Rewriting the Description Logic $ALCHIQ$ to Disjunctive Existential Rules

David Carral and Markus Krötzsch
Knowledge-Based Systems Group, TU Dresden
firstname.lastname@tu-dresden.de

Abstract

Especially in data-intensive settings, a promising reasoning approach for description logics (DLs) is to rewrite DL theories into sets of rules. Although many such approaches have been considered in the literature, there are still various relevant DLs for which no small rewriting (of polynomial size) is known. We therefore develop small rewritings for the DL $ALCHIQ$ – featuring disjunction, number restrictions, and inverse roles – to disjunctive Datalog. By admitting existential quantifiers in rule heads, we can improve this result to yield only rules of bounded size, a property that is common to all rewritings that were implemented in practice so far.

1 Introduction

Among the many approaches towards efficient reasoning in description logics (DLs), consequence-preserving translations of DL theories into rule languages are among the most prominent. Table 1 gives an overview of works in this area. The natural strength of rule reasoners is their good scalability towards large sets of facts. Indeed, all of the rewritings in Table 1 are independent of the given facts (ABox), which can be used unchanged for reasoning with the rule-based theory. In general, we can describe this idea of rewriting as follows:

Definition 1. Consider fragments L_1 and L_2 of first-order logic that include ground facts.

An L_2-theory T_2 is a fact entailment preserving rewriting (or simply rewriting in this paper) of an L_1-theory T_1 if, for every set F of ground facts and every ground fact φ over the signature of T_1, we have $T_1, F \models \varphi$ iff $T_2, F \models \varphi$.

If such a rewriting can always be computed, then L_1 is (effectively, fact-entailment preserving) rewrtable to L_2.

All of the works in Table 1 establish rewratability in this sense for the given fragments, and in particular preserve entials of all role (i.e., unary) atoms. If only entailments of class (i.e., unary) atoms are of interest, then all uses of ALC in the table can also be replaced by S – and by SR at the cost of exponentially larger rewritings – based on common preprocessing techniques [Ortiz et al., 2010]. Entailment of (complex) role atoms is also a special case of regular path query answering, which can be solved by combined methods that we do not discuss here [Simancik, 2012].

While the works in Table 1 rely on diverse rewriting methods, they must all obey some complexity-related constraints. In particular, if L_1 is rewrtable to L_2, then L_2’s data complexity for fact entailment subsumes that of L_1. Hence, Horn-DLs (P-complete in data) are rewrtable to Datalog, while non-Horn DLs (co-NP-complete in data) supposedly are not.

Combined complexity is also a limiting factor. It is EXP-Time-complete for Datalog and co-NEXPTIME-complete for Datalog $^+$, but drops to P and NP, respectively, if rule sizes are bounded († in Table 1). This explains why †-rewritings from (N)EXPTIME-complete DLs to Datalog $^+$ must produce exponentially large rule sets. The alternative is to allow polynomially growing rule sizes (and especially predicate arities). The last two lines in Table 1 are rewritings that use a constant rule sets and rewrite TBoxes to facts in subpolynomial time. This works for $E\mathcal{L}^{++}$ due to its P-complexity, and for Horn-ALC due to the high expressive power of Datalog $^+$ theories, even when these are constant.

Given this rich body of research in rule rewritings, there is a surprising shortage of rewriting-based reasoners. KAON2 uses the exponential $SHIQ$ rewriting of Hustadt et al. [2007], and DReW the polynomial $E\mathcal{L}^{+\star}$ rewriting of

<table>
<thead>
<tr>
<th>Work</th>
<th>Source</th>
<th>Target</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hustadt et al. [2007]</td>
<td>$ALCHIQ$</td>
<td>Datalog $^+$</td>
<td>exp. †</td>
</tr>
<tr>
<td>Eiter et al. [2012]</td>
<td>Horn-$SHIQ$</td>
<td>Datalog</td>
<td>exp. †</td>
</tr>
<tr>
<td>Rudolph et al. [2012]</td>
<td>$SHIQb^r$</td>
<td>Datalog $^+$</td>
<td>exp. †</td>
</tr>
<tr>
<td>Bienvenu et al. [2014]</td>
<td>SHI</td>
<td>Datalog $^+$</td>
<td>exp. †</td>
</tr>
<tr>
<td>Carral et al. [2018]</td>
<td>Horn-$ALCHIQ$</td>
<td>Datalog</td>
<td>exp. †</td>
</tr>
<tr>
<td>Carral et al. [2019b]</td>
<td>Horn-$SHIQ$</td>
<td>Datalog</td>
<td>exp. †</td>
</tr>
<tr>
<td></td>
<td>Horn-$SRIQ$</td>
<td>Datalog</td>
<td>2exp. †</td>
</tr>
<tr>
<td>Ortiz et al. [2010]</td>
<td>Horn-$ALCHIQ$</td>
<td>Datalog</td>
<td>poly.</td>
</tr>
<tr>
<td>Ahmetaj et al. [2016]</td>
<td>$ALCHIQ$</td>
<td>Datalog $^+$</td>
<td>poly.</td>
</tr>
<tr>
<td>Krötzsch [2011]</td>
<td>$E\mathcal{L}^{++}$</td>
<td>Datalog</td>
<td>poly. †</td>
</tr>
<tr>
<td>Carral et al. [2019a]</td>
<td>Horn-ALC</td>
<td>Datalog 3</td>
<td>poly. †</td>
</tr>
</tbody>
</table>

†: rules of bounded size that does not depend on input.

Table 1: Rewritings of DL-type logics to rule languages, where Datalog $^+$ and Datalog 3 denote Datalog extended with disjunctions and existential quantifiers, respectively.
Krötzsch [2011] – both systems are discontinued. Rule recognizers, in contrast, have been thriving in recent years, and scalable systems exist both for Datalogv (e.g., answer set programming engines [Lifschitz, 2019]) and for Datalog3 (e.g., engines for tuple-generating dependencies [Bellomarini et al., 2018; Motik et al., 2014; Urbani et al., 2018]).

A possible explanation is that known rewritings still suffer from many shortcomings. Indeed, exponentially large rule sets (Table 1, lines 1–7) and rule sizes in the order of the on-

...programming engines [Lifschitz, 2019] and for Datalog3 (e.g., engines for tuple-generating dependencies [Bellomarini et al., 2018; Motik et al., 2014; Urbani et al., 2018]).

In this paper, we therefore study polynomial rewritings for hitherto unsupported DLs, in particular for the combination of number restrictions (Q) and inverses (D) on a non-Horn DL. The result are two new rewriting approaches for the DL ALC\text{HIQ}: a rewriting to Datalogv that (unavoidably) requires unbounded (but still linear) rule sizes, and a rewriting to Datalog3 that achieves bounded rule sizes. Datalog with existential quantifiers is co-re-complete for fact entailment, but we show that our rewriting leads to rule sets for which entailment can be decided with standard algorithms, while still matching the original DL’s co-NP data complexity. Both results are new, and – in the second case – also illustrate the potential advantage of considering rules with existential quantifiers as a target for rewriting.

Finally, we also consider Horn-ALC\text{HIQ}, the disjunction-

...fragments to include additional explanations instead.

2 Preliminaries

We introduce Datalog3 as a first-order rule language, and define Datalog, Datalogv, and the DL ALC\text{HIQ} as fragments thereof. The datalog-first disjunctive chase provides a suitable deduction calculus for the Datalog3 fragments we rewrite to. We assume familiarity with standard notions of first-order logic, such as interpretations and homomorphisms.

2.1 Rules and Logic Fragments

We consider a first-order signature based on mutually dis-

...variables V, nulls N, and predicates P. The set of terms is T = C \cup V \cup N. A predicate P \in P has an arity ar(P) ≥ 1, P1 = \{P | ar(P) = 1\}. We consider special predicates T, ⊥ \in P1, and ≈ \in P2, which are semantically interpreted as universal class, empty class, and equality. For a logical expression or set thereof \nu and a set of entities E ∈ \{C, V, N, T, P\} \cup \{Pi | i ≥ 1\}, let E\textsubscript{x} be the set containing every element in E that occurs in \nu. Lists of terms (E) A(x) ∧ B(x) → C(x) A \cap B ⊆ C (E) A(x) → B(x) ∨ C(x) A ⊆ B ∪ C (∨) A(x) ∧ R(x, y) → B(y) A ⊆ R.B (3) A(x) → ∃y.R(x, y) ∧ B(y) A ⊆ ∃R.B (c) A(x) ∧ R(x, y) ∧ B(y) → S(x, y) A ∩ R o B ⊆ S (≤) R(x, y) ∧ R(x, z) → y ≈ z ⊤ \subseteq R,T (R) R(x, y) ∧ S(x, y) → V (x, y) ⊥ ⊆ S ∪ V (R) R(x, y) → S(x, y) ∨ V (x, y) R ⊆ S ∪ V (¬) R(y, x) → S(x, y) R^⊥ ⊆ S

Figure 1: ALC\text{HIQ} rules (A, B, C \in P1 and R, S, V \in P2\{≈\})

1. Atom \nu is a formula P(\bar{t}) with P \in P0 and \bar{t} \subseteq T. A fact is a variable-free atom. A disjunctive existential rule is a null-free first-order logic formula of the form ∀\bar{x}. (β[\bar{x}] \rightarrow V_n i=1 \exists y_i.\eta[\bar{x}_i, y_i]).

Definition 2. Datalog3 is the language of all sets R of disjunctive existential rules. We consider some of its fragments:

- Datalog3: Datalog3 without disjunction.
- Datalogv: Datalog3 without existential quantifiers.
- Datalog: Datalogv without disjunctions.
- ALC\text{HIQ}: rules of one of the forms given in Figure 1.
- Horn-ALC\text{HIQ}: ALC\text{HIQ} without disjunction.

Our definition of ALC\text{HIQ} is based on first-order repre-

...sentations of the axioms of the DL SH\text{HIQ}\textsubscript{b} shown on the right of Figure 1. Arbitrary ALC\text{HIQ} axioms [Horrocks et al., 2000] can be converted into these forms while preserving entailment of facts [Rudolph et al., 2012, Section 6]. Note that this conversion can be computed in polynomial time if the number restrictions are encoded in unary.

An ontology \cal O is a pair (\cal R, \cal F) of a rule set \cal R and a null-

...fact set \cal F. Without loss of generality, we assume P\textsubscript{\cal R} \subseteq P\textsubscript{\cal R} and ⊤, ⊥, ≈ \in P\textsubscript{\cal F}. We write \cal O \models \nu if \cal O entails a logical expression \nu in first-order logic with ⊤, ⊥, and ≈.

2.2 The Chase

We introduce a general proof procedure for Datalog3 as the non-deterministic version of the restricted chase algorithm. Following Carral et al. [2019a], we prioritise Datalogv rules to increase the chance of termination.

A substitution is a partial function \sigma : V → C ∪ N. For a logical expression \nu, let \nu[\sigma] be the result of replacing each variable x in \nu by \sigma(x) if the latter is defined. Given a fact

...null-free first-order logic formula of the form \forall\bar{x}. (β[\bar{x}] \rightarrow V_n i=1 \exists y_i.\eta[\bar{x}_i, y_i]).

where β[\bar{x}] and η[\bar{x}_i, y_i] are conjunctions of atoms using variables in the specified lists \bar{x}_i and y_i, which satisfy \bar{x}_i ⊆ \bar{x} and \bar{x} \cap y_i = ∅ for all 1 ≤ i ≤ n. The rule has body β[\bar{x}] and head V_n i=1 \exists y_i.\eta[\bar{x}_i, y_i]. We omit the universal quantifiers when writing rules. We use disjunctions in bodies as a shortcut, e.g., we write β_1 ∨ β_2 → ∃y.η instead of β_1 → ∃y.η and β_2 → ∃y.η.

Definition 2. Datalog3 is the language of all sets R of disjunctive existential rules. We consider some of its fragments:

- Datalog3: Datalog3 without disjunction.
- Datalogv: Datalog3 without existential quantifiers.
- Datalog: Datalogv without disjunctions.
- ALC\text{HIQ}: rules of one of the forms given in Figure 1.
- Horn-ALC\text{HIQ}: ALC\text{HIQ} without disjunction.

Our definition of ALC\text{HIQ} is based on first-order repre-

...sentations of the axioms of the DL SH\text{HIQ}\textsubscript{b} shown on the right of Figure 1. Arbitrary ALC\text{HIQ} axioms [Horrocks et al., 2000] can be converted into these forms while preserving entailment of facts [Rudolph et al., 2012, Section 6]. Note that this conversion can be computed in polynomial time if the number restrictions are encoded in unary.

An ontology \cal O is a pair (\cal R, \cal F) of a rule set \cal R and a null-

...fact set \cal F. Without loss of generality, we assume P\textsubscript{\cal R} \subseteq P\textsubscript{\cal R} and ⊤, ⊥, ≈ \in P\textsubscript{\cal F}. We write \cal O \models \nu if \cal O entails a logical expression \nu in first-order logic with ⊤, ⊥, and ≈.

2.2 The Chase

We introduce a general proof procedure for Datalog3 as the non-deterministic version of the restricted chase algorithm. Following Carral et al. [2019a], we prioritise Datalogv rules to increase the chance of termination.

A substitution is a partial function \sigma : V → C ∪ N. For a logical expression \nu, let \nu[\sigma] be the result of replacing each variable x in \nu by \sigma(x) if the latter is defined. Given a fact
set F and a rule ρ of the form (3), σ is a match for ρ if it is not defined on $y_1 \cup \ldots \cup y_n$ and $\beta \sigma \subseteq F$.

Definition 3. A chase sequence of an ontology (R, F) is a (finite or infinite) sequence of fact sets F_0, F_1, \ldots such that

1. $F_0 = F$;
2. for every F_{i+1} with $i \geq 0$, there is a rule $\rho \in R$ of the form (3) and a match σ for ρ on F_i, such that
 (a) $F_i \not\models y_j \eta y \sigma$ for all $i \in \{1, \ldots, n\}$,
 (b) $F_{i+1} = F_i \cup \eta y \sigma$ for some $j \in \{1, \ldots, n\}$, where σ extends σ to y_j, such that $\sigma(y) \in N$ is a fresh null for each $y \in y_j$,
 (c) if ρ contains an existential quantifier, then for all Disjunctive Datalog $\rho' \in R$ and all matches σ' of ρ' on F_i, we have $F_i \not\models \rho' \sigma'$ (priority for Datalog$^\vee$);
3. for every $\rho \in R$ and substitution σ, there is some $k \geq 1$ such that $F_k \models \rho \sigma$ for all $i \geq k$ (fairness).

The set $\bigcup_{i \geq 0} F_i$ is a chase of (R, F).

The chase process is non-deterministic in several ways. Disjunctions are handled by the choice of j in (2b). This affects which facts are derived. Another form of nondeterminism is in the choice of rule application order, within the constraints of (2c) and (3). This does not affect which ground facts are eventually derived, but it may determine if the chase sequence is finite or not. A rule set R is (universally) terminating if, for all fact sets F, all chase sequences of (R, F) are finite. The language of all terminating rules sets is called terminating Datalog$^\vee$ (and similarly for other logics).

Definition 3 does not consider the semantics of the special predicates \top, \bot, and \approx, which must satisfy certain restrictions in all first-order interpretations: \top, \bot, and \approx are interpreted as the domain and the empty set, respectively, and \approx is used to denote equality. We treat these special predicates by axiomatisation. For a rule ρ, let $Ax(\rho)$ be the result of replacing all occurrences of \top, \bot, and \approx by \top, \bot, and \approx, respectively. For a rule set R, let $Ax(R)$ be the rule set that contains (i) $Ax(\rho)$ for all $\rho \in R$, (ii) $Top(c)$ for all $c \in C_R$, and (iii) the following rules instanciated for all $P \in P_R \setminus \{\top, \bot, \approx\}$ and $i \in \{1, \ldots, n\}$:

$$P(x_1, \ldots, x_i, \ldots, x_n) \Rightarrow \top(x_i)$$

$$\bot(y) \land \top(x_i) \land \ldots \land \top(x_n) \Rightarrow P(x_1, \ldots, x_n)$$

$$P(x_1, \ldots, x_i, \ldots, x_n) \land Eq(x_i, y) \Rightarrow P(x_1, \ldots, y, \ldots, x_n)$$

$$\text{Eq}(x, y) \Rightarrow \text{Eq}(y, x)$$

The rules are clearly sound for the intended interpretation of the auxiliary predicates. The second rule type ensures that everything follows from a contradiction – practical systems would omit this for reasons of efficiency, and check for entailments over \bot as a special case. The final three rules are the usual equality theory, where we omit reflexivity since it does not lead to conclusions for any predicates other than Eq.

Fact 1. An ontology $O = (R, F)$ entails a fact ϕ over a predicate in $P_O \setminus \{\top, \bot, \approx\}$ iff ϕ is in all chases of $(Ax(R), F)$.

3 ALCHIQ to Disjunctive Datalog

We will now specify a polynomial rewriting of ALCHIQ to Datalog$^\vee$, and establish its correctness. For the remainder of this section, let R be an arbitrary, fixed ALCHIQ rule set. Moreover, let R_\exists be the set of all rules of type (3) in R; that is, the set of all non-Datalog rules in R. We present a rewriting to establish the following main result.

Theorem 2. ALCHIQ is poly-time rewritable to Datalog$^\vee$.

Our rewriting is based on types that define (shapes of) local environments of domain elements in a DL interpretation. Sketches for the intuitive notions of “local environment” that we consider are shown in Figure 2. The types abstract from pairs of elements c and d that are directly related, by specifying the classes of c, the classes of d, and the set of (forward or inverse) roles relating them. To support ALCHIQ, the type further considers, for each rule $\rho \in R_\exists$, a successor w_ρ of d that witnesses the satisfaction of ρ on d. This successor is again described by the (forward or inverse) roles between d and w_ρ, and by the classes of w_ρ.

A type therefore is a tuple $(C, R, D, S, \ldots, S, E_i)$ where $\ell = |R_\exists|$, $C, R, D, S, \ldots, S, E_i \subseteq P^1$, and $R, S, \ldots, S, E_i \subseteq P^2 \setminus \{\top\}$ for $i \in \{1, \ldots, \ell\}$. We encode types in Datalog$^\vee$ using a predicate Type of arity $(2+\ell)\cdot|P_0^1|\cup\{\top, \bot\}+(1+\ell)\cdot|P_0^2\setminus\{\top\}|$, where each parameter can be one of the fresh individuals $\{0, 1\}$, indicating the presence or absence of an element in one of the sets that constitute the type. This approach follows Ortiz et al. [2010]. We use the following fixed lists of variables in Type atoms:

$$\tilde{C} = c_1, \ldots, c_n \quad \tilde{R} = r_1, \ldots, r_m, r_{m-1}$$

$$\tilde{D} = d_1, \ldots, d_m \quad \tilde{W} = \tilde{W}^\rho, \ldots, \tilde{W}^{\rho_\ell}$$

for some fixed orderings $P_0^1 \cup \{\top, \bot\} = \{A_1, \ldots, A_n\}$, $P_0^2 \setminus \{\top\} = \{R_1, \ldots, R_m\}$, and $R_\exists = \{\rho_1, \ldots, \rho_\ell\}$; and with $\tilde{W}^\rho = w_\rho^{R_1}, w_\rho^{R_2}, \ldots, w_\rho^{R_m}, w_\rho^{R_{m-1}}, \ldots, w_\rho^{R_{m-\ell}}$, for every $\rho \in R_\exists$. We will frequently encounter atoms $\text{Type}(\tilde{C}, \tilde{R}, \tilde{D}, \tilde{W})$, which we further abbreviate as $\text{Type}(\tilde{V})$. We will further use facts of the form $\text{NamType}(x, \tilde{D}, \tilde{W})$ to encode the type of a named element x, specified by its classes (\tilde{D}) and R_\exists witnesses (\tilde{W}).

Definition 4. Let $\text{rename}(R)$ be the Datalog$^\vee$ rule set that contains (i) $Ax(R \setminus R_\exists)$; (ii) the rule set in Figure 3; and (iii), for every rule $\rho \in R$, the corresponding rules in Figure 4.

In this rewriting, the rules of (i) are (axiomatised) first-order versions of all non-existential ontology axioms. However, these rules will only apply to named individuals, since models of the rewritten Datalog$^\vee$ rules do not contain domain elements to represent the anonymous individuals that are relevant in DL models. Such anonymous elements instead are represented indirectly by recording their types, which is accomplished by rules (ii) and (iii). Rules (1) and (2) trigger

Figure 2: Sketch of the local environments as described by generic types (Type, left) and types for named elements x (NamType, right).
the construction of types by requiring that named individuals have types (1), and that existing types have compatible successor types that satisfy existential restrictions (2). All other rules in Figures 3 and 4 then restrict these types by excluding contradicting cases. Rule (3) ensures the consistent assignment of classes to named individuals, rule (4) excludes some basic inconsistencies, and rule (5) ensures that the second element (“d”) of any type must satisfy ⊤ if it satisfies anything at all. We do allow the case where all bits for \(\bar{R} \) and \(\bar{D} \) are 0, which occurs, e.g., for named individuals without successors.

Rules in Figure 4 encode the meaning of specific axioms when applied to the local structure of types as sketched in Figure 2. Most rules are straightforward, but the rules (\(\leq \)) for expressing functionality require some explanation. Note that these rules are instantiated for various combinations of existential restrictions, class names, and role names. The rules in the first line encode equality of two existential successors (illustrated by elements in classes \(\bar{E}_i \) in Figure 2); the rules in the second line encode equality of an existential successor and the first element of the type (illustrated by the element in classes \(\bar{C} \) in Figure 2). Using Eq in these lines ensures that bits that encode the equated elements’ type data are identical, since equality of 0 and 1 is disallowed by (4). The rules in the last two lines capture cases where predicates of named individuals can be derived from predicates of successor elements (represented by bits in a type). Note that we cannot use Eq for achieving the latter. Equality of several named individuals is already supported by the corresponding axiom in \(\text{Ax}(\mathcal{R}, \mathcal{R}_3) \).

For better clarity, we have chosen a presentation of \(\text{rew}^\forall(\mathcal{R}) \) that is not polynomial, since rules (1) and (2) are of exponential size. To define a polynomial rewriting, we can simply substitute rule (1) with the rules

\[
\forall \{ \text{Type}(\bar{V})[w_{R'}^i / 1, w_{A'}^i / 1] / \} \rightarrow \text{Eq}(w_{R''}^i, w_{A''}^i) \land \text{Eq}(w_{S''}^i, w_{S'}^i) \land \text{Eq}(w_{A'}^i, w_{A''}^i),
\]

\[\text{Type}(\bar{V})[r_{R'}/1, w_{A'}/1] / \rightarrow \text{Eq}(r_{S'}, w_{S''}^i) \land \text{Eq}(r_{A'}, w_{A''}^i),
\]

\[
R(x, y) \land \text{NamType}(x, \bar{D}, \bar{W})[w_{R'}^i / 1, w_{A'}^i / 1] \rightarrow S(x, y), R(x, y) \land \text{NamType}(x, \bar{D}, \bar{W})[w_{R'}^i / 1, w_{A'}^i / 1] \rightarrow S(y, x),
\]

\[
R(x, y) \land \text{NamType}(x, \bar{D}, \bar{W})[w_{A'}^i / 1, w_{A'}^i / 1] \rightarrow A(y) \mid \rho', \rho'' \in \mathcal{R}_3, A \in \mathcal{P}_R \setminus \{ \top, \bot \}, S \in \mathcal{P}_R \setminus \{ \approx \}.
\]

Figure 4: Rewriting \(\text{ALCHIQ} \) rules \(\rho \) to Datalog\(^\forall \); \([x_1/a_1, \ldots, x_n/a_n] \) is the substitution that maps every \(x_i \) to \(a_i \).
Proof sketch. Let $O = (R, F)$. Since $O \models \varphi$ there is a model $M \models O$ with $M \models \varphi$. The proof proceeds by defining a model I of $\text{rew}^\omega(R) \cup F$ such that $I \models \varphi$. The extensions of ontology predicates in I is defined in a straightforward way by copying corresponding relationships on named elements from M:

$I \models \text{Type}(0, \ldots, 0), \text{Named}(a), \text{Top}(a) \text{ for all } a \in C_\varphi$

$I \models A(a) \text{ for all } A \in P^1_R \setminus \{T, \bot\} \text{ with } a^M \in A^M$

$I \models R(a, b) \text{ for all } R \in P^2_R \text{ with } (a^M, b^M) \in R^M$

$I \models \text{Eq}(a, b) \text{ if } a^M = b^M$

Extentions for NameType and Type are defined in such a way that the true facts of these predicates correspond to all the (finately many) types of named and unnamed elements that are realised in M, encoded in bits as explained before. It is not hard to check that the resulting interpretation I does indeed satisfy $\langle \text{rew}^\omega(R), F \rangle$.

Lemma 4. For all fact sets F and all facts φ with a predicate in $P_R \setminus \{T, \bot, \Rightarrow\}$, if $\langle \text{rew}^\omega(R), F \rangle \not\models \varphi$ then $\langle R, F \rangle \not\models \varphi$.

Proof sketch. The proof inverts the argumentation used in Lemma 4. Since $\langle \text{rew}^\omega(R), F \rangle \not\models \varphi$, there is a model $I \models \text{rew}^\omega(R) \cup F$ with $I \not\models \varphi$. To show $\langle R, F \rangle \not\models \varphi$, we define a model $M \models R \cup F$ with $M \not\models \varphi$. This model is now constructed by combining the available types in a compatible way, which can be formalised as an iterative process.

Initially, we define the named part of M, consisting of named individuals (factorised by equality) and their direct relations. In detail, let $M = M_0$ with $\Delta_{M_0} = \{a\} \cap a \in C_\varphi \text{ where } [a] = \{b \mid I \models \text{Eq}(a, b)\}$, and set $a^M = [a]_\varphi$ for all $a \in C_F$. The interpretation of other $c \in C \setminus C_F$ is arbitrary. We set $a^M_0 \in A^M_0$ for $A \in P^1_R$ if $I \models A(a)$, and $(a^M_0, b^M_0) \in R^M_0$ for $R \in P^2_R \setminus \{\Rightarrow\}$ if $I \models R(a, b)$.

M_0 then is expanded iteratively by adding elements for satisfying existential restrictions (marked E_i in Figure 2), which are taken from the available types. We avoid adding redundant successor elements, which is important to ensure the satisfaction of functionality axioms.

This iterative construction leads to a monotonically increasing sequence of interpretations M_0, M_1, \ldots with union $M = \bigcup_{i \geq 0} M_i$. We can show by induction that each M_i satisfies all of the Datalog^ω rules in R. The rules with existential quantifiers in R are satisfied by M because we apply the extension rule fairly to each domain element in Δ^M.

4 ALC\text{HIQ} to Terminating Datalog$^\exists$

We will now specify a polynomial rewriting of ALC\text{HIQ} to Datalog$^\exists$. Our main result improves upon Theorem 2 by avoiding the need for predicates of unbounded arity:

Theorem 5. ALC\text{HIQ} is poly-time rewritable into terminating Datalog$^\exists$ rules of bounded size.

For the remainder of this section, let R be an arbitrary, fixed ALC\text{HIQ} rule set. Moreover, let R_\exists and R_\leq be the sets of all rules of type (\exists) and (\leq) in R, respectively. Theorem 5 is established by the following rewriting.

Definition 5. Let $\text{rew}^\exists(R)$ be the Datalog$^\exists$ rule set that contains the rules shown in Figure 5 and the rule set obtained from $\text{Ax}(R \setminus (R_3 \cup R_\leq))$ by replacing every predicate P with a fresh predicate P' of the same arity.

Note that Figure 5 uses predicates P and P', as well as further variants P'' and P''', which indicate the absence of a true atom. The fresh predicates (i.e., predicates such as P') allow us to reserve regular ontology predicates for relations between named individuals, which we mark by Named. This relationship between the predicate names is expressed in the rules of (6). It is required since we often treat named individuals differently from individuals that were introduced to satisfy existential restrictions (see, e.g., rules of type (10)).

Intuitively, the rules implement a proof procedure that is similar to tableau calculi in DLs, where we construct a finite representation of a model by applying rules for each type of axiom iteratively. For example, rules of type (9) introduce a successor element to satisfy an existential restriction. Essential tableau-like structures are captured by predicates Named and Unnamed, and by Succ (where Succ(x, y) means that y was created to satisfy an existential restriction on x).

Facts SmCl(a, x, y) mean that x and y agree on all classes A_1, \ldots, A_n for a fixed ordering $A_1, \ldots, A_n \in P^1_R \setminus \{T, \bot\}$. Facts SmR$(x, y, z, w)$ are analogous for roles between class-equivalent pairs (x, y) and (z, w). The “equivalence” of elements y and w (Same(y, w)) is inferred by (17).

To ensure that the resulting structure is finite, however, we sometimes need to reuse anonymous elements. Tableau procedures accomplish this by a method known as blocking, and our approach is similar to pairwise anywhere blocking [Motik et al., 2009]. In contrast to tableau approaches, however, we cannot directly disallow the application of rule (9) (which would require non-monotonic negation). Instead, when we detect that two elements x and y are of the same type (17), we reuse all of the successors of either term that are introduced to satisfy rules of the form (9) to satisfy the same rules over the other element (18). Since we apply Datalog$^\omega$ rules with higher priority (Definition 3), rules (17) and (18) are preferred over rules of type (9). Therefore, we will not introduce a successor for x to satisfy an existential restriction if we already have introduced one such successor for y. This is essential for termination. Removing the rules (13)–(18) would still yield a correct rewriting from ALC\text{HIQ} into Datalog$^\exists$, but the resulting rule set would not be terminating.

Another peculiarity is the ternary predicate Copy, which is a weaker form of Eq that we use to handle functionality on unnamed individuals (10). If Copy(x, y, z) holds, then all unary relations of y and all binary relations between x and y are copied to z (rules (11) and (12)). Asserting Eq(y, z) would copy additional binary relations of y and other elements, which would not be sound in our case.

Detailed proofs of soundness and correctness of Theorem 2 are found in our technical report [Carral and Krötzsch, 2020].

5 Horn-ALC\text{HIQ} to Datalog and Datalog$^\exists$

The rewritings of Sections 3 and 4 introduce disjunctions even if the input ontology is Horn. Alternative approaches, outlined next, can be used to prevent this.

Ortiz et al. [2010] propose a polynomial translation from Horn-ALC\text{HIQ}– the extension of Horn-ALC\text{HIQ} with
\{ P(x) \rightarrow P(x) \land \bigwedge_{x \in T} \text{Named}(x), P(x) \land \bigwedge_{x \in F} \text{Unnamed}(x) \rightarrow P(x) \mid P \in \mathbf{P}_R \cup \{ \text{Top}, \text{Bot}, \text{Eq} \} \} \cup \{ \text{Un_named}(x) \rightarrow \text{A}(x) \lor \text{A}^\sim(x), \text{A}(x) \land \text{A}^\sim(x) \rightarrow \text{Bot}(x) \mid A \in \mathbf{P}_R^1 \setminus \{ \top, \bot \} \} \cup \{ \text{Succ}(x, y) \rightarrow (\text{R}(x, y) \lor \text{R}^\sim(x, y)) \land (\text{R}(y, x) \lor \text{R}^\sim(y, x)), \text{R}(x, y) \land \text{R}^\sim(x, y) \rightarrow \text{Bot}(x) \mid R \in \mathbf{P}_R^2 \setminus \{ \approx \} \} \cup \{ \text{A}(x) \rightarrow \exists y. \text{R}(x, y) \land \text{Succ}(x, y) \land \text{Unnamed}(y) \land \text{Top}(y) \mid A(x) \rightarrow \exists y. R(x, y) \land B(y) \in \mathbf{R}_3 \} \cup \{ \text{R}(x, y) \land \text{R}(x, z) \land \text{Succ}(x, y) \land \text{Succ}(z, x) \land \text{Named}(x) \rightarrow \text{Copy}(x, y, z) \}, \text{R}(x, y) \land \text{R}(x, z) \land \text{Named}(x) \land \text{Named}(y) \land \text{Named}(z) \rightarrow \text{Eq}(y, z) \mid R(x, y) \land R(x, z) \rightarrow y \equiv z \in \mathbf{R}_\leq \} \cup \{ \text{Copy}(x, y, z) \land \text{A}(y) \rightarrow \text{A}(z) \mid A \in \mathbf{P}_R^1 \setminus \{ \top, \bot \} \} \cup \{ \text{R}(x, y) \land \text{Copy}(x, y, z) \rightarrow \text{R}(x, z), \text{R}(y, x) \land \text{Copy}(x, y, z) \rightarrow \text{R}(z, x) \mid R \in \mathbf{P}_R^2 \setminus \{ \approx \} \} \cup \{ (\text{A}_1(x) \land \text{A}_1(z)) \lor (\text{A}_1^\sim(x) \land \text{A}_1^\sim(z)) \rightarrow \text{SmCl}_{\mathbf{A}_1}(x, z) \} \cup \{ \text{SmCl}_{\mathbf{A}_{i-1}}(x, z) \land (\text{A}_i(x) \land \text{A}_i^\sim(z)) \rightarrow \text{SmCl}_{\mathbf{A}_i}(x, z), 2 \leq i \leq n \} \cup \{ \text{SmCl}_{\mathbf{A}_n}(x, z) \land \text{SmCl}_{\mathbf{A}_m}(y, w) \land (\text{R}_1(x, y) \land \text{R}_1(z, w)) \lor (\text{R}_1^\sim(x, y) \land \text{R}_1^\sim(z, w)) \rightarrow \text{SmR}_{\mathbf{R}_1}(x, y, z, w) \} \cup \{ \text{SmR}_{\mathbf{R}_{i-1}}(x, y, z, w) \land (\text{R}_i(x, y) \land \text{R}_i(z, w)) \lor (\text{R}_i^\sim(x, y) \land \text{R}_i^\sim(z, w)) \rightarrow \text{SmR}_{\mathbf{R}_i}(x, y, z, w), 2 \leq i \leq m \} \cup \{ \text{Succ}(x, y) \land \text{Succ}(z, w) \land \text{SmR}_{\mathbf{R}_m}(x, y, z, w) \land \text{SmR}_{\mathbf{R}_m}(y, x, w, z) \rightarrow \text{SameTyp}(y, w) \} \cup \{ \text{SameTyp}(x, z) \land \text{Succ}(x, y) \land \text{P}(x, y) \rightarrow \text{Succ}(z, y) \land \text{P}(z, y), \text{SameTyp}(x, z) \land \text{Succ}(x, y) \land \text{P}(x, y) \rightarrow \text{Succ}(x, y) \land \text{P}(y, z) \mid P \in (\mathbf{P}_R^2 \cup \{ \text{R}^\sim \mid R \in \mathbf{P}_R^2 \}) \setminus \{ \approx, \sim \} \} \}

Figure 5: Mapping the ALCHIQ Rule Set R into the Terminating Datalog\textdaggerdbl Rule Set rw\textsubscript{3}(R) (A\textsubscript{1}, \ldots, A\textsubscript{n} and \textit{R}\textsubscript{1}, \ldots, \textit{R}\textsubscript{m} are lists without repetitions containing all of the elements in \mathbf{P}_R^1 \setminus \{ \top, \bot \} and \mathbf{P}_R^2 \setminus \{ \approx \}, respectively)

nominal–to–Datalog\textdaggerstroke – an extension of Datalog with set operators – and discuss how to transform the resulting Datalog\textdaggerstroke rule sets into Datalog in polynomial time. Applying this to Horn-ALCHIQ yields the following result.

Theorem 6. Horn-ALCHIQ is rewriable to Datalog in polynomial time.

The rewriting shares some commonalities with the type-based method of Section 3, and in particular uses predicates of unbounded (though polynomial) arity for encoding sets.

To get bounded-size rules, we can rewrite to Datalog3 using a technique introduced by Carral et al. [2019a] for rewriting Horn-ALC to polynomial, bounded-size Datalog3. In their approach, an (existing) consequence-based reasoning procedure is expressed in a fixed set of Datalog3 rules, which are then rewritten to terminating Datalog3 rules. In a similar manner, they could adapt existing consequence-based reasoning procedures for Horn-ALCHIQ [Kazakov, 2009] to solve fact entailment, express the adapted procedure using a set of Datalog3 rules, and then rewrite these rules into terminating Datalog3. Indeed, this strategy describes how to compute a rewriting from Horn-ALCHIQ to Datalog3, and hence the following holds.

Theorem 7. Horn-ALCHIQ is poly-time rewriable to terminating Datalog3 rules of bounded size.

Further details are found in our technical report [2020].

6 Future Work and Conclusions

We show that ALCHIQ is poly rewrivable to Datalog\textdagger and to bounded-size Datalog\textdaggerdbl for which the disjunctive chase terminates when prioritising non-generating rules (“Datalog\textdagger first”). As for future work, we aim to develop rewriting techniques for more expressive DL languages, such as ALCHIQ, and decidable rule languages [Baget et al., 2011; König et al., 2015] to terminating Datalog\textdaggerdbl.

Termination of our Datalog\textdaggerdbl rewritings relies on the use of the restricted chase with a Datalog\textdagger first rule application strategy. The set modelling technique used for Horn-ALCHIQ (Theorem 7) can be adapted to work for arbitrary strategies, but no such modification is known for our rewriting in Section 4. Bounded-size terminating rewritings may still be achieved, even when using the weaker Skolem chase [Marsett, 2009], by limiting the depth of terms in the chase using binary counters. However, this will result in a 2EXPTIME procedure, while our rewriting achieves NEXP-TIME (cf. proof of Lemma 5). As for all known polynomial rewritings of non-Horn DLs with EXPTIME-complete reasoning problems, these are not worst-case optimal. The quest for optimal rule-based approaches in such cases remains open.

Acknowledgements

We thank Sebastian Rudolph for his helpful comments. This work was partly funded by Deutsche Forschungsgemeinschaft (DFG) grant 389792660 as part of TRR 248 and Emmy Noether grant KR 4381/1-1.
References

[Rudolph et al., 2012] Sebastian Rudolph, Markus Krötzsch, and Pascal Hitzler. Type-elimination-based reasoning for the Description Logic \mathcal{SHIQ} using decision diagrams and disjunctive Datalog. Logical Methods in Computer Science, 8(1), 2012.
