
Learning With Subquadratic Regularization : A Primal-Dual Approach

Raman Sankaran1,3∗ , Francis Bach2 and Chiranjib Bhattacharyya3

1LinkedIn, Bengaluru
2INRIA - Ecole Normale Supérieure - PSL Research University, Paris

3Indian Institute of Science, Bengaluru
rsankaran@linkedin.com, francis.bach@inria.fr, chiru@iisc.ac.in

Abstract
Subquadratic norms have been studied recently in
the context of structured sparsity, which has been
shown to be more beneficial than conventional reg-
ularizers in applications such as image denoising,
compressed sensing, banded covariance estimation,
etc. While existing works have been successful
in learning structured sparse models such as trees,
graphs, their associated optimization procedures
have been inefficient because of hard-to-evaluate
proximal operators of the norms. In this paper, we
study the computational aspects of learning with
subquadratic norms in a general setup. Our main
contributions are two proximal-operator based al-
gorithms ADMM-η and CP-η, which generically
apply to these learning problems with convex loss
functions, and achieve a proven rate of convergence
of O(1/T ) after T iterations. These algorithms are
derived in a primal-dual framework, which have not
been examined for subquadratic norms. We illus-
trate the efficiency of the algorithms developed in
the context of tree-structured sparsity, where they
comprehensively outperform relevant baselines.

1 Introduction
Structured sparse regularizers [Kyrillidis, 2016; Bach et al.,
2011; Jenatton et al., 2011b; Micchelli et al., 2013] have
emerged as efficient and versatile tools to add prior knowl-
edge to estimation problems arising in domains such as com-
puter vision [Mairal et al., 2014], bioinformatics [Obozinski
et al., 2011], neural imaging [Jenatton et al., 2011a] among
many others. They typically lead to convex optimization
problems of the form

min
w∈Rd

F (Xw) + λΩ(w), (1)

whereX ∈ Rn×d is the data matrix, w 7→ F (Xw) is the con-
vex data-fitting term, the norm Ω is the regularizer, and λ > 0
is a balancing hyper-parameter. We refer to F : Rn → R as
the loss function. Popular loss functions include the square
∗The author is currently affiliated with LinkedIn, while the work
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loss used in least-squares regression [Tibshirani, 1994], the
hinge loss used in support vector machines (SVM) [Vapnik,
2000], or the logistic loss used in logistic regression [Lee
et al., 2006]. Many algorithms exist if the proximal opera-
tor for Ω (denoted as proxΩ) is known and efficient to com-
pute [Bach et al., 2011; Parikh and Boyd, 2014]. Depend-
ing on the loss function F , we may use forward-backward
splitting methods such as FISTA [Beck and Teboulle, 2009;
Nesterov, 2007] when F is smooth; ADMM [Parikh and
Boyd, 2014], when one knows the proximal operator of
F ◦X : w 7→ F (Xw); or Chambolle-Pock algorithm [Cham-
bolle and Pock, 2011], when only proxF is known.

In this paper, we focus on norms Ω which are sub-
quadratic [Bach et al., 2011], expressed as follows:

Ω(w) =
1

2

(
inf
η∈Rd

+

d∑
j=1

w2
j

ηj
+ Γ(η)

)
, (2)

where Γ : Rd+ 7→ R is convex and positively homogeneous.
Note that the norm (2) includes as special cases the pop-
ular examples such as the `1-norm [Tibshirani, 1994] and
grouped `1,p-norms for p ∈ [1, 2] [Jenatton et al., 2011b;
Kloft et al., 2011]. For many such norms of the form (2),
neither Ω nor proxΩ is easily evaluated, where proxΓ may
be computable with an existing efficient algorithm. Exam-
ples include various norms derived from tree and graph struc-
tured constraints [Micchelli et al., 2013; Baldassarre et al.,
2012], box-structured constraints [McDonald et al., 2016]
and norms obtained as convex relaxations of combinatorial
penalties [Obozinski and Bach, 2016; Sankaran et al., 2017],
among many others. Thus, to solve (1) with Ω of the form (2),
we may not be able to easily extend the aforementioned tech-
niques which rely on efficient computation of proxΩ. Hence,
we use the relation (2) and reformulate (1) into the following
optimization problem in variables w and η, which is the main
focus of this paper:

min
w∈Rd,η∈Rd

+

F (Xw) + λ
2

∑d
j=1

w2
j

ηj
+ λ

2 Γ(η)︸ ︷︷ ︸
Ψ(w,η)

. (3)

To solve (3), when proxF◦X and proxΓ are easy to compute,
one can devise an alternating optimization routine (minimiz-
ing w.r.t w and η alternatively until convergence). But this
has convergence issues in general because the objective func-
tion is not smooth around vectors with zero elements, and
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does not offer a convergence rate. Alternatively, under the
same assumptions, we can pose (3) as a smooth problem in η
alone, which can be solved using FISTA, but suffers from ex-
pensive per-step computation. The only generic (i.e., with no
strong assumptions on F ) first-order algorithm is subgradi-
ent descent, which is very slow with a rate of O(1/

√
T ) after

T iterations. Thus, we are in need of efficient algorithms to
solve problem (3). We make the following contributions:

– We investigate primal-dual algorithms for the prob-
lem (3). Though it is complicated to derive saddle point
problems directly from (3), we propose a conic refor-
mulation of the problem (3) in Section 5.1, which opens
the possibilities for applying efficient primal-dual proce-
dures. Also, the cone constraints derived are separable
over the set of variables involved, and have closed form
solutions for projection, which is used by the primal-
dual algorithms.

– When proxF◦X and proxΓ are easy to compute, we pro-
pose in Section 5.2, a primal-dual algorithm ADMM-η
to solve problem (3) which converges at the rate of
O(1/T ) in T iterations (see Theorem 1). To achieve an
ε-approximate solution with respect to the duality gap,
ADMM-η takes O ((d+ cF◦X + cΓ) /ε), where cF◦X
and cΓ denote the complexity to evaluate the proximal
operator for F ◦X and Γ respectively. In general, cF◦X
may be high because of the dependence on X . However
for popular loss functions such as the squared loss and
hinge loss, this computation turns out to be simple (see
Table 1).

– When only proxF and proxΓ are easy to compute, we
propose a generic first-order primal-dual algorithm CP-η
in Section 5.3, which also converges at a rate of O(1/T )
(See Theorem 2). To guarantee an ε-approximate so-
lution, CP-η takes O ((nd+ cF + cΓ) /ε) operations,
where cF denotes the complexity to evaluate the prox-
imal operator for F . In situations where cF◦X is high,
CP-η serves as a effective alternative to ADMM-η, while
also being the most generic and efficient solution for (3).

– In Section 6, we consider an example of subquadratic
norm (See Example 1) which encourages tree sparsity.
As studied in [Obozinski and Bach, 2016], proxΓ can
be evaluated in O(d log d) time, whereas proxΩ requires
O(d2) computations. We illustrate that ADMM-η and
CP-η outperform existing benchmarks on this chosen ex-
ample.

Notations. 1d (resp. 0d) denotes a vector in Rd with all 1’s
(resp. 0’s). Given z ∈ Rd, we denote by D(z) the diag-
onal matrix formed with zi in the (i, i)th entry, and define
Id = D(1d). Given a set A, define IA(a) = 0 if a ∈ A, and
+∞ otherwise. Given f : Rn → R, the Fenchel dual of f de-
fined as f∗(α) = supx∈Rn x>α−f(x). The proximal opera-
tor of a function f at z defined as proxf (z) = argminx

1
2‖x−

z‖2 + f(x), and we define proxτf (z) = proxτf (z). We de-
fine proxF◦X(z) = argminw

1
2‖w− z‖

2 +F (Xw). Follow-
ing [Nesterov, 2013], we define a function f as L-smooth if
∀x, y ∈ Rn, f(y) ≤ f(x) +∇f(x)>(y − x) + L

2 ‖y − x‖
2
2.

We define f as µ-strongly convex if ∀x, y ∈ Rn, f(y) ≥
f(x) +∇f(x)>(y − x) + µ

2 ‖y − x‖
2
2.

2 Subquadratic Norms
Many existing studies have illustrated benefit of using sub-
quadratic norms for structured sparsity in many applications:
compressed sensing and image denoising [Baldassarre et al.,
2012], multi task learning [McDonald et al., 2016], banded
covariance matrix estimation [Yan and Bien, 2015]. Next, we
discuss specific examples where proxΓ is easy to compute.
Example 1. Tree-Structured H-norms [Baldassarre et al.,
2012; Micchelli et al., 2013]. Consider a rooted tree with
d nodes represented by the edge matrix A ∈ Rd×d, where
Aei = 1, Aej = −1 if eth edge links i to j. Define
H = {η ∈ Rd+|Aη ∈ Rd+}, and let Γ(η) = η>1d + 1H(η).
With this choice of Γ, let us denote the norm (2) as ΩH.
By enforcing the tree structured prior on η, ΩH thus en-
courages w to be tree structured. The proximal operator
for ΩH may be computed approximately using Picard iter-
ates [Baldassarre et al., 2012], which also lacks conver-
gence rates. Whereas, we can compute proxΓ easily since
the projection onto H is computed easily through a pool-
adjacent-violators (PAV) algorithm [Pardalos and Xue, 1999;
Best and Chakravarti, 1990] in O(d log d) time.

Example 2. Convex Relaxation of Combinatorial Penal-
ties [Bach, 2010; Bach, 2011b; Obozinski and Bach, 2016].
Denote V = {1, . . . , d}. Given a tree structured ordering
over V , define Gj = {j ∪ Dj}, where Dj denotes the de-
scendants of j. We may arrive at a subquadratic regualarizer
which encourages tree structures through the steps discussed
next. Consider a set function S(A) =

∑
Gj∈G 1Gj∩A6=∅. S

is submodular [Bach, 2011a], and its corresponding Lovász
extension denoted by Γ(η) equals

∑
j ‖ηGj‖∞, where ηGj is

the restriction of η to the coordinates given by Gj . With this
choice of Γ, we denote the norm (2) as ΩS2 (w). proxΩ is more
expensive in this case: can be computed using a divide-and-
conquer strategy involving a sequence of submodular func-
tion minimization (SFM), whose complexity is d(O(SFM)).
Whereas, proxΓ can be computed in time O(dh), where h is
the depth of the tree[Jenatton et al., 2011b].

Comparing Examples 1 and 2, note that ΩS2 (w) =
ΩH(w) [Obozinski and Bach, 2016], illustrating that Γ need
not be unique for a given subquadratic norm Ω. While these
existing works on subquadratic norms illustrate the benefits
in terms of applicability, they do not focus on computational
efficiency, which is the focus of this paper.

3 Existing Algorithms
FISTA-η. Defining a smooth function J(η) as follows:

J(η) = inf
w∈Rd

F (Xw) +
λ

2

d∑
j=1

w2
j/ηj , (4)

problem (3) is equivalent to minη≥0 J(η) + λ
2 Γ(η) on which

we can use (accelerated) proximal gradient descent [Beck
and Teboulle, 2009] with J as the smooth component, and
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Γ(η) as the non-smooth component, whose proximal oper-
ator will be needed. The key is the computation of the
gradient of J , for which we solve (4). With the proper
change of variable, the minimizer of (4) is equivalent to
w = D(η)1/2prox

1/λ

F◦XD(η)1/2
(0). When the Lipshitz con-

stant of the gradient of J is not known, backtracking is used
to find the stepsize [Scheinberg et al., 2014], which increases
the number of times the gradient of J is calculated. We de-
note this algorithm as FISTA-η. Note that the per-iteration
cost may overweigh the benefit of the fast convergence rate
O(1/T 2) of FISTA-η.

Alt-η. A simple algorithm is to alternatively solve for w
and η at each iteration. Given η, to solve for w, we get
an `2-regularized problem on w, whose solution is given as
w = D(η)1/2prox

1/λ

F◦XD(η)1/2
(0). Given w, solving for η

is equivalent to evaluating the norm Ω(w) and returning the
minimizer η. We refer to this algorithm as Alt-η. Though
lacking in convergence guarantees and having issues with
convergence when η has components close to 0, this algo-
rithm is used in practice with good performances. Initializing
η far from 0 is recommended or making sure that η stays away
from 0 by adding a penalty ε

∑d
j=1 η

−1
j

[Canu and Grand-
valet, 1999; Daubechies et al., 2010; Argyriou et al., 2008].

4 Primal-Dual Algorithms
Before discussing our proposed algorithms for solving (3), we
briefly discuss the generic primal-dual setup we work on in
this paper. Following [Chambolle and Pock, 2011], for finite-
dimensional vector spaces U and V , we consider a generic
primal problem of the form

minu∈U (ψ (u) := H (Ku) +G (u)) , (5)

where K : U → V is a linear operator from U to V with the
operator norm ‖K‖ = max{‖Ku‖, u ∈ U , ‖u‖ ≤ 1}, H :
V → R∪{+∞} and G : U → R∪{+∞} are proper convex
functions, whose proximal operators are easily computable.
This leads to the following saddle-point problem.

minu∈U maxv∈V
(
Υ (u, v) := v>Ku+G (u)−H∗ (v)

)
. (6)

Additionally whenH is (1/γ)-smooth,H∗ is γ-strongly con-
vex. The primal-dual algorithm (CP) [Chambolle and Pock,
2011] for (6) by is given in Algorithm 1, which guarantees
that there exists positive R1, R2 such that after T steps the
following bounds hold true:

T
min
i=1

ψ(u(i))− ψ(u∗) ≤ (R1/T ) , (7)

ψ(u(k))− ψ(u∗) ≤
(
R2/

(
γ2T 2

))
, (8)

the second inequality being valid when F ∗ is γ-strongly-
convex. The key features of Algorithm 1 are as follows:

1. It requires as input proxG and proxH∗ , initial primal and
dual step-sizes τ (0), σ(0) satisfying τ (0)σ(0)‖K‖2 6 1.

2. It accesses K through only matrix-vector products, and
hence strictly first-order in nature.

Algorithm 1 CP [Chambolle and Pock, 2011]

Require: K, proxG, proxH∗ , u(0), v(0), T
1: Choose τ (0), σ(0) > 0 such that τ (0)σ(0)‖K‖2 6 1.
2: Initialize ū(0) = u(0)

3: for k = 0, 1, 2, ..., T − 1 do
4: v(k+1) = proxσ(k)H∗(v(k) + σKũ(k))

5: u(k+1) = proxτ (k)G(u(k) − τK>v(k+1))

6: θ(k) = 1
1+2γτ (k) , τ (k) = θ(k)τ (k), σk = τ (k)

θ(k)

7: ũ(k+1) = u(k+1) + θ(k)(u(k+1) − u(k))
8: end for
9: Return (u(1:T ), v(1:T )).

3. The cost per iteration is cu + cv + cost(proxG) +
cost(prox∗H ), where cu and cv are the cost to compute
Ku and K>v respectively for vectors u ∈ U , v ∈ V .

4. coincides with ADMM, when K = I .

4.1 Step-Size Selection
Given (u, v) ∈ U ×V , referring to Theorem 1 of [Chambolle
and Pock, 2011], when γ = 0, the following bound holds for
all σ(0) = σ, τ (0) = τ satisfying στ ‖K‖2 ≤ 1.

Υ
(
ū(T ), v

)
−Υ

(
u, v̄(T )

)
≤
(
R̂σ,τ (u, v) /T

)
,with (9)

R̂σ,τ (u, v) =
(
‖u−u(0)‖22

2τ +
‖v−v(0)‖22

2σ

)
, (10)

ū(T ) =
1

T

T∑
t=1

u(t), v̄(T ) =
1

T

T∑
t=1

v(t), (11)

Let (u∗, v∗) be an optimal solution of (6). Using the con-
straint στ‖K‖2 ≤ 1, we optimize the upper bound in (9)
for the choice (u, v) = (u∗, v∗) resulting in the value σ =

1
‖K‖

‖v∗−v(0)‖2
‖u∗−u(0)‖2

. Since it is not possible to calculate σ in
practice because we do not have access to u∗ or v∗, we will
compute rough estimates using the information we have. In
the experiments, we derive the step-sizes for the squared loss
F (z) = 1

2n‖z−y‖
2
2 and the `1 norm Γ(η) = η>1d. Note that

the obtained step-sizes work well enough in our experiments,
but that by an additional tuning, they could be improved.

5 Primal-Dual Formulation for Subquadratic
Norms

We first derive a conic reformulation of (3), which gets rid of

the ratio term
w2

j

2ηj
, enabling application of Algorithm 1.

5.1 Conic-Constrained Primal Reformulation
Note that the term

w2
j

2ηj
may be written as

w2
j

2ηj
= mintj tj such

that tj > 0, w2
j 6 2tjηj . Now, Eq. (3) is equivalent to:

minw,η,t∈Rd F (Xw) + λ
2 Γ(η) + λ1>d t+

∑d
j=1 IC(wj , ηj , tj), (12)

where C = {(a, b, c) ∈ R3, a2 6 2bc, b > 0, c > 0} is the
rotated second order-cone. Note that the cone constraint is
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separable across the sets of variables (wj , ηj , tj) and thus can
be handled separately. The cone C is self-dual and the prox-
imal operator for

∑d
j=1 IC(wj , ηj , tj), which will be the key

to designing the primal-dual algorithms, involves computing
the orthogonal projection onto C using a simple closed form
expression. Thus, (12) makes it easy for deriving saddle-point
problems of the form (6), which can be efficiently solved us-
ing Algorithm (1). In the next subsections, we consider re-
formulations of (12) under cases – (a) proxF◦X is easy to
compute, (b) only proxF is computable easily.

5.2 ADMM-η: when proxF◦X is Computable
When proxF◦X is computable easily, we propose a primal-
dual algorithm ADMM-η to solve (12). Algorithm 2 lists the
steps, which accepts proxΓ and proxF◦X inputs. The follow-

Algorithm 2 ADMM-η

Require: X, proxΓ, proxF◦X , k
1: Initialize u(0), v(0) ∈ R3d, K = −I3d. (Ref. (15)).
2: Define functions G, H∗ as in (16).
3: (u(k), v(k)) = CP(K, proxG, proxH∗ , u(0), v(0), k)
4: w(k) = u(k)(1 : d), η(k) = u(k)(d+ 1 : 2d).
5: Return w(k), η(k).

ing result proves that Algorithm 2 results in a rate of O(1/T )
for the problem (3).
Theorem 1. Let F : Rn → R and Γ : Rn+ → R be con-
vex, and let Ψ(w, η) be as defined in (3) with (w∗, η∗) =

argminw,η Ψ(w, η), and
(
u(k) =

[
w(k) η(k) t(k)

]>
, v(k) =[

δ(k)β(k)γ(k)
]> )

k≥0
be defined as in Algorithm 2. Then,

there exists a constant R > 0 such that after T iterations
T

min
i=1

Ψ(w(i), η(i))−Ψ(w∗, η∗) ≤ R/T (13)

Proof. (Sketch) First, we can rewrite the cone constraint IC
in (12) in terms of its Fenchel dual, which again is a similar
cone constraint on the dual variables, arriving at the following
saddle-point problem equivalent to (12):

min
w,η,t∈Rd

max
δ,β,ν∈Rd

(
F (Xw) +

λ

2
Γ(η) + λ1>d t

)
−

d∑
j=1

IC(δj , βj , νj) +
d∑
j=1

〈(δj , βj , νj), (wj , ηj , tj)〉 . (14)

We can equate the above problem to (6) through the mapping
of the variables u, v and functions G,H∗ as given below.

u =
[
w>η>t>

]>
, u =

[
δ>β>ν>

]>
,K = −I3d, (15)

G(u) = F (Xw) +
λ

2
Γ(η) + λ1>d t,

H∗(v) = −
d∑
j=1

IC(δj , βj , νj). (16)

Since the function G is separable in terms of the primal vari-
ables w, η, t, proxG simply reduces to computing the prox-
imal operators independently on each group of variables.

proxG and prox∗H may be computed straightforward using
proxF◦X and proxΓ. To evaluate proxG, the cost is usually
dominated by the complexity to solve proxF◦X . Now result
(7) applies, and since at optimality problem (12) and (3) have
the same objective, we get the result.

Discussion. We can make the following remarks:

1. The per-step cost of ADMM-η is dominated by
proxF◦X . For the square loss F (z) = 1

2n‖z − y‖22,
it requires solving a linear system which is constant
for all iterations and hence can be solved efficiently in
O(d2) time, after a single O(d3) operation at the start
of the algorithm. Whereas for the hinge loss F (z) =
1
n

∑n
i=1 max(0, 1− ziyi), [W. Kienzle, 2006] proposed

an “SMO-like” algorithm with O(dn2) operations.

2. The assumption make by ADMM-η (regarding
proxF◦X ) can be compared with those for Alt-η and
FISTA-η, both of which requiring proxF◦X̂ , with
X̂ = XD

1
2 (η). Since the matrix X̂ changes at every

iteration, computing proxF◦X̂ is more difficult than
proxF◦X . For instance, for the square loss, one needs to
solve a different linear system at each iteration, which
amounts to O(d3).

3. The step-size selection scheme we described in Section
5.3 leads to the following choices σ = ‖X‖2/(

√
3n),

τ =
√

3n/‖X‖2.

The next section discusses a generic first-order algorithm for
(12) when proxF◦X is difficult to compute.

5.3 CP-η: A generic first-order algorithm For (3)
While proxF◦X may be difficult to obtain, proxF may be eas-
ier to compute (this is the case for all common loss functions).
We derive a first-order procedure denoted CP-η (Algorithm 3)
having a convergence guarantee of O(1/T ) for all losses and
norms, where proxF and proxΓ are easy to compute.

Algorithm 3 CP-η

Require: X, proxΓ, proxF∗ , k
1: Initialize u(0) ∈ R3d, v(0) ∈ Rn+3d (Ref. (20)).
2: Initialize r = ‖X‖.
3: Define functions G, H∗ as in (21).

4: K =

[
X 0n×2d

−rI3d

]
5: (u(k), v(k)) =CP(K, proxG, proxH∗ , u(0), v(0), k)
6: w(k) = u(k)(1 : d), η(k) = u(k)(d+ 1 : 2d).
7: Return w(k), η(k)

Theorem 2. Let Ψ(w, η) be as defined in (3) with (w∗, η∗) =

argminw,η Ψ(w, η), and
(
u(k) =

[
w(k) η(k) t(k)

]>
, v(k) =[

α(k) δ(k) β(k) ν(k)
]> )

, K be defined as in Algorithm 3.
Then ∀λ > 0, there exists a constant R > 0 such that af-
ter T iterations

k
min
i=1

Ψ(w(i), η(i))−Ψ(w∗, η∗) ≤ R/T. (17)
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Proof. (Sketch) Similar to arriving at (6) from (5) through the
Fenchel dual of the loss function F , we apply the same trick
in (12) to get the following equivalent problem.

min
w,η,t∈Rd

max
α∈Rn

α>Xw − F ∗(α) + λ
2 Γ(η) + λ1>d t

+
d∑
j=1

IC(wj , ηj , tj). (18)

For the problem (18), we now use Fenchel duality on the con-
straint IC and arrive at the following problem.

min
w,η,t∈Rd

max
α∈Rn,δ,β,ν∈Rd

α>Xw − F ∗(α) +
λ

2
Γ(η) + λ1>d t

+ r
d∑
j=1

(〈(δj , βj , νj), (wj , ηj , tj)〉 − IC(δj , βj , νj)) . (19)

Now, the mapping of variables in this formulation to Eq. (6)
is given by

u =
[
w>, η>, t>

]>
, v =

[
α>, δ>, β>, ν>

]>
,

K =

[
X 0n×2d

−rI3d

]
, G(u) =

λ

2
Γ(η) + λ1>d t, and (20)

H∗(v) = F ∗(α) + r

d∑
j=1

IC(δj , βj , νj). (21)

Here, we have introduced the constant r to balance the scale
of α against κ, with the choice r = ‖X‖ in experiments,
since ‖K‖2 = ‖X>X + r2I‖2 6 ‖X‖2 + r2. Algorithm
1 applies and we get Algorithm 3 to solve the problem (12).
We see that G is separable function in terms of its variables
w, η and t. And so is H∗ separable in terms of α and the
triplets (δj , βj , νj) for all j. This makes it easy to compute
the proximal operators needed for G and H∗. Now the result
(7) applies, and we get the result.

Discussion. We can make the following remarks:

1. Algorithm 3 is the first ever O(1/T ) efficient first-order
algorithm for (3), since it accesses X only through
matrix-vector multiplications.

2. One may also equate problems (18) and (6) with the fol-
lowing mappings of u, v,G,H∗, for whichCP achieves
O(1/T 2) convergence rate when F is smooth (see (8)).

u =
[
w> η> t>

]>
, v = α,K = [X 0n×2d],

H∗(v) = F ∗(α),

G(u) =
λ

2
Γ(η) + λ1>d t+

d∑
j=1

IC(wj , ηj , tj).

But, proxG is not easy to compute except for simple
norms like the `1 or grouped-`1 norm, making the al-
gorithm impractical for general norms.

3. We derive the following step size choices for CP-η: σ =
1/n and τ = n/(2‖X‖2).

Algorithm Fsq(z) FH(z)
FISTA-η (d3 + nd)/

√
ε (dn2 + d log d)/

√
ε

ADDM-η d2/ε (dn2 + d log d)/ε
CP-η (nd+ d log d)/ε (nd+ d log d)/ε

Table 1: Number of operations (in Big-O notation) needed to guar-
antee duality gap of (3) ≤ ε, for ΩH as in Example 1. Fsq(z) =
1
2
‖z − y‖22 is the square loss, FH(z) =

∑n
i=1 max(1 − yizi, 0) is

the hinge loss.

5.4 General Discussion
We can differentiate the various algorithms for the problem
(3) as follows:

– Between Alt-η and FISTA-η, the former does not have
any known convergence rates, whereas the latter has a
convergence rate of O(1/T 2). But the per-step cost of
FISTA-η is much higher because of backtracking. As
seen in experiments the backtracking cost is quite high
which leads to FISTA-η being impractical to use for gen-
eral losses and norms.

– As discussed before, ADMM-η is similar to FISTA-η
and Alt-η, since all of these assume easy computability
of proxF◦X̃ , with X̃ = X for ADMM-η and XD

1
2 (η)

for the other two algorithms. This subtle difference does
make an impact, especially for losses like the squared
loss, for which the proximal operator for ADMM-η is
easier to obtain than those for FISTA-η and Alt-η.

– When proxF◦X is not very efficient to compute, the only
choice we have is CP-η, which works with all norms and
losses with easy to compute proxF and proxΓ.

– When proxF◦X is easy to compute, the choice of the al-
gorithm depends on the cost of proxΓ. Cheaper the cost
of proxΓ computation, better is CP-η in performance
compared to ADMM-η. It is because of the experimen-
tal observation that ADMM-η takes far fewer iterations
than CP-η, and costly proxΓ does make CP-η run longer.

– ADMM-η is observed to be less sensitive to the condi-
tioning of X . This may be because the inner CP rou-
tine does not depend on X explicitly, which is taken
care of by proxF◦X as a black box. The dependence
on X within the CP routine comes only through the step
sizes τ and σ. This makes ADMM-η preferred in ill-
conditioned cases.

6 Experiments
To illustrate the efficiency of CP-η and ADMM-η over exist-
ing algorithms, we choose the aforementioned tree-sparsity
inducing norm ΩH (Example 1), which is popular in wavelet
coefficients estimation. As discussed earlier, Ω2

S(w) =
ΩH(w), but the primal-dual procedures are different because
of the difference in the function Γ. Since time complexity
to compute proxΓ is identical in both cases (O(d log d)), we
choose only ΩH for the purpose of simulations. We include
the following solvers: (1) FISTA-η, (2) Alt-η, (3) FISTA1

1The non-accelerated variant ISTA was very slow in experiments
and hence excluded from the results.
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Figure 1: Duality gap convergence for squared loss with tree-
structured norm (Example 1). Top: all algorithms. Bottom left:
algorithms using proxF , Bottom right: algorithms using proxF◦X .

on primal (1) with proxΩ computed using (a) decomposition
algorithm (O(d2)) given in [Obozinski and Bach, 2016], de-
noted as FISTA-w, (b) Picard iterations [Baldassarre et al.,
2012], denoted as FISTA-w(p).

Setup. We perform numerical simulations2 by generating
synthetic data. Following [Bach et al., 2011], we generate
X ∈ Rn×d as Xij ∼ N (0, 1). For the ground truth model
w∗, we assumed a tree structure with uniform branching fac-
tor of 4 and a depth k. We generated w∗ uniformly at ran-
dom from [0, 1]

d and set s = 0.75d randomly chosen indices
to 0 satisfying the tree structure. The labels y were gener-
ated as y = Xw + ξ for the squared loss examples, and
y = sign(Xw + ξ) for the hinge loss examples, where ξ is
a standard Gaussian noise. We fixed n = 1000, d = 15000,
λ = 0.01, and the convergence criteria was the relative dual-
ity gap (with threshold ε = 10−4).

6.1 Squared Loss
In this case, proxF◦X can be efficiently computed using
matrix-vector multiplications in each iteration, qualifying
ADDM-η as a first-order algorithm. We make the following
inferences from the simulation plots given in Figure 1.

– All the solutions for the problem (3) do better than that
of (1). Both FISTA-w and FISTA-w-p do not converge
within a limit of 30 minutes, the latter though being
faster than the former suffers from approximate solu-
tions at each step.

– Both CP-η and ADMM-η are better than all the com-
pared algorithms in running time, justifying the claims
made in the paper.

– In general ADMM-η is faster than CP-η because of effi-
cient computation of proxF◦X and overall lesser number
of iterations.

2Conducted on a Ubuntu PC with Core i7 processor, 8G RAM.
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Figure 2: Duality gap convergence for hinge loss with tree-
structured norm (Example 1). Top: all algorithms. Bottom left:
algorithms using proxF , Bottom right: algorithms using proxF◦X .

ADMM-η CP-η
Sq. loss 458 / 341s / 0.53s 9260 / 734s / 0.08s

Hinge.loss 360 / 646s / 1.97s 12810 / 923s / 0.07s

Table 2: No. of Iterations/Total time/Time-per-iteration

6.2 Hinge Loss
proxF◦X is computed in this case through solving an SVM
[W. Kienzle, 2006], which is based on an SMO algorithm
(O(dn2)). Hence CP-η is the only first-order algorithm in
this case. Similar to the squared loss case, both the proposed
algorithms perform better than the rest as shown in Figure 2.

6.3 Comparison Of CP-η And ADMM-η
Although Table 2 may suggest that ADMM-η is better than
CP-η for both loss functions, this is not always true, as it de-
pends on d and n (see Table 1). When d increases, ADMM-η
becomes expensive for square loss due to the O(d2) com-
plexity. For hinge loss, both ADMM-η and CP-η have linear
dependency on d, and hence theoretically, CP-η has no ad-
vantage over ADMM-η in very high dimensional scalings,
for a fixed n. However, for ADMM-η, due to quadratic de-
pendency on n (see Table 1), the per-step cost goes high on
large sample settings. This dependency on n for ADMM-
η is justified in Table 2, where we see that the per-step cost
for ADMM-η goes much higher for hinge loss compared to
square loss.

7 Conclusions and Future Directions
We studied efficient primal-dual algorithms to learn with Sub-
quadratic norms. One may also investigate for potential
extensions of these algorithms towards general reweighted
least-squares formulations [Bach et al., 2011] for norms.
Study of inexact proximal opeartors for subquadratic norms
also provides alternate directions.
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