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Abstract
In this paper, we show that a simple coloring scheme
can improve, both theoretically and empirically, the
expressive power of Message Passing Neural Net-
works (MPNNs). More specifically, we introduce a
graph neural network called Colored Local Iterative
Procedure (CLIP) that uses colors to disambiguate
identical node attributes, and show that this repre-
sentation is a universal approximator of continu-
ous functions on graphs with node attributes 1. Our
method relies on separability, a key topological char-
acteristic that allows to extend well-chosen neural
networks into universal representations. Finally, we
show experimentally that CLIP is capable of captur-
ing structural characteristics that traditional MPNNs
fail to distinguish, while being state-of-the-art on
benchmark graph classification datasets.

1 Introduction
Learning good representations is seen by many machine learn-
ing researchers as the main reason behind the tremendous
successes of the field in recent years [Bengio et al., 2013].

Despite a large literature and state-of-the-art performance
on benchmark graph classification datasets, graph neural net-
works yet lack a similar theoretical foundation [Xu et al.,
2019]. Universality for these architectures is either hinted at
via equivalence with approximate graph isomorphism tests (k-
WL tests in [Xu et al., 2019; Maron et al., 2019a]), or proved
under restrictive assumptions (finite node attribute space in
[Murphy et al., 2019]).

In this paper, we introduce Colored Local Iterative Proce-
dure (CLIP), which tackles the limitations of current Message
Passing Neural Networks (MPNNs) by showing, both theo-
retically and experimentally, that adding a simple coloring
scheme can improve the flexibility and power of these graph
representations. More specifically, our contributions are: 1)
we provide a precise mathematical definition for universal
graph representations, 2) we present a general mechanism
to design universal neural networks using separability, 3) we
propose a novel node coloring scheme leading to CLIP, the

1A longer version of the paper with detailed proofs of propositions
and theorems is available at https://arxiv.org/pdf/1912.06058.pdf.

first provably universal extension of MPNNs, 4) we show that
CLIP achieves state of the art results on benchmark datasets
while significantly outperforming traditional MPNNs as well
as recent methods on graph property testing.

The rest of the paper is organized as follows: Section 2 gives
an overview of the graph representation literature and related
works. Section 3 provides a precise definition for universal
representations, as well as a generic method to design them
using separable neural networks. In Section 4, we show that
most state-of-the-art representations are not sufficiently ex-
pressive to be universal. Then, using the analysis of Section 3,
Section 5 provides CLIP, a provably universal extension of
MPNNs. Finally, Section 6 shows that CLIP achieves state-
of-the-art accuracies on benchmark graph classification taks,
as well as outperforming its competitors on graph property
testing problems.

2 Related Works
The first works investigating the use of neural networks for
graphs used recurrent neural networks to represent directed
acyclic graphs [Sperduti and Starita, 1997; Frasconi et al.,
1998]. More generic graph neural networks were later intro-
duced by [Gori et al., 2005; Scarselli et al., 2009], and may
be divided into two categories. 1) Spectral methods [Bruna
et al., 2014; Henaff et al., 2015; Defferrard et al., 2016;
Kipf and Welling, 2017] that perform convolution on the
Fourier domain of the graph through the spectral decompo-
sition of the graph Laplacian. 2) Message passing neural
networks [Gilmer et al., 2017], sometimes simply referred
to as graph neural networks, that are based on the aggre-
gation of neighborhood information through a local itera-
tive process. This category contains most state-of-the-art
graph representation methods such as [Duvenaud et al., 2015;
Grover and Leskovec, 2016; Lei et al., 2017; Ying et al., 2018;
Verma and Zhang, 2019], DeepWalk [Perozzi et al., 2014],
graph attention networks [Velickovic et al., 2018], graph-
SAGE [Hamilton et al., 2017] or GIN [Xu et al., 2019].

Recently, [Xu et al., 2019] showed that MPNNs were, at
most, as expressive as the Weisfeiler-Lehman (WL) test for
graph isomorphism [Weisfeiler and Lehman, 1968]. This
suprising result led to several works proposing MPNN exten-
sions to improve their expressivity, and ultimately tend to-
wards universality [Maron et al., 2019a; Maron et al., 2019b;
Maron et al., 2019c; Murphy et al., 2019; Chen et al., 2019].
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However, these graph representations are either as powerful
as the k-WL test [Maron et al., 2019a], or provide universal
graph representations under the restrictive assumption of fi-
nite node attribute space [Murphy et al., 2019]. Other recent
approaches [Maron et al., 2019c] implies quadratic order of
tensors in the size of the considered graphs. Some more pow-
erfull GNNs are studied and benchmarked on real classical
datasets and on graph property testing [Kriege et al., 2018;
Murphy et al., 2019; Chen et al., 2019]: a set of problems that
classical MPNNs cannot handle. Our work thus provides a
more general and powerful result of universality, matching the
original definition of [Cybenko, 1989] for MLPs.

3 Universal Representations via Separability
In this section we present the theoretical tools used to design
our universal graph representation. More specifically, we
show that separable representations are sufficiently flexible to
capture all relevant information about a given object, and may
be extended into universal representations.

3.1 Notations and Basic Assumptions
Let X ,Y be two topological spaces, then F(X ,Y) (resp.
C(X ,Y)) denotes the space of all functions (resp. continuous
functions) from X to Y . Moreover, for any group G acting on
a set X , X/G denotes the set of orbits of X under the action
of G. Finally, ‖ · ‖ is a norm on Rd, and Pn is the set of all
permutation matrices of size n. In what follows, we assume
that all the considered topological spaces are Hausdorff (see
e.g. [Bourbaki, 1998] for an in-depth review): each pair of
distinct points can be separated by two disjoint open sets. This
assumption is rather weak (e.g. all metric spaces are Haus-
dorff) and is verified by most topological spaces commonly
encountered in the field of machine learning.

3.2 Universal Representations
Let X be a set of objects (e.g. vectors, images, graphs, or tem-
poral data) to be used as input information for a machine
learning task (e.g. classification, regression or clustering).
In what follows, we denote as vector representation of X
a function f : X → Rd that maps each element x ∈ X
to a d-dimensional vector f(x) ∈ Rd. A standard setting
for supervised representation learning is to define a class of
vector representations Fd ⊂ F(X ,Rd) (e.g. convolutional
neural networks for images) and use the target values (e.g. im-
age classes) to learn a good vector representation in light of
the supervised learning task (i.e. one vector representation
f ∈ Fd that leads to a good accuracy on the learning task). In
order to present more general results, we will consider neu-
ral network architectures that can output vectors of any size,
i.e. F ⊂ ∪d∈N∗F(X ,Rd), and will denote Fd = F∩F(X ,Rd)
the set of d-dimensional vector representations of F. A natural
characteristic to ask from the class F is to be generic enough
to approximate any vector representation, a notion that we will
denote as universal representation [Hornik et al., 1989].
Definition 1. A class of vector representations F ⊂
∪d∈N∗F(X ,Rd) is called a universal representation of X if
for any compact subset K ⊂ X and d ∈ N∗, F is uniformly
dense in C(K,Rd).

In other words, F is a universal representation of a normed
space X if and only if, for any continuous function φ : X →
Rd, any compact K ⊂ X and any ε > 0, there exists f ∈ F
such that

∀x ∈ K, ‖φ(x)− f(x)‖ ≤ ε . (1)

One of the most fundamental theorems of neural network
theory states that one hidden layer MLPs are universal repre-
sentations of the m-dimensional vector space Rm.

Theorem 1 ([Pinkus, 1999]). Let ϕ : R→ R be a continuous
non polynomial activation function. For any compact K ⊂
Rm and d ∈ N∗, two layers neural networks with activation
ϕ are uniformly dense in the set C(K,Rd).

However, for graphs and structured objects, universal repre-
sentations are hard to obtain due to their complex structure and
invariance to a group of transformations (e.g. permutations of
the node labels). We show in this paper that a key topological
property, separability, may lead to universal representations
of those structures.

3.3 Separability is (Almost) All You Need
Loosely speaking, universal representations can approximate
any vector-valued function. It is thus natural to require that
these representations are expressive enough to separate each
pair of dissimilar elements of X .

Definition 2 (Separability). A set of functions F ⊂ F(X ,Y)
is said to separate points of X if for every pair of distinct
points x and y, there exists f ∈ F such that f(x) 6= f(y).

For a class of vector representations F ⊂ ∪d∈N∗F(X ,Rd),
we will say that F is separable if its 1-dimensional representa-
tions F1 separates points of X . Separability is rather weak, as
we only require the existence of different outputs for every pair
of inputs. Unsurprisingly, we now show that it is a necessary
condition for universality.

Proposition 1. Let F be a universal representation of X , then
F1 separates points of X .

While separability is necessary for universal representations,
it is also key to designing neural network architectures that can
be extended into universal representations. More specifically,
under technical assumptions, separable representations can
be composed with a universal representation of Rd (such as
MLPs) to become universal.

Theorem 2. For all d ≥ 0, letMd be a universal approxi-
mation of Rd. Let F be a class of vector representations of X
such that:

(i) Continuity: every f ∈ F is continuous,

(ii) Stability by concatenation: for all f, g ∈ F, x 7→
(f(x), g(x)) ∈ F,

(iii) Separability: F1 separates points of X .

Then {ψ ◦ f : ∃d ≥ 1 s.t. ψ ∈ Md, f ∈ F} is a universal
representation of X .

Stability by concatenation is verified by most neural net-
works architectures, as illustrated for MLPs in Figure 1. The
proof of Theorem 2 relies on the Stone-Weierstrass theorem
(see e.g. [Rudin, 1987]) whose assumptions are continuity,
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Figure 1: Concatenation of two MLPs f and g.
Figure 2: Universal representations can easily be created by
combining a separable representation with an MLP.

separability, and the fact that the class of functions is an al-
gebra. Fortunately, composing a separable and concatenable
representation with a universal representation automatically
leads to an algebra, and thus the applicability of the Stone-
Weierstrass theorem and the desired result. Since MLPs are
universal representations of Rd, Theorem 2 implies a conve-
nient way to design universal representations of more complex
object spaces: create a separable representation and compose
it with a simple MLP (see Figure 2).
Corollary 1. A continuous, concatenable and separable rep-
resentation of X composed with an MLP is universal.

Note that many neural networks of the deep learning liter-
ature have this two steps structure, including classical image
CNNs such as AlexNet [Krizhevsky et al., 2012] or Incep-
tion [Szegedy et al., 2016]. In this paper, we use Corollary 1
to design universal graph and neighborhood representations,
although the method is much more generic and may be applied
to other objects.

4 Limitations of Existing Representations
In this section, we first provide a proper definition for graphs
with node attributes, and then show that message passing
neural networks are not sufficiently expressive to be universal.

4.1 Graphs with Node Attributes
Consider a dataset of n interacting objects (e.g. users of a
social network) in which each object i ∈ J1, nK has a vector
attribute vi ∈ Rm and is a node in an undirected graph G with
adjacency matrix A ∈ Rn×n.
Definition 3. The space of graphs of size n with m-
dimensional node attributes is the quotient space

Graphm,n =
{
(v,A) ∈ Rn×m × Rn×n} /Pn , (2)

where A is the adjacency matrix of the graph, v contains the
m-dimensional representation of each node in the graph and
the set of permutations matrices Pn is acting on (v,A) by

∀P ∈ Pn, P · (v,A) = (Pv, PAP>) . (3)

Moreover, we limit ourselves to graphs of maximum size
nmax, where nmax is a large integer. This allows us to consider
functions on graphs of different sizes without obtaining infi-
nite dimensional spaces and infinitely complex functions that
would be impossible to learn via a finite number of samples.
We thus define Graphm =

⋃
n≤nmax

Graphm,n.

4.2 Message Passing Neural Networks
A common method for designing graph representations is
to rely on local iterative procedures. Following the nota-
tions of [Xu et al., 2019], a message passing neural network
(MPNN) [Gilmer et al., 2017] is made of three consecutive
phases that will create intermediate node representations xi,t
for each node i ∈ J1, nK and a final graph representation
xG as described by the following procedure: 1) Initializa-
tion: All node representations are initialized with their node
attributes xi,0 = vi. 2) Aggregation and combination: T
local iterative steps are performed in order to capture larger
and larger structural characteristics of the graph. 3) Read-
out: This step combines all final node representations into a
single graph representation: xG = READOUT({xi,T }i∈J1,nK),
where READOUT is permutation invariant.

Unfortunately, while MPNNs are very efficient in practice
and proven to be as expressive as the Weisfeiler-Lehman al-
gorithm [Weisfeiler and Lehman, 1968; Xu et al., 2019], they
are not sufficiently expressive to construct isomorphism tests
or separate all graphs (for example, consider k-regular graphs
without node attributes, for which a small calculation shows
that any MPNN representation will only depend on the number
of nodes and degree k [Xu et al., 2019]). As a direct applica-
tion of Proposition 1, MPNNs are thus not expressive enough
to create universal representations.

5 Extending MPNNs Using a Simple Coloring
Scheme

In this section, we present Colored Local Iterative Procedure
(CLIP), an extension of MPNNs using colors to differentiate
identical node attributes, that is able to capture more complex
structural graph characteristics than traditional MPNNs. This
is proved theoretically through a universal approximation the-
orem in Section 5.3 and experimentally in Section 6. CLIP
is based on three consecutive steps: 1) graphs are colored
with several different colorings, 2) a neighborhood aggrega-
tion scheme provides a vector representation for each colored
graph, 3) all vector representations are combined to provide a
final output vector. We now provide more information on the
coloring scheme.

5.1 Colors to Differentiate Nodes
In order to distinguish non-isomorphic graphs, our approach
consists in coloring nodes of the graph with identical attributes.
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Figure 3: Example of two valid colorings of the same attributed
graph. Note that each Vk contains nodes with identical attributes.

This idea is inspired by classical graph isomorphism algo-
rithms that use colors to distinguish nodes [McKay, 1981],
and may be viewed as an extension of one-hot encodings used
for graphs without node attributes [Xu et al., 2019].

For any k ∈ N, let Ck be a finite set of k colors. These
colors may be represented as one-hot encodings (Ck is the
natural basis of Rk) or more generally any finite set of k
elements. At initialization, we first partition the nodes into
groups of identical attributes V1, ..., VK ⊂ J1, nK. Then, for a
subset Vk of size |Vk|, we give to each of its nodes a distinct
color from Ck (hence a subset of size |Vk|). For example,
Figure 3 shows two colorings of the same graph, which is
decomposed in three groups V1, V2 and V3 containing nodes
with attributes a, b and c respectively. Since V1 contains
only two nodes, a coloring of the graph will attribute two
colors ((1, 0) and (0, 1), depicted as blue and red) to these
nodes. More precisely, the set of colorings C(v,A) of a graph
G = (v,A) are defined as

C(v,A) =
{
(c1, ..., cn) :

∀k ∈ J1,KK, (ci)i∈Vk
is a permutation of C|Vk|

}
. (4)

5.2 The CLIP Algorithm
In the CLIP algorithm, we add a coloring scheme to an
MPNN in order to distinguish identical node attributes. This
is achieved by modifying the initialization and readout phases
of MPNNs as follows.

1. Colored initialization: We first select a set Ck ⊆
C(v,A) of k distinct colorings uniformly at random (see
Eq. (4)). Then, for each coloring c ∈ Ck, node represen-
tations are initialized with their node attributes concate-
nated with their color: xci,0 = (vi, ci).

2. Aggregation and combination: This step is performed
for all colorings c ∈ Ck using a universal set rep-
resentation as the aggregation function: xci,t+1 =

ψ(t)
(
xci,t,

∑
j∈Ni

ϕ(t)(xcj,t)
)
, where ψ and ϕ are MLPs

with continuous non-polynomial activation functions and
ψ(x, y) denotes the result of ψ applied to the concatena-
tion of x and y. The aggregation scheme we propose is
closely related to DeepSet [Zaheer et al., 2017], and a
direct application of Corollary 1 proves the universality
of our architecture.

3. Colored readout: This step performs a maximum over
all possible colorings in order to obtain a final coloring-
independent graph representation. In order to keep the sta-
bility by concatenation, the maximum is taken coefficient-

wise

xG = ψ

(
max
c∈Ck

n∑
i=1

xci,T

)
, (5)

where ψ is an MLP with continuous non polynomial
activation functions.

We treat k as a hyper-parameter of the algorithm and call
k-CLIP (resp. ∞-CLIP) the algorithm using k colorings (resp.
all colorings, i.e. k = |C(v,A)|). Note that, while our focus
is graphs with node attributes, the approach used for CLIP is
easily extendable to similar data structures such as directed or
weighted graphs with node attributes, graphs with node labels,
graphs with edge attributes or graphs with additional attributes
at the graph level.

5.3 Universal Representation Theorem
As the colorings are chosen at random, the CLIP representation
is itself random as soon as k < |C(v,A)|, and the number of
colorings k will impact the variance of the representation.
However,∞-CLIP is deterministic and permutation invariant,
as MPNNs are permutation invariant. The separability is less
trivial and is ensured by the coloring scheme.
Theorem 3. The∞-CLIP algorithm with one local iteration
(T = 1) is a universal representation of the space Graphm
of graphs with node attributes.

The proof of Theorem 3 relies on showing that ∞-CLIP
is separable and applying Corollary 1. This is achieved by
fixing a coloring on one graph and identifying all nodes and
edges of the second graph using the fact that all pairs (vi, ci)
are dissimilar. Similarly to the case of MLPs, only one local
iteration is necessary to ensure universality of the representa-
tion. This rather counter-intuitive result is due to the fact that
all nodes can be identified by their color, and the readout func-
tion can aggregate all the structural information in a complex
and non-trivial way. However, as for MLPs, one may expect
poor generalization capabilities for CLIP with only one local
iteration, and deeper networks may allow for more complex
representations and better generalization. This point is ad-
dressed in the experiments of Section 6. Moreover,∞-CLIP
may be slow in practice due to a large number of colorings,
and reducing k will speed-up the computation. Fortunately,
while k-CLIP is random, a similar universality theorem still
holds even for k = 1.
Theorem 4. The 1-CLIP algorithm with one local iteration
(T = 1) is a random representation whose expectation is a
universal representation of the space Graphm of graphs with
node attributes.

The proof of Theorem 4 relies on using ∞-CLIP on the
augmented node attributes v′i = (vi, ci). As all node at-
tributes are, by design, different, the max over all colorings
in Eq. (5) disappears and, for any coloring, 1-CLIP returns an
ε-approximation of the target function.
Remark 1. Note that the variance of the representation may
be reduced by averaging over multiple samples. Moreover, the
proof of Theorem 4 shows that the variance can be reduced to
an arbitrary precision given enough training epochs, although
this may lead to very large training times in practice.
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5.4 Computational Complexity
As the local iterative steps are performed T times on each
node and the complexity of the aggregation depends on the
number of neighbors of the considered node, the complexity
is proportional to the number of edges of the graph E and the
number of steps T . Moreover, CLIP performs this iterative
aggregation for each coloring, and its complexity is also pro-
portional to the number of chosen colorings k = |Ck|. Hence
the complexity of the algorithm is in O(kET ).

Note that the number of all possible colorings for a
given graph depends exponentially in the size of the groups
V1, ..., VK ,

|C(v,A)| =
K∏

k=1

|Vk|! , (6)

and thus∞-CLIP is practical only when most node attributes
are dissimilar. This worst case exponential dependency in the
number of nodes can hardly be avoided for universal represen-
tations. Indeed, a universal graph representation should also
be able to solve the graph isomorphism problem. Despite the
existence of polynomial time algorithms for a broad class of
graphs [Luks, 1982; Bodlaender, 1990], graph isomorphism
is still quasi-polynomial in general [Babai, 2016]. As a result,
creating a universal graph representation with polynomial com-
plexity for all possible graphs and functions to approximate is
highly unlikely, as it would also induce a graph isomorphism
test of polynomial complexity and thus solve a very hard and
long standing open problem of theoretical computer science.

6 Experiments
In this section we show empirically the practical efficiency of
CLIP and its relaxation. We run two sets of experiments
to compare CLIP w.r.t. state-of-the-art methods in super-
vised learning settings: i) on 5 real-world graph classification
datasets and ii) on 4 synthetic datasets to distinguish struc-
tural graph properties and isomorphism. Both experiments
follow the same experimental protocol as described in [Xu
et al., 2019]: 10-fold cross validation with grid search hyper-
parameter optimization.

6.1 Classical Benchmark Datasets
We performed experiments on five common benchmark
datasets extracted from standard social networks (IMDBb
and IMDBm) and bio-informatics databases (MUTAG, PRO-
TEINS and PTC). Following standard practices for graph
classification on these datasets, we use one-hot encodings of
node degrees as node attributes for IMDBb and IMDBm [Xu
et al., 2019], and perform single-label multi-class classifi-
cation on all datasets. We compared CLIP with six state-
of-the-art baseline algorithms: 1) WL: Weisfeiler-Lehman
subtree kernel [Shervashidze et al., 2011], 2) AWL: Anony-
mous Walk Embeddings [Ivanov and Burnaev, 2018], 3)
DCNN: Diffusion-convolutional neural networks [Atwood
and Towsley, 2016], 4) PS: PATCHY-SAN [Niepert et al.,
2016], 5) DGCNN: Deep Graph CNN [Zhang et al., 2018]
and 6) GIN: Graph Isomorphism Network [Xu et al., 2019].
WL and AWL are representative of unsupervised methods
coupled with an SVM classifier, while DCNN, PS, DGCNN

and GIN are four deep learning architectures. As the same
experimental protocol as that of [Xu et al., 2019] was used,
we present their reported results on Table 1.

As Table 1 shows, CLIP can achieve state-of-the-art per-
formance on the five benchmark datasets. Moreover, CLIP is
consistent across all datasets, while all other competitors have
at least one weak performance. This is a good indicator of the
robustness of the method to multiple classification tasks and
dataset types. Finally, the addition of colors does not improve
the accuracy for these graph classification tasks, except on the
MUTAG dataset. This may come from the small dataset sizes
(leading to high variances) or an inherent difficulty of these
classification tasks, and contrasts with the clear improvements
of the method for property testing (see Section 6.2).

Remark 2. In three out of five datasets, none of the recent
state-of-the-art algorithms have statistically significantly better
results than older methods (e.g. WL). We argue that, consid-
ering the high variances of all classification algorithms on
classical graph datasets, graph property testing may be better
suited to measure the expressiveness of graph representation
learning algorithms in practice.

6.2 Graph Property Testing
We now investigate the ability of CLIP to identify structural
graph properties, a task which was previously used to evaluate
the expressivity of graph kernels and on which the Weisfeiler-
Lehman subtree kernel has been shown to fail for bounded-
degree graphs [Kriege et al., 2018]. The performance of our
algorithm is evaluated for the binary classification of four dif-
ferent structural properties: 1) connectivity, 2) bipartiteness, 3)
triangle-freeness, 4) circular skip links [Murphy et al., 2019]
against three competitors: a) GIN, arguably the most efficient
MPNN variant yet published [Xu et al., 2019], b) Ring-GNN,
a permutation invariant network that uses the ring of matrix
addition and multiplication [Chen et al., 2019], c) RP-GIN,
the Graph Isomorphism Network combined with Relational
Pooling, as described by [Murphy et al., 2019], which is able
to distinguish certain cases of non-isomorphic regular graphs.

The Connectivity, Bipartiteness and Triangle-Freeness
datasets consist each of 1000 (20-node) graphs with 500 pos-
itive samples and 500 negative ones. Regarding the connec-
tivity, the positive samples correspond to disconnected graphs
with two 10-node connected components selected among ran-
domly generated graphs and then we constructed negative
samples by adding to positive samples a random edge between
the two connected components. Regarding the bipartiteness,
the positive samples correspond to bipartite graphs, while
for the negative samples (non-bipartite graphs) we chose the
positive samples and for each of them we added an edge be-
tween randomly selected nodes from the same partition, in
order to form odd cycles.2. Regarding the triangle-freeness,
the positive samples correspond to triangle-free graphs se-
lected among randomly generated graphs and then we con-
structed negative samples by randomly adding new edges
to positive samples until it creates at least one triangle. In
all three datasets, we generated random graphs using the

2Having an odd cycle in a graph makes the graph non bipartite.
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Dataset PTC IMDBb IMDBm PROTEINS MUTAG

WL 59.9±4.3 73.8±3.9∗ 50.9±3.8∗ 75.0±3.1∗ 90.4±5.7
DCNN 56.6 49.1 33.5 61.3 67.0
PS 60.0±4.8 71.0±2.2 45.2±2.8 75.9±2.8∗ 92.6±4.2∗

DGCNN 58.6 70.0 47.8 75.5∗ 85.8
AWL - 74.5±5.9∗ 51.5±3.6∗ - 87.9±9.8
GIN 64.6±7.0∗ 75.1±5.1∗ 52.3±2.8∗ 76.2±2.8∗ 89.4±5.6

0-CLIP 65.9±4.0∗ 75.4±2.0∗ 52.5±2.6 77.0±3.2∗ 90.0±5.1
CLIP 67.9±7.1 76.0±2.7 52.5±3.0 77.1±4.4 93.9±4.0

Table 1: Classification accuracies on benchmark datasets. The best performer w.r.t. the mean is highlighted in bold. We perform an unpaired
t-test with asymptotic significance of 0.1 w.r.t. the best performer and highlight with an asterisk the ones for which the difference is not
statistically significant. 0-CLIP is the CLIP architecture without any colorings.

Property Connectivity Bipartiteness Triangle-freeness Circular skip links
mean ± std mean ± std mean ± std mean ± std max min

GIN 55.2 ± 4.4 53.1 ±4.7 50.7±6.1 10.0 ± 0.0 10.0 10.0
Ring-GNN - - - (?) ± 15.7 80.0 10.0
1-RP-GIN 66.1±5.2 66.0±5.1 63.0±3.6 20.0 ± 7.0 28.6 10.0
16-RP-GIN 83.3±7.9 64.9±4.1 65.7±3.3 37.6 ± 12.9 53.3 10.0

0-CLIP 56.5 ± 4.0 55.4 ± 5.7 59.6 ± 3.8 10.0 ± 0.0 10.0 10.0
1-CLIP 73.3 ± 2.2 63.3 ±1.9 63.5 ±7.3 61.9 ±11.9 80.7 36.7
16-CLIP 99.7 ± 0.5 99.2 ± 0.9 94.2±3.4 90.8 ± 6.8 98.7 76.0

Table 2: Classification accuracies of the synthetic datasets. k-RP-GIN refers to a relational pooling averaged over k random permutations. We
report Ring-GNN results from [Chen et al., 2019].

Erdös-Rényi model with probabilities p = 0.5, 0.5, 0.1 re-
spectively. Lastly, the Circular skip links dataset consists of
150 graphs of 41 nodes as described in [Murphy et al., 2019;
Chen et al., 2019]. The Circular Skip Links graphs are undi-
rected regular graphs with node degree 4. We denote a Circular
skip link graph byGn,k an undirected graph of n nodes, where
(i, j) ∈ E holds if and only if |i− j| ≡ 1 or k( mod n) This
is a 10-class multiclass classification task whose objective is
to classify each graph according to its isomorphism class.

Table 2 shows that CLIP is able to capture the structural
information of connectivity, bipartiteness, triangle-freeness
and circular skip links, while MPNN variants fail to identify
these graph properties. Furthermore, we observe that CLIP
outperforms RP-GIN, that was shown to provide very expres-
sive representations for regular graphs [Murphy et al., 2019],
even with a high number of permutations (the equivalent of
colors in their method is set to k = 16). Moreover, both for
k-RP-GIN and k-CLIP, the increase of permutations and color-
ings respectively lead to higher accuracies. In particular, CLIP
can capture almost perfectly the different graph properties
with as little as k = 16 colorings.

7 Conclusion
In this paper, we showed that a simple coloring scheme can
improve the expressive power of MPNNs. Using such a col-
oring scheme, we extended MPNNs to create CLIP, the first
universal graph representation. Universality was proven using
the novel concept of separable neural networks, and our ex-
periments showed that CLIP is state-of-the-art on both graph
classification datasets and property testing tasks. The coloring

scheme is especially well suited to hard classification tasks that
require complex structural information to learn. The frame-
work is general and simple enough to extend to other data
structures such as directed, weighted or labeled graphs. Future
work includes more detailed and quantitative approximation
results depending on the parameters of the architecture such
as the number of colors k, or number of hops of the iterative
neighborhood aggregation.
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