
GraphSleepNet: Adaptive Spatial-Temporal Graph Convolutional Networks for
Sleep Stage Classification

Ziyu Jia1,2 , Youfang Lin1,2,3 , Jing Wang1,2,3∗ , Ronghao Zhou1 , Xiaojun Ning1 , Yuanlai
He1 and Yaoshuai Zhao3

1School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China
2Beijing Key Laboratory of Traffic Data Analysis and Mining, Beijing, China

3CAAC Key Laboratory of Intelligent Passenger Service of Civil Aviation, Beijing, China
{ziyujia, yflin, wj, rhzhou, ningxj, yuanlaihe}@bjtu.edu.cn, yszhao@travelsky.com

Abstract
Sleep stage classification is essential for sleep as-
sessment and disease diagnosis. However, how to
effectively utilize brain spatial features and transi-
tion information among sleep stages continues to
be challenging. In particular, owing to the lim-
ited knowledge of the human brain, predefining
a suitable spatial brain connection structure for
sleep stage classification remains an open ques-
tion. In this paper, we propose a novel deep graph
neural network, named GraphSleepNet, for auto-
matic sleep stage classification. The main advan-
tage of the GraphSleepNet is to adaptively learn
the intrinsic connection among different electroen-
cephalogram (EEG) channels, represented by an
adjacency matrix, thereby best serving the spatial-
temporal graph convolution network (ST-GCN) for
sleep stage classification. Meanwhile, the ST-GCN
consists of graph convolutions for extracting spa-
tial features and temporal convolutions for captur-
ing the transition rules among sleep stages. Exper-
iments on the Montreal Archive of Sleep Studies
(MASS) dataset demonstrate that the GraphSleep-
Net outperforms the state-of-the-art baselines.

1 Introduction
Sleep stage classification is important for the assessment of
sleep quality and the diagnosis of sleep disorders. Sleep ex-
perts identify sleep states based on sleep standard and ob-
servations recorded in polysomnography (PSG), which con-
tains electroencephalography (EEG) at different positions on
the head, electromyography (EMG), and electrooculogra-
phy (EOG), etc. Currently, the two commonly used sleep
standards are the Rechtschaffen and Kales (R&K) standard
[Wolpert, 1969] and American Academy of Sleep Medicine
(AASM) standard [Berry et al., 2012]. The transition rules
between different sleep stages, which can assist sleep experts
in identifying the sleep stages, are also recorded in the AASM
standard. Although these rules provide very valuable infor-
mation, classifying the sleep stages by human sleep experts is
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still a tedious and time-consuming task. Moreover, the classi-
fication results are affected by the variability and subjectivity
of sleep experts.

Automatic sleep stage classification can greatly improve
the efficiency of traditional sleep stage classification and has
important clinical value. A large number of researchers have
made great contributions to automate this classification task.
At first, traditional machine learning methods based on time
domain, frequency domain, and time-frequency domain fea-
tures are adopted. However, the classification accuracy of
these methods depends heavily on feature engineering and
feature selection, which require a lot of expert knowledge.
Recently, deep learning methods have been widely applied
to automatically classify sleep stage thanks to its powerful
ability of representation learning. For example, Convolu-
tional Neural Network (CNN) and Recurrent Neural Network
(RNN) are often utilized to learn appropriate feature repre-
sentations from transformed data or directly from raw data.

Although CNNs and RNNs can achieve high accuracy for
sleep stage classification, their limitation is that the model’s
input must be grid data (themselves or after conversion to
image-like representations) ignoring the connection among
brain regions. Due to brain regions are in non-Euclidean
space, graph is the most appropriate data structure to indicate
brain connection. Motivated by the success of the graph con-
volution network (GCN) model in graph data, the sleep stage
classification is studied by the graph representation method,
where each EEG channel corresponds to a node of the graph,
and the connection between the channels correspond to the
edge of the graph. But an important input of GCN is the
graph connection representation, which is generally a fixed
graph structure which is set in advance. Although existing
methods, such as the phase-locking value (PLV) method, can
obtain a fixed graph structure, due to the limited understand-
ing of the brain, it is still challenging to determine a suitable
graph structure in advance for sleep stage classification.

Besides, how to exploit the sleep transition rules between
neighboring stages is another challenge. Actually, sleep ex-
perts usually identify the class label of one sleep state accord-
ing to both the characteristic EEG waves of the current state
and the class labels of its neighbors. Hence, it is reasonable
to take transition rules into account to improve classification
accuracy.
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In order to address the above challenges, we propose
GraphSleepNet, a novel deep graph neural network, for
automatic sleep stage classification. The GraphSleepNet
is used to learn an adaptive graph structure representa-
tion that best serves spatial-temporal-GCN (ST-GCN) for
sleep stage classification. The code has been released at:
https://github.com/jingwang2020/GraphSleepNet.

Overall, the main contributions of the proposed Graph-
SleepNet for automatic sleep stage classification are summa-
rized as follows:

• To the best of our knowledge, it is the first attempt
to apply ST-GCN for automatic sleep stage classifica-
tion. Moreover, we propose a novel adaptive sleep graph
learning mechanism, which is integrated with ST-GCN
simultaneously in a unified network architecture.

• We design a spatial-temporal convolution, which con-
sists of graph convolutions for capturing spatial features
and temporal convolutions for capturing the transition
among different sleep stages.

• Experimental results demonstrate that the GraphSleep-
Net achieves state-of-the-art performance in sleep stage
classification.

2 Related Work
2.1 Sleep Stage Classification
Identifying sleep stages plays an important role in diagnos-
ing and treating sleep disorders. In earlier research, machine
learning methods such as Support Vector Machine (SVM)
and Random Forests (RF) are utilized to classify sleep stages.
However, these methods need to extract hand-crafted fea-
tures, which requires a lot of prior knowledge. Therefore,
some researchers have turned to use deep learning methods
for sleep stage classification.

Currently, two popular deep learning models, CNN and
RNN, are widely used in sleep stage classification. A fast
discriminative complex-valued CNN (FDCCNN) [Zhang and
Wu, 2017] is proposed to capture the sleep information hid-
den inside EEG signals. A CNN model based on multivari-
ate and multimodal physiological signals [Chambon et al.,
2018] takes into account the transitional rules of sleep stages
to assist classification. The extracted functional connectiv-
ity metrics are employed as multi-dimensional images to in-
put into the CNN model for classification [Chriskos et al.,
2019]. A hierarchical RNN named SeqSleepNet [Phan et
al., 2019] tackles the task as a sequence-to-sequence clas-
sification task. At the same time, hybrid models are also
used by some researchers. DeepSleepNet [Supratak et al.,
2017] utilizes CNN to extract time-invariant features, and
Bi-directional Long Short-Term Memory (BiLSTM) to learn
the transition rules among sleep stages. A hierarchical neu-
ral network [Sun et al., 2019] implements comprehensive
feature learning stage and sequence learning stage, respec-
tively. Additionally, with the development of attention mech-
anisms, a deep Bi-directional RNN with attention mechanism
is used for single-channel sleep stage classification [Phan et
al., 2018].

Although the models above can extract spatial or temporal
features from EEG signals, there is one obvious limitation:
their input must be grid data. As different brain regions are
not in the Euclidean space, grid data may not be the optimal
data representation. Hence, the graph is the most appropriate
data structure.

2.2 Graph Convolution Network
Recently, GCNs have shown advanced performance in ad-
dressing graph structure data. Graph convolution methods
are classified into spatial convolution and spectral convolu-
tion methods. Spatial convolution methods usually perform
graph convolution operations directly on the nodes and their
neighbors of the graph. For example, an end-to-end CNN
that operates on a graph is presented in [Duvenaud et al.,
2015]. The GraphSAGE model [Hamilton et al., 2017] gener-
ates embeddings by sampling and aggregating features from a
node’s local neighborhood. Graph Attention Networks (GAT)
[Veličković et al., 2018] uses masked self-attentional layers to
assign different weights to different nodes in a neighborhood.
Spectral convolution methods usually define graph convolu-
tion operation on the spectral representation of the graph.
For example, a general graph convolution framework is pro-
posed based on graph Laplacian [Bruna et al., 2014]. Cheby-
shev expansion of graph Laplacian is utilized to reduce com-
putational complexity [Defferrard et al., 2016]. A simpler
GCN for semi-supervised learning is proposed in [Kipf and
Welling, 2016]. Although, the existing GCNs usually utilize
a fixed graph, which is not optimal for sleep stage classifica-
tion, because the graph structure of different sleep states may
be different. Moreover, the GCNs are applied directly to clas-
sify sleep stages without the capture of sleep transition rules
in the temporal dimension.

3 Preliminaries
In our study, a sleep stage network is defined as an undirected
graphG = (V,E,A), where V denotes the set of vertices and
each vertex in the network represents an electrode on brain;
|V | = N is the number of vertices in sleep stage network;
E denotes the set of edges and indicates the connection be-
tween vertices; A denotes the adjacency matrix of sleep stage
network G. As shown in Figure 1, Gt is constructed from
a 30s EEG signal sequence St. It is worth noting that the
adjacency matrix A used in the proposed model is obtained
through learning, while traditional GCNs usually use a fixed
adjacency matrix.

The sleep feature matrix is the input of the Graph-
SleepNet. We define the raw signals sequence as S =
(s1, s2, . . . , sL) ∈ RL×N×Ts , where L denotes the number
of samples, Ts denotes the time series length of each sample
si ∈ S(i ∈ {1, 2, · · · , L}). For each sample si, we ex-
tract the differential entropy (DE) features [Hyvärinen, 1998]
on various frequency bands and define each sample si’s fea-
ture matrix Xi =

(
xi1,x

i
2, . . . ,x

i
N

)T ∈ RN×Fde , where
xin ∈ RFde(n ∈ {1, 2, · · · , N}) denotes Fde features of node
n at sample i. Figure 1 shows the sleep stage network and
sleep feature matrix, which are constructed from the raw sig-
nals.
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The research goal is to learn the mapping relationship be-
tween the encoded signals and sleep stage class based on the
proposed model. The problem of sleep stage classification
is defined as: given X = (Xi−d, . . . ,Xi, . . . ,Xi+d) ∈
RN×Fde×Tn identify the current sleep stage y, where X de-
notes the temporal context of Xi, y denotes the Xi’s sleep
stage class label, and Tn = 2d+ 1 denotes the length of sleep
stage networks, where d ∈ N+ denotes temporal context co-
efficient.

Figure 1: Sleep stage network and sleep feature matrix.

4 Adaptive Spatial-Temporal GCN
The overall architecture of the GraphSleepNet is shown in
Figure 2. We summarize three key ideas of the Graph-
SleepNet: 1) Represent the pairwise relationship between
nodes to dynamically construct adjacency matrix A. 2) Com-
bine spatial graph convolution and temporal convolution to
extract both spatial and temporal features. 3) Employ a
spatial-temporal attention mechanism to automatically pay
relatively more attention to valuable spatial-temporal infor-
mation. The overall architecture is elaborately designed to
accurately identify sleep stages.

4.1 Adaptive Sleep Graph Learning
Adaptive sleep graph learning is the first key part of
the GraphSleepNet as shown in Figure 3. It dynami-
cally learns the graph structure, rather than the graph con-
structed by prior knowledge or artificially (e.g., k-nearest
neighbor graph [Jiang et al., 2013]). Therefore, we de-
fine a non-negative function Amn = g (xm,xn) (m,n ∈
{1, 2, · · · , N}) to represent the connection relationship be-
tween nodes xm and xn based on the input feature matrix
Xi =

(
xi1,x

i
2, . . . ,x

i
N

)T ∈ RN×Fde . g (xm,xn) is imple-
mented through a layer neural network, which has the learn-
able weight vector w = (w1, w2, . . . , wFde

)
T ∈ RFde×1.

The learned graph structure (adjacency matrix) A is defined
as:

Amn=g(xm,xn)=
exp(ReLU(wT |xm−xn|))∑N

n=1 exp (ReLU (wT |xm−xn|))
(1)

where rectified linear unit (ReLU) is an activation function to
guarantee that Amn is non-negative. The softmax operation

normalizes each row of A. The weight vector w is updated
by minimizing the following loss function,

Lgraph learning =
N∑

m,n=1

‖xm − xn‖22Amn + λ‖A‖2F (2)

That is, the larger distance ‖xm − xn‖2 between xm and xn,
the smaller Amn is. Due to the brain connection structure is
not a fully connected graph, we utilize the second term in the
loss function to control the sparsity of graph A, where λ ≥ 0
is a regularization parameter.

The proposed graph learning mechanism automatically
constructs the neighborhood connection of the nodes. To
avoid the trivial solution (i.e., w = (0, 0, · · · , 0)), which is
due to minimizing the above loss function Lgraph learning inde-
pendently, we utilize it as a regularized term to form the final
loss function.

Lloss = Lcross entropy + Lgraph learning (3)

Lcross entropy = − 1

L

L∑
i=1

R∑
r=1

yi,r log ŷi,r (4)

where Lcross entropy denotes the original loss function of the
multi-classification task, L denotes the number of samples, R
denotes the number of classes. y is the true label and ŷ is the
value predicted by the model.

4.2 Spatial-Temporal Graph Convolution
Spatial-temporal graph convolution is a combination of spa-
tial graph convolution and temporal standard convolution,
which is used to extract both spatial and temporal features.
As shown in Figure 2, the spatial features are extracted by
aggregating information from neighbor nodes for each sleep
stage network and the temporal features are captured by ex-
ploiting temporal dependencies from neighbor sleep stages.

Spatial Graph Convolution
We use graph convolution based on spectral graph theory to
extract spatial features in the spatial dimension. For each
sleep stage to be identified, the adaptive sleep graph learn-
ing module provides an adjacency matrix A for graph convo-
lution. In addition, we employ the Chebyshev expansion of
graph Laplacian to reduce computational complexity. Cheby-
shev graph convolution [Defferrard et al., 2016] using the
K − 1 order polynomials is defined as:

gθ ∗G x = gθ(L)x =
K−1∑
k=0

θkTk(L̃)x (5)

where gθ denotes the convolution kernel, ∗G denotes the
graph convolution operation, θ ∈ RK denotes a vector of
Chebyshev coefficients and x is the input data. L = D −A
denotes Laplacian matrix, where D ∈ RN×N is degree ma-
trix. L̃ = 2

λmax
L − IN , where λmax is Laplacian matrix’s

maximum eigenvalue and IN is a identity matrix. Tk(x) =
2xTk−1(x) − Tk−2(x) denotes the Chebyshev polynomials
recursively, where T0(x) = 1 and T1(x) = x.
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Figure 2: The overall architecture of the proposed GraphSleepNet for sleep stage classification. The GraphSleepNet consists of an adaptive
sleep graph learning mechanism and the spatial-temporal graph convolution with spatial-temporal attention.

Figure 3: The structure of the proposed adaptive sleep graph learn-
ing in GraphSleepNet.

By using the approximate expansion of Chebyshev polyno-
mial, the information of neighboring 0 to K − 1 order neigh-
bors centered at each node is extracted.

In this work, we generalize the above definition to the
nodes with multiple channels. The l-th layer’s input is

X̂
(l−1)

= (X̂1, X̂2, . . . , X̂Tl−1
) ∈ RN×Cl−1×Tl−1 , where

Cl−1 denotes channel’s number of each node, i.e., l =
1, C0 = Fde. Tl−1 denotes the l-th layer’s temporal di-
mension. For each X̂i, we obtain gθ ∗G X̂i by using Cl fil-
ters on X̂i, where Θ = (Θ1,Θ2, . . . ,ΘCl

) ∈ RK×Cl−1×Cl

is the convolution kernel parameter [Defferrard et al., 2016].
Hence, the information of the 0 ∼ K − 1 order neighbors is
aggregated to each node.

Temporal Convolution
To capture the sleep transition rules, which are used by sleep
experts to classify the current sleep stage in combination with

neighboring sleep stages, we employ CNN to perform con-
volution operation in the temporal dimension. Specifically,
after graph convolution operation has sufficiently extracted
the spatial features from each sleep stage network, we imple-
ment a standard 2D convolution layer to extract the temporal
context information of the current sleep stage. The temporal
convolution operation on the l-th layer is defined as:

X (l) = ReLU(Φ ∗ (ReLU(gθ ∗G X̂
(l−1)

))) ∈ RN×Cl×Tl

(6)
where ReLU is the activation function, Φ denotes the convo-
lution kernel’s parameters, * denotes the standard convolution
operation.

4.3 Spatial-Temporal Attention
The attention mechanism is often used to automatically ex-
tract valuable information. In this study, we employ a spatial-
temporal attention mechanism [Guo et al., 2019] to capture
valuable spatial-temporal information on the sleep stage net-
work. The spatial-temporal attention mechanism contains
spatial attention and temporal attention.

Spatial Attention
In the spatial dimension, different regions have different ef-
fects on the sleep stage which is dynamically changing during
sleep. To automatically extract the attentive spatial dynamics,
we utilize a spatial attention mechanism, which is defined as
follows:

P =V p · σ((X (l−1)Z1)Z2(Z3X (l−1))T +bp) (7)
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P ′m,n = softmax(Pm,n) (8)

where V p, bp ∈ RN×N , Z1 ∈ RTl−1 , Z2 ∈
RCl−1×Tl−1 , Z3 ∈ RCl−1 denote learnable parameters,
σ denotes the sigmoid activation function. X (l−1) =(
X1,X2, . . . ,XTl−1

)
∈ RN×Cl−1×Tl−1 denotes the l-th

layer’s input. P denotes spatial attention matrix, which is dy-
namically computed by current layer’s input. Pm,n denotes
the correlation between node m and n. The softmax opera-
tion is utilized to normalize the attention matrix P . In the
proposed model, when the graph convolution is performed,
the learned adjacency matrix A and spatial attention matrix
P can dynamically adjust the update of nodes.

Temporal Attention
In the temporal dimension, there are correlations among
neighboring sleep stages, and the correlations change in dif-
ferent situations. Therefore, a temporal attention mechanism
is utilized to capture dynamic temporal information among
sleep stage networks.

The temporal attention mechanism is defined as follows:

Q = V q · σ(((X (l−1))TM1)M2(M3X (l−1)) + bq) (9)

Q′m,n = softmax(Qm,n) (10)

where V q, bq ∈ RTl−1×Tl−1 , M1 ∈ RN , M2 ∈ RCl−1×N ,
M3 ∈ RCl−1 denotes learnable parameters. Qm,n denotes
the strength of correlation between sleep stage network m
and n. Finally, the softmax operation is utilized to normalize
the attention matrix Q. The input of the ST-GCN is tuned by

the temporal attention: X̂
(l−1)

= (X̂1, X̂2, . . . , X̂Tl−1
) =

(X1,X2, . . . ,XTl−1
)Q′ ∈ RN×Cl−1×Tl−1 to pay more at-

tention to valuable temporal information.

5 Experiments
To verify the effectiveness of the GraphSleepNet, we evalu-
ate it on the Montreal Archive of Sleep Studies (MASS)-SS3
dataset [O’Reilly et al., 2014].

5.1 Dataset
We use the MASS-SS3 dataset, which contains the PSG
recordings from 62 healthy subjects (28 male and 34 female).
Each recording contains 20 EEG channels, 2 EOG channels,
3 EMG channels, and 1 ECG channel. In addition, experts
classify these PSG recordings into five sleep stages (W, N1,
N2, N3, and REM) according to AASM standard [Berry et
al., 2012].

5.2 Preprocessing
The PSG recordings are pre-processed with the bandpass fil-
ters of 0.30-100 Hz (EEG), 0.10-100 Hz (EOG, ECG) and
10-100 Hz (EMG). We extract DE features for each channel
from 9 crossed frequency bands: 0.5-4 Hz, 2-6 Hz, 4-8 Hz, 6-
11 Hz, 8-14 Hz, 11-22 Hz, 14-31 Hz, 22-40 Hz, 31-50 Hz. To
make a fair comparison of existing sleep classification meth-
ods, we employ all signals in our experiments.

5.3 Baseline Methods
We compare the GraphSleepNet with the following baselines:

• [Dong et al., 2017]: A mixed neural network, which
combines multilayer perceptron (MLP) and LSTM, and
also compare its performance with RF and SVM.

• [Supratak et al., 2017]: A model combines CNN and
BiLSTM to capture both time-invariant features and
transition rules among sleep stages.

• [Chambon et al., 2018]: A temporal sleep stage classi-
fication use multivariate and multimodal time series.

• [Phan et al., 2019]: SeqSleepNet changes the sin-
gle sleep stage classification problem into a sequence-
to-sequence classification problem by using attention-
based bidirectional RNN (ARNN) and RNN.

• [Sun et al., 2019]: A hierarchical neural network,
which learns comprehensive features and sequence re-
spectively.

• [Jiang et al., 2019]: Robust sleep stage classifica-
tion which uses multimodal decomposition and Hidden
Markov Model (HMM) -based refinement.

5.4 Experiment Settings
We employ 31-fold cross-validation to evaluate the perfor-
mance of the GraphSleepNet. In addition, we use the subject-
independent schemes to randomly divide the training set and
test set. The hyperparameters of the experiment are shown
in Table 1. We implement the GraphSleepNet using Tensor-
Flow. Please refer to the code for more detailed.

Hyperparameter description Value

Sleep stage networks length Tn 5
Layer number of ST-GCN 1
Standard convolution kernels 10
Graph convolution kernels 10
Chebyshev polynomial K 3
Regularization parameter 0.001
Dropout probability 0.5
Batchsize 64
Number of training epochs 50
Learning rate 0.001
Optimizer Adam

Table 1: Experiment hyperparameter setting

5.5 Comparison with State-of-the-Art Methods
We compare our GraphSleepNet with the other eight base-
line methods for sleep stage classification on the MASS-SS3
dataset, as shown in Table 2. The results show that our Graph-
SleepNet consistently achieves the best performance on all
evaluation indicators compared to other baseline methods.

The traditional machine learning methods (SVM and RF)
cannot learn the complex spatial or temporal features well.
However, existing deep learning models such as CNN and
RNN [Dong et al., 2017; Supratak et al., 2017; Chambon et
al., 2018; Phan et al., 2019; Sun et al., 2019] can directly
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Method Overall results F1-score for each class

Accuracy F1-score Kappa Wake N1 N2 N3 REM
[Dong et al., 2017] SVM 0.797 0.750 - 0.786 0.487 0.861 0.825 0.792
[Dong et al., 2017] RF 0.817 0.724 - 0.782 0.351 0.880 0.815 0.794
[Dong et al., 2017] MLP+LSTM 0.859 0.805 - 0.846 0.563 0.907 0.848 0.861
[Supratak et al., 2017] CNN+BiLSTM 0.862 0.817 0.800 0.873 0.598 0.903 0.815 0.893
[Chambon et al., 2018] CNN 0.739 0.673 0.640 0.730 0.294 0.812 0.765 0.764
[Jiang et al., 2019] RF+HMM 0.808 0.793 0.710 - - - - -
[Phan et al., 2019] ARNN+RNN 0.871 0.833 0.815 - - - - -
[Sun et al., 2019] CNN+BiLSTM 0.881 0.824 0.819 0.912 0.551 0.916 0.826 0.914

GraphSleepNet Adaptive ST-GCN 0.889 0.841 0.834 0.913 0.603 0.921 0.851 0.919

Table 2: The performance comparison of the state-of-the-art approaches on the MASS dataset

extract the spatial or temporal features. Therefore, their per-
formance is better than the methods based on traditional ma-
chine learning.

Although CNN and RNN achieve high accuracy, their lim-
itation is that the model’s input must be grid data ignoring the
connection among regions. Due to brain regions are in non-
Euclidean space, graph is the most appropriate data structure
to indicate the connection. The proposed GraphSleepNet ex-
tracts both spatial and temporal features based on an adaptive
sleep graph structure. Therefore, the proposed GraphSleep-
Net is superior to other baseline methods.

5.6 Experimental Analysis
To further investigate the effectiveness of the adaptive sleep
graph learning, we design five fixed adjacency matrices to
compare with it. We compare these different adjacency ma-
trices with an adaptive adjacency matrix. The different adja-
cency matrices are defined as below:
• Fully Connected Adjacency Matrix: A matrix whose el-

ements are all 1. It represents that there are all con-
nections among all nodes and each node also has self-
connection in the graph.
• Random Adjacency Matrix: A randomly generated ma-

trix with each element’s value between 0 and 1 indicat-
ing that the connections between nodes are random.
• Space Distance Adjacency Matrix: A matrix constructed

based on the actual spatial distance between electrodes.
• K-Nearest Neighbor Adjacency Matrix [Jiang et al.,

2013]: A matrix, which represents a k-nearest neighbor
graph. That is, each node has k neighbor nodes.
• PLV Adjacency Matrix [Aydore et al., 2013]: A matrix

generated by PLV method between each pair of nodes.
Figure 4(a) illustrates that the adaptive (learned) adjacency

matrix achieves the highest accuracy for sleep stage classifi-
cation. In addition, the adjacency matrix combined with prior
knowledge also achieves a suboptimal effect, such as the PLV
adjacency matrix. The fully connected adjacency matrix does
not work well because the brain network is not a fully con-
nected graph. In general, the adjacency matrix can signifi-
cantly affect the classification effect. The proposed adaptive
sleep graph learning for classification tasks is superior to all
fixed graphs.

(a) (b)

Figure 4: The experimental analysis. (a) Comparison of adjacency
matrices. (b) Comparison of the sleep stage network length.

In addition, we study the impact of the number of input
sleep stage networks (temporal context) on the classification
performance. Figure 4(b) presents the performance of the
classification improves as the number of input sleep stage net-
works Tn increases, and the best accuracy is achieved when
Tn = 5. It is worth noting that according to the AASM stan-
dard, sleep experts also judge the current sleep state based on
5 sleep stages, which shows the practicability of the proposed
model. However, too long time context is input, resulting
in degradation of classification performance, which may be
caused by information redundancy.

6 Conclusion
In this paper, we propose a novel deep graph neural network
for automatic sleep stage classification. The main advantage
of the proposed model is to adaptively learn the sleep con-
nection structure that best serves ST-GCN for the classifica-
tion task. Furthermore, this model combines spatial-temporal
convolution and spatial-temporal attention mechanisms to si-
multaneously capture attentive spatial-temporal features of
the sleep data. Experimental results demonstrate our model
achieves state-of-the-art performance in the existing models.
In addition, our proposed model is a general-framework for
multivariate physiological time series.
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