for all \(n \) vertices, then generalize to multi-input channels.

We recall that a fundamental operator in spectral graph analysis is the graph Laplacian. The combinatorial definition of graph Laplacian matrix is \(L = D - R \in \mathbb{R}^{n \times n} \) where \(D \in \mathbb{R}^{n \times n} \) is diagonal degree matrix with \(D_{ii} = \sum_j R_{ij} \).

Moreover, the symmetric normalized graph Laplacian matrix is \(L_{\text{sym}} = I_n - D^{-1/2}RD^{-1/2} \), where \(I_n \in \mathbb{R}^{n \times n} \) is the identity matrix. The convolution operator on vertices \(*x \) are filtered by \(g_\theta = \text{diag}(\theta) \) [Bruna et al., 2014], parameterized by learnable \(\theta \in \mathbb{R}^n \) in the spectral domain:

\[
g_\theta * x = U g_\theta U^T x, \tag{2}
\]

where \(L_{\text{sym}} = U \Lambda U^T \) is diagonalized by the spectral basis \(U \in \mathbb{R}^{n \times n} \), with a diagonal matrix of its eigenvalues \(\Lambda \in \mathbb{R}^{n \times n} \). We can understand this convolution operation by three steps: First, \(x \) is transformed from the spatial domain into the spectral domain by \(U^T x \). Next, the computation in the spectral domain is evaluated through \(g_\theta U^T x \). Finally, \(U g_\theta U^T x \) is utilized to convert \(x \) back into the spatial domain.

It was introduced in [Defferrard et al., 2016] that \(g_\theta \) is a function of \(\Lambda \) and can be approximated as a \(K \)-order polynomial filter:

\[
g_\theta(\Lambda) \approx \sum_{k=0}^{K} \theta_k \Lambda^k, \tag{3}
\]

where \(\theta_k \in \mathbb{R}^K \) is a vector of polynomial coefficients. However, computing Eq. 3 might be prohibitively expensive for enormous number of graphs. To solve this problem, the filter is reformulated in terms of Chebyshev polynomials up to \(K^{th} \) order [Hammond et al., 2011]. Specifically, the Chebyshev polynomials can be calculated by a recurrence function:
$T_k(a) = 2aT_{k-1}(a) - T_{k-2}(a)$ with $T_0 = 1$ and $T_1 = a$. We now have the truncated expansion of the approximated filter:

$$g_{\theta''}(\Lambda) \approx \sum_{k=0}^{K} \theta_k'' T_k(\hat{\Lambda}),$$ \hspace{1cm} (4)

where $\theta_k'' \in \mathbb{R}^K$ is a vector of Chebyshev coefficients following a scaled diagonal matrix $\hat{\Lambda} = 2\Lambda/\lambda_{\max} - I_n$. λ_{\max} denotes the spectral radius of L^{sym}. It's easy to check that $(U\Lambda U^T)^k = U\Lambda^k U^T$. Specifically, the convolution in spectral domain of vertices x with a filter $g_{\theta''}$ can be an equation of \hat{L}:

$$g_{\theta''} \star x \approx \sum_{k=0}^{K} \theta_k'' T_k(\hat{L})x,$$ \hspace{1cm} (5)

with $\hat{L} = 2L^{\text{sym}}/\lambda_{\max} - I_n$, a similar scaled strategy of $\hat{\Lambda}$. To circumvent the problem of overfitting and build a deeper network model, [Kipf and Welling, 2017] approximate $\lambda_{\max} \approx 2$ and limit $K = 1$. By this means, Eq. 5 further simplifies to:

$$g_{\theta''} \star x \approx \theta_0'' x + \theta_1'' (L^{\text{sym}} - I_n)x,$$ \hspace{1cm} (6)

where θ_0'' and θ_1'' serve as two free parameters. Inspired by recent work [Perozzi et al., 2014] that random walks can be effective for learning explicit representations of vertices by preserving the structure of graph topology. The transition probability of a random walker on the graph is defined as $P = D^{-1}R \in \mathbb{R}^{n \times n}$. We normalize \hat{P} to obtain random walk normalization $L^{rw} \in \mathbb{R}^{n \times n}$ of graph Laplacian matrix for preventing gradient explosion:

$$L^{rw} = I_n - P = I_n - D^{-1}R = D^{-1}L,$$ \hspace{1cm} (7)

so that $0 \leq \lambda_{\min}^{rw} \leq 2$, where Λ^{rw} is a diagonal matrix which comprises eigenvalues of L^{rw}. Notice that:

$$L^{rw} = D^{-1/2}L^{\text{sym}}D^{1/2},$$ \hspace{1cm} (8)

where $D^{1/2}$ is an invertible square matrix. It’s obvious that L^{rw} is similar to L^{sym}. For this reason, L^{rw} has real eigenvalues λ_{\min}^{rw}, even if L^{rw} is in general not symmetric. Particularly, eigenvalues λ_{\min}^{rw} are equivalent to eigenvalues λ_{\min} of L^{sym} and thus the approximation of Eq. 3 is suitable for random walk normalization. Substituting L^{rw} for L^{sym} in Eq. 6, we can extend the expression of spectral graph convolutions involved with the random walk rule:

$$g_{\theta''} \star x \approx \theta_0'' x + \theta_1'' (L^{rw} - I_n)x = \theta_0'' x - \theta_1'' D^{-1}Rx.$$ \hspace{1cm} (9)

Instead of minimizing the number of parameters by simply hypothesizing $\theta_0'' = -\theta_1''$ in [Kipf and Welling, 2017], we consider Eq. 9 as a potential residual architecture comparable with ResNet [He et al., 2016]. Concretely, x is added as a shortcut connection directly without multiplying θ_0''. Neglecting the negative sign in $-\theta_1''$, we rewrite Eq. 9 as:

$$g_{\theta''} \star x \approx \theta_1'' D^{-1}Rx + x.$$ \hspace{1cm} (10)

Finally, we extend the spectral graph convolutions to multi-input channels with $V \in \mathbb{R}^{n \times d}$ as follows:

$$Z = D^{-1}RV\Theta + V,$$ \hspace{1cm} (11)

where $\Theta \in \mathbb{R}^{d \times d}$ is the filter parameter matrix. Θ can be reorganized as few stacked layers and the final output of spectral graph convolution is defined as:

$$Z = (D^{-1}R W_g) W_r + V,$$ \hspace{1cm} (12)

where $W_g \in \mathbb{R}^{d \times d}$ is the GCN weight layer and $W_r \in \mathbb{R}^{d \times d}$ is the residual weight layer. The output $Z = \{z_1, \ldots, z_n\}, z_i \in \mathbb{R}^d$ is the relation enhanced representations for vertices. Z is further processed by mean pooling to form frame-level feature $Z \in \mathbb{R}^d$.

3.4 Common Space Learning

For both video and text ultimate embedding representations, we use the multi-level encoder [Dong et al., 2019] to map them in the same D-dimensional common space. We denote the aligned video and text features as O and T, respectively.

We adopt a hinge-based triplet ranking loss [Faghri et al., 2018] which is proved to be powerful for common space learning with concentration on hard negatives. The loss is expressed as:

$$L(O, T) = |\alpha - S(O, T) + S(\hat{O}, T)|_+$$ \hspace{1cm} (13)

where α is a margin constant, while $S(\cdot)$ computes cosine similarity between two features and $|x|_+ \equiv \max(x, 0)$. Given a positive pair (O, T) within a mini-batch, $\hat{O} = \arg \max_{O \neq i} S(i, T)$ and $\hat{T} = \arg \max_{T \neq j} S(O, j)$ are the hardest negative samples.
of regions within a frame is 36, identical to [Anderson et al., 2018] time interval between every two frames. The number We uniformly sample 16 frames from videos with the same implementation Details

4.2 Implementation Details

4.3 Comparisons with the State-of-the-art

Comparisons with the State-of-the-art

Quantitative results on the MSR-VTT and the MSVD datasets are shown in Table 1 and Table 2, respectively. We can observe that the proposed ViSERN outperforms recent state-of-the-art methods in terms of most indicators on both datasets, especially for text-to-video retrieval subtask, which has more actual applications in daily life. For example, our ViSERN improves 2.6%, 4.5% and 2.5% at R@1 and R@5 and R@10 respectively on the MSR-VTT dataset comparing to the current state-of-the-art. In addition, we notice that ViSERN obtains much gain on the MSVD dataset relatively. The reasons are probably considered as two folds: First, the size of the MSVD dataset is smaller than the MSR-VTT dataset. Indeed, it potentially results from the existence of fewer distractors for a given query in the MSVD dataset. Second, the MSVD dataset only provides the visual signal, while the MSR-VTT dataset offers both visual and auditory information. It is non-trivial to exploit comprehensive elements in the MSR-VTT dataset for better representations. The results demonstrate that our ViSERN model can usefully implement semantic visual reasoning and measure the video-text similarity more accurately.

Ablation Studies

To validate the contribution of each component in our model, we carry out several ablation experiments. We start with a fundamental option which is simply implemented without the random walk rule-based GCN as a baseline model (denoted as ViSERN\textsubscript{no-rea}). The region features V are straightforwardly processed by mean pooling to represent the whole frame without performing reasoning. To examine the benefit of reasoning based on graph topology, we use row-wise normalization (denoted as ViSERN\textsubscript{row-nor}) in Eq. 12, a similar method avoiding gradient explosion implemented in [Li et al., 2019]. Furthermore, we confirm the effectiveness of random walk statistics by comparing with symmetric normalization (denoted as ViSERN\textsubscript{sym-nor}). The detailed ablation results on the MSR-VTT dataset are shown in Table 3. From the results of ViSERN\textsubscript{no-rea}, we ob-

The evaluation criteria in our experiments are the rank-based performance generally listed as Recall at K (R@K, K = 1, 5, 10), Median Rank (Med R) and Mean Rank (Mean R). Given the retrieval results, R@K is the percentage of queries whether at least one corresponding item shows in the top-K. Med R calculates the median rank of the first correct item among the search results. Similarly, Mean R computes the mean rank of whole correct results. The sum of R@1, R@5 and R@10, noted as Sum of Recalls is also reported.

4.2 Implementation Details

We uniformly sample 16 frames from videos with the same time interval between every two frames. The number n of regions within a frame is 36, identical to [Anderson et al., 2018]. The dimension d of region features extracted from ResNet-101 is 2048. The detailed configuration of the bottom-up attention model is the same as [Anderson et al., 2018]. For text feature initial representations, each word is firstly represented by a one-hot vector and then multiplied by a word embedding matrix. We set the word embedding size to 500 and the dimension of the common space D to 2048, similar to [Dong et al., 2019]. The margin parameter α is empirically chosen to be 0.2. The size of a mini-batch is 64. The optimizer in the training procedure is Adam with 50 epochs at most. We start training with an initial learning rate 0.0001, and the adjustment schedule is that once the validation loss does not decrease in three consecutive epochs, the learning rate is divided by 2.

4.3 Comparisons with the State-of-the-art

Comparisons with the State-of-the-art

Quantitative results on the MSR-VTT and the MSVD datasets are shown in Table 1 and Table 2, respectively. We can observe that the proposed ViSERN outperforms recent state-of-the-art methods in terms of most indicators on both datasets, especially for text-to-video retrieval subtask, which has more actual applications in daily life. For example, our ViSERN improves 2.6%, 4.5% and 2.5% at R@1 and R@5 and R@10 respectively on the MSR-VTT dataset comparing to the current state-of-the-art. In addition, we notice that ViSERN obtains much gain on the MSVD dataset relatively. The reasons are probably considered as two folds: First, the size of the MSVD dataset is smaller than the MSR-VTT dataset. Indeed, it potentially results from the existence of fewer distractors for a given query in the MSVD dataset. Second, the MSVD dataset only provides the visual signal, while the MSR-VTT dataset offers both visual and auditory information. It is non-trivial to exploit comprehensive elements in the MSR-VTT dataset for better representations. The results demonstrate that our ViSERN model can usefully implement semantic visual reasoning and measure the video-text similarity more accurately.

4.4 Ablation Studies

To validate the contribution of each component in our model, we carry out several ablation experiments. We start with a fundamental option which is simply implemented without the random walk rule-based GCN as a baseline model (denoted as ViSERN\textsubscript{no-rea}). The region features V are straightforwardly processed by mean pooling to represent the whole frame without performing reasoning. To examine the benefit of reasoning based on graph topology, we use row-wise normalization (denoted as ViSERN\textsubscript{row-nor}) in Eq. 12, a similar method avoiding gradient explosion implemented in [Li et al., 2019]. Furthermore, we confirm the effectiveness of random walk statistics by comparing with symmetric normalization (denoted as ViSERN\textsubscript{sym-nor}).

The detailed ablation results on the MSR-VTT dataset are shown in Table 3. From the results of ViSERN\textsubscript{no-rea}, we ob-

<table>
<thead>
<tr>
<th>Methods</th>
<th>Text-to-Video Retrieval</th>
<th>Video-to-Text Retrieval</th>
<th>Sum of Recalls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R@1</td>
<td>R@5</td>
<td>R@10</td>
</tr>
<tr>
<td>VSE [Kiros et al., 2014]</td>
<td>5.0</td>
<td>16.4</td>
<td>24.6</td>
</tr>
<tr>
<td>VSE++ [Faghri et al., 2018]</td>
<td>5.7</td>
<td>17.1</td>
<td>24.8</td>
</tr>
<tr>
<td>JEMC [Mithun et al., 2018]</td>
<td>5.8</td>
<td>17.6</td>
<td>25.2</td>
</tr>
<tr>
<td>W2VV [Dong et al., 2018]</td>
<td>6.1</td>
<td>18.7</td>
<td>27.5</td>
</tr>
<tr>
<td>Dual encoding [Dong et al., 2019]</td>
<td>7.7</td>
<td>22.0</td>
<td>31.8</td>
</tr>
<tr>
<td>ViSERN</td>
<td>7.9</td>
<td>23.0</td>
<td>32.6</td>
</tr>
</tbody>
</table>

Table 1: Video-to-Text and Text-to-Video retrieval results on the MSR-VTT dataset.

<table>
<thead>
<tr>
<th>Methods</th>
<th>Text-to-Video Retrieval</th>
<th>Video-to-Text Retrieval</th>
<th>Sum of Recalls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R@1</td>
<td>R@5</td>
<td>R@10</td>
</tr>
<tr>
<td>VSE [Kiros et al., 2014]</td>
<td>12.3</td>
<td>30.1</td>
<td>42.3</td>
</tr>
<tr>
<td>VSE++ [Faghri et al., 2018]</td>
<td>15.4</td>
<td>39.6</td>
<td>53.0</td>
</tr>
<tr>
<td>JEMC [Mithun et al., 2018]</td>
<td>16.1</td>
<td>41.1</td>
<td>53.5</td>
</tr>
<tr>
<td>Dual encoding [Dong et al., 2019]</td>
<td>17.6</td>
<td>47.1</td>
<td>59.5</td>
</tr>
<tr>
<td>ViSERN</td>
<td>18.1</td>
<td>48.4</td>
<td>61.3</td>
</tr>
</tbody>
</table>

Table 2: Video-to-Text and Text-to-Video retrieval results on the MSVD dataset.
serve that it is reasonable to represent the whole frame by 36 region features. The results of ViSERN_row-nor indicate that reasoning is substantially dependent on graph topology-based normalization. We also notice that random walk statistics help to improve the performance by comparing the results of ViSERN_sym-nor with ViSERN. One possible reason could be that the random walk rule is effective to maintain the structure of graph topology generated from each individual frame and maximize the contribution of shared GCN layer weights and residual layer weights.

4.5 Visualization and Analysis

The motivation of our visual semantic reasoning is to highlight the regions with strongly semantic information by exploiting relations within a frame. In order to validate our thoughts, we visualize the correlations between the feature of the whole frame and the region features included in this frame by applying an attention map. Specifically, we compute the cosine similarity scores (same as $S(\cdot)$ in Eq. 13) between each region feature z_i and the feature of entire frame Z. Then we rank the regions in the descending order according to similarity scores. To generate the attention map, we assign an attention score $s_i \in \mathbb{R}$ to each region based on its rank $r_i \in \{0, 1, \ldots, n - 1\}$. The function of attention score is defined as $s_i = (n - r_i)^2$. We normalize the set of attention scores to generate the final attention map conveniently.

In Figure 3, we show the attention maps, original frames and corresponding captions. The regions with strongly semantic meaning are painted red in attention maps. From the attention visualization, we can observe that ViSERN well represents frame-level features by exploiting semantic reasoning and capturing regions with intensely semantic relations. Additionally, Figure 3(a) indicates that ViSERN is sensitive to short-term interaction. We also find that long-term motion is also captured from the illustration of Figure 3(b). Furthermore, the regions of both two salient people are highlighted separately in Figure 3(c).

5 Conclusion

In this paper, we propose a Visual Semantic Enhanced Reasoning Network (ViSERN) to learn semantic reasoning by using the novel random walk rule-based graph convolutional networks for video-text retrieval. The enhanced frame representations capture key regions and suppress redundancy in a scene so that it is helpful to align with the corresponding video caption. Extensive experiments on the MSR-VTT and MSVD datasets demonstrate the proposed model consistently outperforms the state-of-the-art methods. In addition, we provide visualization analyses to show how ViSERN can provide more discrimination and interpretability to such vision-language models. Moreover, ViSERN can be further developed to support content-based searches on online video websites.

Acknowledgments

This work was partially supported by the China Telecom Dict Application Capability Center, the Beijing Natural Science Foundation (4202049) and the National Key R&D Program of China (2018YFB1800805).
References

