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Abstract
Neural network compression and quantization are
important tasks for fitting state-of-the-art models
into the computational, memory and power con-
straints of mobile devices and embedded hard-
ware. Recent approaches to model compres-
sion/quantization are based on reinforcement learn-
ing or search methods to compress/quantize the
neural network for a specific hardware platform.
However, these methods require multiple runs to
compress/quantize the same base neural network to
different hardware setups. In this work, we propose

a fully nested neural network (FN3) that runs only
once to build a nested set of compressed/quantized
models, which is optimal for different resource
constraints. Specifically, we exploit the additive
characteristic in different levels of building blocks
in neural network and propose an ordered dropout
(ODO) operation that ranks the building blocks.

Given a trained FN3, a fast heuristic search algo-
rithm is run offline to find the optimal removal of
components to maximize the accuracy under differ-
ent constraints. Compared with the related works
on adaptive neural network designed only for chan-
nels or bits, the proposed approach is unified for
different levels of building blocks (bits, neurons,
channels, residual paths and layers). Empirical re-
sults validate strong practical performance of the
proposed approach.

1 Introduction
Deep neural networks have achieved great success in vari-
ous domains, e.g., computer vision, natural language process-
ing and etc [LeCun et al., 2015]. To fit the computation-
/memory-intensive neural network into mobile devices and
embedded hardware, researchers either develop light-weight
network architecture [Sandler et al., 2018; Zhang et al., 2018]

or compress a pre-trained network through pruning [Han et
al., 2016; Neklyudov et al., 2017]. To avoid the huge ef-
forts on tuning hyper-parameter, network architecture search
(NAS) is studied to automatically discover the best architec-
ture with computation, memory or power constraints [Cai

et al., 2018; Jiang et al., 2019]. Another method to fit the
neural network into resource-limited devices is quantization,
which quantizes full-precision weights into a small number of
bits [Zhou et al., 2016; Yang et al., 2019]. As the optimal bit-
widths for different layers might vary, reinforcement learning
based automatic search methods are developed to find the op-
timal bit-width setups [Wang et al., 2019].

The search-based methods alleviate the need to manually
tune hyper-parameter in designing network architectures and
to determine bit-width in quantization. However, the algo-
rithms should be re-run once the resource budget (CPU clock
rate, number of cores, size of RAM, etc.) changes. Recently,
there is a rising attention on training one neural network that
is adaptive to different resource budgets. These methods are
particularly designed for either adaptive channel numbers [Yu
et al., 2019b] or adaptive quantization bits [Jin et al., 2019].
As changing the channel numbers or bit widths leads to in-
consistent batch normalization (BN) statistics, heuristics like
maintaining multiple sets of switchable BN parameters are
used, which leads to a quadratic number of BN parameters
w.r.t. the number of channels/bits to be updated. [Yu and
Huang, 2019] propose to solve this problem by re-collecting
BN statistics after training, but the flexibility of the network
is still limited (see Sec. 4).

The goal of this work is to provide a simple method to train
a neural network once and yield optimal sub-networks (SN)
for different budgets of resources. The SNs are nested in the
sense that any smaller SN forms the basis of a larger one.
In other words, whenever some building blocks are removed
from a larger SN, the smaller SN comprising the remaining
blocks is still complete and accurate. Moreover, the method
is unified in that it can be applied to different levels of the
network: layers, residual paths, channels, neurons and bits.

Our intuition of how to achieve the goal is from the classic
boosting techniques [Zhou, 2012; Chen and Guestrin, 2016],
where a strong classifier is formed by an expansion of weak
classifiers. The weak classifiers are ordered such that the lat-
ter classifier approximates error between ground-truth and the
prior classifier. From this perspective, boosting is nested in
nature as a smaller expansion of classifier forms the basis of
a larger one. In a well trained boosting model, removing the
latter classifier does not affect the performance much. Thus,
we exploit the similarity between several building blocks of
a network and the weak classifier in boosting. We further
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extend this inspiration to quantization bits by constructing
nested quantization functions.

To rank the building blocks efficiently, we propose an or-
dered dropout (ODO) operation that samples a nested sub-
network in each mini-batch during training. In contrast to
standard dropout that acts on one block, ODO is applied to a
sequence of building blocks to make them in order of impor-
tance. The intuition of ODO is to mimic the case that, during
testing, an arbitrary number of blocks can be removed accord-
ing to the resource budget. Mathematically, we show that, in
expectation, each block maximizes a term of incremental in-
formation gain, thus the whole network is fully nested, which

we call a fully nested neural network (FN3). Note that boost-
ing uses a greedy method to pick the next classifier, and does
not update the previous classifiers. In contrast, ODO learns
the whole set of nested classifiers simultaneously.

During the inference stage, to find the optimal curve of
accuracy w.r.t. the number of blocks, we further propose
a heuristic search algorithm, which leverages the order of
blocks to reduce the search complexity from O(2N ) to O(N),
where N is the number of blocks (see Sec. 3).

The experimental results show that FN3-channel outper-

forms previous adaptive-channel methods, while FN3 pro-
vides more sub-networks and consumes less training time.

FN3-bit also outperforms the adaptive-bit methods. We also

show the performance of FN3 on residual paths, for learning
an adaptive architecture. An ablation study is conducted to
show the effectiveness of the heuristic search algorithm.

2 Fully Nested Neural Network
The aim of this section is to find the basic building block of a
nested neural network and a corresponding training scheme,
such that during testing time, a certain number of blocks can
be removed according to the resource budget, while maintain-
ing high accuracy without re-training or fine-tuning.

Our inspiration comes from the family of boost-
ing techniques, where x is the input data, a classi-
fier fM (x) is composed with a sequence of basis func-
tions bm = b(x; γm),m ∈ {1, . . . ,M}, and γm is
the parameter of the m-th basis function. The ba-
sis function expansions are combined to produce the
final prediction, fM (x) =

∑
m βmb(x; γm). Typi-

cally, these models are fit by minimizing this goal,

min{βm,γm}M
1
Ex,y∼px,y

L(y,
∑M

m=1 βmb(x; γm)). The ad-

ditive characteristic of boosting allows us to remove some ba-
sis functions, while the remaining part of model still produce
useful results.

Another characteristic of boosting [Hastie et al., 2009] is
that each basis function bm approximates the residual under
the current model, i.e., the difference between the ground-
truth and the current prediction. For example, for squared-
error loss,

L(yi, fm−1(x) + βmb(xi; γm)) = (rim − βmb(xi; γm))2,
(1)

the m-th term βmb(xi; γm) best fits the residual error rim =
yi − fm−1(xi) incurred by the previous expansion. There-
fore, each bm contributes less as m goes from 1 to M . The
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Figure 1: The additive building blocks of a NN with ODO, where
b1 . . . b4 indicate the blocks. Network-level: (A.1) the output of a
residual network as a sum of sub-networks, gi is a layer; (A.2) un-
raveled view of the residual network, where bm is composed of a
sequence of gi. Layer-level: (B.1) the output of a dense layer as a
weighted sum of inputs; (B.2) a pixel in a feature map as a weighted
sum of input channels; (B.3) a layer output as a sum of parallel resid-
ual blocks in ResNeXt. Bit-level: (C) quantization values as a sum
of weighted bits. The dotted lines indicate dropped blocks (in this
case the sampled index is c = 2) in one iteration. The solid lines
indicate the remained blocks.

residual characteristic of boosting allows us to rank the ba-
sis functions according to the importance such that the less
significant basis functions can be removed first. Once the ad-
ditive basis functions are obtained and made to approximate
the residual error, we can stack groups of basis functions to a
deep model for better performance.

2.1 Building Blocks
Many parameterized building blocks1 in a convolutional neu-
ral network (CNN) possess the additive characteristic (see
Fig. 1). They can be classified into several categories:

Network-level: [Veit et al., 2016] shows that a CNN with
residual connections behaves like the ensemble of shallow
networks. As seen in Fig. 1(A.1, A.2), the network output
can be seen as the summation of O(2n) paths, fM (x) =∑M

m=1 bm(x), M = 2n, where each path is a combination
of blocks from the set of n residual blocks, i.e., bm(x) =

g
In(m)
n (. . . g

I0(m)
0 (x)) and In(m) is the indicator function.

We denote FN3 with such block as FN3-layer.

1In this paper, we use “blocks” and “basis functions” inter-
changeably.
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Layer-level: 1) In a dense layer, as shown in Fig. 1(B.1),

hl = f(hl−1,Γ) = ΓThl−1, where hl is the l-th layer
activation and Γ is the weight matrix. The i-th dimension
of output can be written as the weighted sum of input, i.e.,

hl,i = ΓT
i hl−1. 2) In a convolutional layer, as shown in

Fig. 1(B.2), every pixel on an output feature map can be writ-
ten as the weighted sum of input channels, where the weights
are from the channels of a convolutional filter. 3) In a residual
block of ResNeXt, the output of a block can be written as sum

of different paths, as shown in Fig. 1(B.3). We denote FN3

with such blocks as FN3-neuron/-channel/-path respectively.

Bit-level: An extreme case is to consider a quantization bit
as a building block, as shown in Fig. 1(C). As directly training
with integer weights is difficult, we instead use a nested quan-
tization function S̄(·) which maps the full-precision weight
w to w̄. To construct S̄(·), we use the summation of sev-
eral scaled and transformed Heaviside step functions, i.e.,
w̄ = S̄(wi) =

∑
j αjS(wi − zj). Thus, the quantiza-

tion function possesses the additive characteristic. We denote

FN3 with such block as FN3-bit.

2.2 Ordered Dropout
Next we provide a unified method to rank the building blocks
such that the blocks are nested. A naive approach is to imitate
boosting: 1) train a few blocks as the base model; 2) fix the
parameters of the base model, add new blocks to the model
and train the new blocks; 3) repeat the second step until the
total size of model meets the need. However, as the number of
blocks varies among different layers, it is not obvious how to
determine the number of augmented blocks (granularity) for
different layers. Furthermore, the model would lack of flexi-
bility if the granularity is large (e.g., slimmable NN [Yu et al.,
2019b]), while it would cause prohibitively long training time
if the number is too small. Finally, since the previous blocks
are fixed in each step, this naive training method would be not
end-to-end trained, which could limit its accuracy.

We propose an operation named Ordered DropOut (ODO)
that randomly selects nested sub-networks during training
batches, which encourages ordering of the importance of each
block. We label each block in a group with an index. ODO
then samples a block index from a probabilistic distribution
and drops all the blocks with indices greater than the cho-
sen block. Specifically, a Categorical distribution C(m) is
assigned over index m ∈ {1, . . . ,M} of the blocks bm. Dur-
ing training, we sample the index c ∼ C(m) then disable the
blocks with index m > c. The expansion with blocks dropped
is written as fc(x) =

∑c
i=1 βib(x; γi), dubbed as partial ex-

pansion. The parameter of C(m) is set to be uniform, i.e.,
p(m) = 1

M . As the m-th block is kept only when the sam-
pled index ≤ m, the probability of keeping m-th block is
βm = M+1−m

M . Since βm is a monotonically decreasing
function of m, then the blocks are forced to be ordered.

During testing, to make the output of a block equal to the
expected output at training time, the output is also scaled by
βm. So the basis function expansion for a test data x is written

as fM (x) =
∑M

m=1
M+1−m

M b(x; γm).
The intuition of ordered dropout is to mimic the scenario

that an arbitrary number of building blocks (bits, neurons,

filters, paths, residual blocks etc.) can be removed during
testing time. As the blocks with smaller indices are more
likely to be kept, they obtain more information compared to
higher-index blocks and thus become more important. Fur-
thermore, as the higher-index blocks are disabled frequently,
then the small-index blocks must be able to perform the task
themselves. The problem of granularity is solved because the
granularity is always as small as 1 block, while it does not
increase the time/resource consumption. Fig. 1 shows how
ODO can be applied to different blocks.

The idea of making dropout unit to have order was also
explored by [Rippel et al., 2014]. A “nested dropout” was
applied to the hidden representation in an auto-encoder for
unsupervised learning. The operation was proven to recover
PCA under particular constraints. By contrast, we apply the
ODO on building blocks of convolutional neural network for
supervised learning, with the goal of adaptive deployment of
neural network. We also prove that a NN trained with ODO
and the MLE objective will lead to each block maximizing an
incremental information gain over the previous blocks, yield-
ing residual additive blocks (see next section).

2.3 Ordered Information
Next, we show that in a one-layer NN for a supervised learn-
ing task, training with ODO using the MLE objective leads to
disentangled information gain between blocks.

We denote the ground truth joint likelihood as x, y ∼ px,y
and the discriminative model as pΘ(y|x) = p0(y|fM,Θ(x)),
where x ∈ R

D, y ∈ R. Assume p0 is probability of ground
truth conditioned on the prediction. We define the prediction
ŷ = fM,Θ(x) = vT z = vTσ(UTx), where z is the hidden

activation of a neural network and U ∈ R
D×M ,v ∈ R

M

are the parameters of the network. The full expansion can

be written as ŷ = fM,Θ(x) =
∑M

i=1 viσ(U
T
i x), where Ui

denotes the i-th column of matrix U.

Proposition 1. Under the above setting, maximizing the data
log-likelihood is equivalent to maximizing the mutual infor-
mation between ground-truth y and the prediction ŷ, i.e.,

max
Θ

Ex,y∼px,y log pΘ(y|x) ⇔ max
Θ

I(y, ŷ). (2)

where I(·) is the mutual information2.
Consider applying the proposed ODO on the elements of

v (or equivalently on the columns of weight matrix U), the
problem becomes

max
Θ

Ec∼CI(y, fc(x)), (3)

where fc(x) =
∑c

i b(x;Ui,vi) =
∑c

i viσ(U
T
i x) is the par-

tial expansion of basis functions.

Corollary 1. The maximum likelihood objective is equivalent
to

max
Θ

I1 +
1

M

M∑

c=2

(M − c)(Ic − Ic−1), (4)

where Ic = I(y, fc(x)) is the mutual information between the
ground-truth and partial expansion2.

2The proofs can be accessed via
http://visal.cs.cityu.edu.hk/static/pubs/conf/ijcai20-fn3-sup.pdf.
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Figure 2: Comparison of quantization functions: (left) AdaBits;
(right) our FN3. The line thickness indicates the number of coin-
cide curves.

Combining NN building blocks and ODO does not ex-
plicitly compose a Forward Stage-wise Additive Model, as
in boosting in Eq. 1. However, Eq. 4 indicates the training
objective is disentangled in a similar way. The objective in-
cludes a base mutual information I1 learned by the first block
b1 = b(·;U1,v1), as well as Ic − Ic−1, which is the residual
information learned by block b(·;Uc,vc). In other words, in
expectation, each building block maximizes the incremental
information gain and aggregates the results for final predic-
tion. Thus, combining NN building blocks and ODO leads to
residual additive blocks. This analysis can be easily extended

to FN3-layer, FN3-path and FN3-channel listed in Sec. 2.1.

2.4 Nested Quantized Neural Network
As shown in Sec. 2.1, the quantization function S̄ possesses
the additive characteristic. ODO can be applied to the trans-
lated function Sj(w) = S(w − zj). To complete the quanti-
zation scheme, we leverage a factor τ to scale the input and
output and make the quantization function zero-centered by
using the offset 1

2

∑
j αj , similar to [Yang et al., 2019]:

S̄(wi) =
1

τ
(
∑

j

αjS(τwi − zj)− 1

2

∑

j

αj). (5)

Recently, [Jin et al., 2019] and [Yu et al., 2019a] adopt
the quantization function of DoReFa-Net to achieve a simi-
lar goal, and both these methods adopt switchable batch nor-
malization for different bits. We note that these quantization
methods are not truly nested, as the quantization function in
DoReFa-Net is not nested in terms of different bits. To see
this, note that the 2-bit and 3-bit quantization in DoReFa-Net
correspond to quantization levels of Q2 = {−1,− 1

3 ,
1
3 , 1}

and Q3 = {−1,− 6
7 , . . . ,− 1

7 ,
1
7 , . . . ,

6
7 , 1} respectively. Q3

does not include all the elements in Q2. AdaBits [Jin et al.,
2019] modify the DoReFa-Net to address this issue.

We compare the quantization function of AdaBits and our

proposed FN3 in Fig. 2, where the coinciding regions are
also visualized. In AdaBits, adding more bits is only back-
tracking the previous lower-bit quantization function, which
undermines the previous mapping. If the weight value indi-
cates the importance of its corresponding feature, then once
a weight has a maximal quantization value (+1 or -1), then
increasing its importance requires changing bits on all other
weights. Thus, in AdaBits, the disordered coinciding regions
make the optimization harder, thus switchable BN (multiple
sets of BN parameters) is adopted, leading to a semi-nested

Input

Output
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significant 

Active block Inactive block

···
···

···
···

···
···

· · · K ways to 
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···
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···
···
···
···
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···

· · ·

Figure 3: Sketch of the heuristic search algorithm.

network. In contrast, in FN3, adding more bits augments in-
formation of the previous quantization function, while keep-
ing the steps in the middle unchanged. Adding a new bit can
only increase the magnitude of weights, i.e., the correspond-
ing feature’s importance. This allows a more natural ranking
of the features as the number of bits increases, and better fits
our formulation of using additive blocks.

From the regularization perspective, using a limited num-

ber of bits for FN3 quantization also limits the magnitude
of the weights, which is consistent with the goal of regular-
ization. In contrast to AdaBits, with low bit numbers, the
weights are either maximally activated (+1) or not, which
counter-productive for regularization.

3 Heuristic Search
In the hardware-aware NAS papers [Cai et al., 2018; Jiang
et al., 2019], given fixed amount of resources, the algorithms
search for the best architecture that fits the budget. The al-
gorithm needs to be re-run once the resource budget changes.

Algorithm 1 Heuristic search algorithm

Input: A trained FN3; candidate number C; block
number per layer {Mi}i; ΔP ; P = 100% − ΔP ;
T = {tjk}Kk ; tjk = ∅; pool = ∅; W =
{(i′, j′)}.

1: while W �= ∅ do
2: for k = 1 to K do
3: for c = 1 to C do
4: sample a new candidate (i∗, j∗) from W .
5: pool = pool∪(tjk ∪(i∗, j∗)).
6: end for
7: end for
8: Evaluate acc. of tj ∈ pool and select top-K {tj∗k}Kk=1.

9: T = {tj∗k}Kk=1.
10: W = W \ (W ∪ T ).
11: while ∀j ∈ W < (P +ΔP)Mi and P �= 0 do
12: P = P −ΔP ; Move W by ΔP .
13: end while
14: pool = ∅.
15: end while

With a trained FN3, we can also search for the best ar-
chitectures for all possible budgets beforehand, at the min-
imal granularity. We propose a heuristic search method to
find the optimal trade-off curve of accuracy w.r.t. number of
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blocks, as shown in Alg. 1. The main idea is to maintain
multiple records of removed blocks, which we denote as “tra-
jectories”. The next block to be removed is selected based
on the current trajectories with high accuracy, and thus yields
an new trajectory that is more likely to be accurate. Specifi-
cally, we maintain a set of K trajectory sets T during search-
ing. tjk = {(i, j)} ∈ T is the k-th trajectory set that con-
tains the layer index i and block index j of removed blocks.
In every iteration, for one trajectory, C candidate block are
sampled from the candidate set and added to the trajectory
set. The accuracy of all candidates sets are evaluated and the
top-K augmented trajectory sets are selected to update T . As

the blocks are highly ordered in FN3, we leverage a sliding
window, W , as the candidate set to restrict the search space,
as shown in Fig. 3. The search complexity is reduced from∑

i

(
N
i

)
= 2N − 1 to KN .

Note that the number of blocks might be different in differ-
ent layers, e.g., layer 1 has 128 neurons while layer 2 has 512
neurons. We assign the same proportion (ΔP ) of blocks in a
sliding window for different layers, e.g., 32 neurons for layer
1 and 128 neurons for layer 2 (25%).

4 Related Work
The idea of nested architecture of neural network was ex-
plored by [Baram, 1988], where either square and hexagonal
structures are studied. The proposed structures are no longer
suitable for modern deep learning tasks.

Adaptive channel: Aiming at adaptive channel and neu-
ron, [Kim et al., 2018] propose a NestedNet to build an n-
in-1 network structure by solving weight connection pruning
problem iteratively. This work is limited in flexibility as it
provides limited number of sub-networks (3 to 4 levels shown
in the experiment), while our work has 27136 with MobileNet-
V2 in terms of adaptive channel. Our work also outperforms
[Kim et al., 2018]; on Cifar10/100, accuracy of [Kim et al.,
2018] starts decreasing when half channels are pruned, while
our model starts losing accuracy when over 65% components
are dropped.

[Yu et al., 2019b] proposed slimmable NN that trains a net-
work with multiple setups of channel number (called width)
simultaneously, where the weights are shared among different
widths. The network switches to another set of batch normal-
ization (BN) parameters once the width changes thus O(M ′2)
BN parameters should be maintained, where M ′ is the num-
ber of channels in a layer. This method is extended (US-
Net [Yu and Huang, 2019]) to allow more choices of width by
only recollecting the BN parameters after training. However,
it still requires training multiple widths per iteration, which
increases the training time. The widths are consistent for
different layers, and therefore the number of sub-networks

is limited. By comparison, FN3-channel samples different
number of channels for different layer per iteration, increas-
ing the number of sub-network by 2N−M and indicating a
higher level of granularity, where N =

∑
i Mi. In addition,

the increased number of sub-networks in FN3-channel does
not come at a price of increasing training time, making our
method more efficient than the slimmable NN.

In FN3, we observe that, as the importance of blocks keeps

decreasing in expectation, the influence of dropping blocks on
BN parameters is trivial. Also as observed from the scaling
factor during inference βm = M+1−m

M (Sec. 2.2), with m
growing larger, the activation is scaled to be smaller, which
has low influence on BN statistics. Thus, it is not required to

modify the BN scheme in FN3.
Adaptive bit: [Jin et al., 2019] proposed Adabits that is

adaptive in different quantization bits. A quantization scheme
similar to DoReFa-net was proposed and the switchable BN
method [Yu et al., 2019b] was adopted, thus the number of
sub-networks is limited. We also show the limitation of the
Adabits quantization function in Sec. 2.4.

More importantly, the order of either channels or bits was
not studied in the previous works. We explicitly show that

each building block in FN3 maximizes the incremental infor-
mation gain (see Sec. 2.3). The analysis validates the idea of
using residual additive blocks to build the adaptive neural net-
work. Furthermore, the previous methods only train an adap-
tive network that provides sub-networks, but it is unclear what
is the optimal sub-network given fixed hardware resources. In

FN3, a fast heuristic search method that leverages the block
ordering is proposed. A trade-off curve of accuracy w.r.t. the
number of blocks can be obtained before deployment, with a
low cost. Given a fixed budget of resources, the optimal ar-
chitecture can be simply obtained by checking the trade-off
curve and table lookup3.

5 Evaluation
The experiments are conducted on the MNIST, Cifar10, Ci-

far100 and ImageNet datasets. The FN3-neuron experiment
is conducted on MNIST. On Cifar10/100, we run the abla-
tion study of FN3-layer/-path/-channel/-bit, as well as the the

comparisons of FN3-bit and Adabits. On ImageNet, we run

the experiments FN3-channels to compare with the US-Net.

For FN3-bit, ODO is realized by adding/dropping Heaviside
step functions that constitute different quantization functions.
The weights in one layer share a quantization function. Thus,
in the heuristic search, the block index is replaced with index
of Heaviside step function. For the rest 4 block types, ODO
is realized by generating masks of ones and zeros onto the
input or output of a block. We run the heuristic search on the
training data to get the block order. Note that during search-
ing, one number of block might correspond to multiple re-
sults (e.g., 50 accuracy results for “100 channels removed”).
We calculate the maximum, mean and standard deviation and
show them in the graph.

Overview: We show the overview of experimental results
and ablation study in Fig. 4. The detailed experimental setups
are seen in Sec. A.

The blue curves show the accuracy w.r.t. removed building
blocks with normal training. The removed building blocks are
randomly selected and each random test is repeated for 100
times. In all the tested cases, the accuracy decreases drasti-
cally as building blocks are removed.

The orange curves show the results of ODO training and

random removal. On FN3-layer/-neuron/-bit, the differences

3OVIC Benchmark, Tensorflow.
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Normal training and random removal ODO training and random removal ODO training and heuristic search

Number of removed step functions Number of removed step functions

Bit-Cifar10 Bit-Cifar100MNIST

Number of removed neurons

Path-Cifar10

Number of removed paths
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Number of removed channels Number of removed channels
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cu
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cy

Number of removed bottleneck modulesNumber of removed bottleneck modules

Channel-Cifar10 Channel-Cifar100Layer-Cifar100Layer-Cifar10

Figure 4: Experimental results for FN3-layer, FN3-path, FN3-channel and FN3-bit on Cifar10/100, FN3-neuron on MNIST.

Model #sub-networks Training epochs

US-Net 226 250× n
FN3-channel 27136 400

Table 1: Numerical comparisons.

between orange curves and blue curves are significant. This
indicates ODO effectively improves the overall classification

performance. On FN3-bit, ODO also improves the quantiza-
tion performance of the whole network, as observed from the
difference of starting points of the orange and blue curves.

As for FN3-path, the mean of accuracy has a similar trend
as normal training, while the max accuracy starts decreas-
ing when around 40 paths are removed. Therefore, ODO ef-
fectively generates highly accurate and small sub-networks.

The orange curve of FN3-channel shows a similar behavior

as FN3-path’s while the fluctuation of max accuracy is more
severe, which indicates the unstable performance of random
removal.

The green curves shows the results of ODO training and
heuristic search. In general, the heuristic search effectively
finds a better trade-off curve. Moreover, as observed from
the results of FN3-channel and FN3-path, the variance is sig-
nificantly reduced and useless trajectories are pruned, thus
the search complexity is reduced. This indicates the heuris-
tic search can discover good sub-networks efficiently. The
heuristic search also helps to reduce the number of evalua-

tions during searching. For example, on FN3-path, the num-
ber of evaluations in random removal is 7200, while that in
heuristic search is 1672, reduced by 76.8%.

Next, we discuss FN3-channel and FN3-bit in detail and
show the comparisons with previous works.

FN3-channel: We train FN3-channel with MobilenetV2
on Imagenet. The ODO mask is multiplied with the output of

Percentage of removed channels

Ac
cu

ra
cy

3
3

Figure 5: Performance of FN3 with MobileNetv2 on ImageNet.

depth-wise convolution layer in each inverted residual block.
Therefore, the zeros in the mask disable the corresponding
filters of preceding point-wise convolution, depth-wise con-
volution and the channels of subsequent point-wise convolu-
tion [Sandler et al., 2018].

Fig. 5 shows that FN3 achieves a better trade-off of ac-
curacy w.r.t. removed blocks compared with US-Net. This
reveals the superiority of ODO over other methods that do

not consider order of blocks. As shown in Table 1, as FN3 is
fully nested, the theoretical number of sub-networks is much

greater than that of US-Net. The training epochs of FN3 is
steady at 400, while that of US-Net is 250n, where n is the
number of sampled widths per iteration (normally n ≥ 4).

FN3-bit: The experiments on quantization are run on Ci-
far10/100 datasets with MobileNet-v2. The model is opti-
mized with Adam and a cosine annealing scheduler for 600

epochs. In FN3-bit, we use a quantization level schedule
similar to [Yang et al., 2019], 2-bit: {−1, 0, 1}, 3-bit(±2):
{−2,−1, 0, 1, 2}, 3-bit(±4): {−4,−2,−1, 0, 1, 2, 4}, 4-bit:
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Cifar10 4-bit 3-bit (±4) 3-bit (±2) 2-bit

Adabits 91.84 79.3 - 58.98

FN3-bit 94.28 94.2 94.2 93.64

Cifar100 4-bit 3-bit (±4) 3-bit (±2) 2-bit

Adabits 72.15 65.23 - 51.67

FN3-bit 76.65 76.34 75.35 74.97

Table 2: Accuracy for the same bit-width for whole network.

4-bit 2-bit

( a )

4-bit 2-bit

( b )
Number of removed step functions Number of removed step functions

Ac
cu

ra
cy

Figure 6: Performance of FN3-bit using MobileNetv2 with removed
step functions (bits). (a) Cifar10. (b) Cifar100.

{−8,−4,−2,−1, 0, 1, 2, 4, 8}. τ is initialized to 5p
4q , where

p is the max absolute quantization interval and q is the max
absolute value of weight. To reproduce the Adabits method,
we use the modified DoReFa-net quantization function and
switchable BN parameters. Following [Jin et al., 2019], dur-
ing training of Adabits, we progressively reduce the number
of bits, with each bit-width taking 150 epochs.

The results of using the same bits for whole network are
shown in Table 2. The performance of Adabits on lower bits

drop dramatically, while the performance of FN3-bit only re-
duces by 0.64% from 4-bit to 2-bit. This validates the idea of
composing a nested quantization with multiple step functions.

In FN3, we apply different bit-widths to 7 groups of lay-
ers which leads to 47 = 16384 sub-networks while Adabits
only provides 3 sub-networks. Thus, with FN3, different lay-
ers can use different bit-widths for more flexible deployment
to the given resource constraints, which is not possible with
Adabits. Fig. 6 shows the results using mixed bit-widths be-
tween layers, obtained by running the heuristic search on the
model used in above experiment. The x-axis indicates the bit
usage, where the left side corresponds to every layer using
4 bits, the right side is every layer using 2 bits, and in be-
tween are mixed bit-widths with different number of bits (or
step functions) removed. The accuracy w.r.t. bit-width curve
shows that a mixed bit-width can also achieve similar accu-
racy to using 4-bits for all layers. For example, using around
3 bits (9 step functions removed) has similar performance to
using full 4-bits.

6 Conclusion
We propose the fully nested neural network that generates
large amounts of nested sub-network, based on additive net-
work building blocks. The proposed heuristic search is able
to efficiently find the optimal sub-network, and experiment

results show that our method is widely applicable to com-
press/quantize a variety of NN building blocks. Future work
will consider how to combine different levels of blocks (e.g.,
channel and bits) to generate more adaptive networks.

A Detailed Setup of Experiments

FN3-layer: We run standard RexNeXt-Cifar [Xie et al.,
2017] on Cifar10 and Cifar100 dataset. ResNeXt-Cifar con-
tains one convolutional layer for feature extraction which is
kept active in this experiment, and 9 bottleneck modules each
being treated as a block. We assign a uniform probability 1

9
to the Categorical distribution C(m) where each dimension
corresponds to the index of bottleneck module. Therefore,
the first bottleneck module is the least likely to be dropped.
We use SGD with an initial learning rate 0.1, momentum fac-
tor 0.9 and batch size 128. The learning rate is scaled by
0.1 at epoch 150 and 225. The network is trained for 300
epochs. For heuristic search, as the ordered dropout (ODO)
is performed on the bottleneck modules (group of layers), the
height of sliding window is one. Because these blocks are
well ordered, we set the window width to be 1 (ΔP = 1

9 ). In
other words, the algorithm greedily selects the next block to
be removed.

FN3-path: We run the same RexNeXt-Cifar as in FN3-
layer on Cifar10 and Cifar100 dataset. In each bottle-
neck module, 8 paths are treated as the blocks. We as-
sign a uniform probability 1/8 to the Categorical distribu-
tion C(m) where each dimension corresponds to the index
of blocks. 9 ODO units operate simultaneously. The rest

hyper-parameters are the same as FN3-layer. In such case,
for heuristic search, the height of sliding window is 9. ΔP =
12.5%, C=10 and K=3.

FN3-channel: To compare with previous works, this ex-
periment runs with MobileNet-V2 on ImageNet dataset. The
ODO mask is applied to the depth-wise convolution layer in
each inverted residual block. Therefore, it disables the fil-
ters of former point-wise convolution, depth-wise convolu-
tion and the channels of subsequent point-wise convolution.
We keep 35% channels active during this experiment, for a
fair comparison. As there are 17 inverted residual blocks,
17 ODO units operate simultaneously. The model is op-
timized with Adam optimizer with initial learning rate 0.1
and a cosine annealing scheduler for 400 epochs, on 6 GTX
2080ti GPUs. In each forward pass of the network, for each
ODO unit, the sampled index m ∼ C(·) is broadcasted to
all GPUs for consistency. For heuristic search, the height of
sliding window is 17. ΔP = 12.5%, C=10 and K=3. On
Cifar10/100, similar settings are adopted.

FN3-neuron: We run an MLP of structure 784-512-128-
10 on MNIST. We keep 12.5% neurons active during this ex-
periment. Two ODO units are applied on the rest neurons in
two hidden layers, with uniform probabilities 1

448 and 1
112 re-

spectively. The network is trained with SGD with an initial
learning rate 1.0 for 100 epochs. The learning rate is scaled
by 0.7 every 10 epochs. For heuristic search, we set the height

and width of window to be 1, similar to FN3-layer.

The setups for FN3-bit are shown in Sec. 5.
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