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Abstract
Online kernel selection in continuous kernel space
is more complex than that in discrete kernel set.
But existing online kernel selection approaches for
continuous kernel spaces have linear computational
complexities at each round with respect to the cur-
rent number of rounds and lack sublinear regret
guarantees due to the continuously many candi-
date kernels. To address these issues, we propose a
novel hypothesis sketching approach to online ker-
nel selection in continuous kernel space, which has
constant computational complexities at each round
and enjoys a sublinear regret bound. The main
idea of the proposed hypothesis sketching approach
is to maintain the orthogonality of the basis func-
tions and the prediction accuracy of the hypothe-
sis sketches in a time-varying reproducing kernel
Hilbert space. We first present an efficient depen-
dency condition to maintain the basis functions of
the hypothesis sketches under a computational bud-
get. Then we update the weights and the optimal
kernels by minimizing the instantaneous loss of the
hypothesis sketches using the online gradient de-
scent with a compensation strategy. We prove that
the proposed hypothesis sketching approach enjoys
a regret bound of orderO(

√
T ) for online kernel se-

lection in continuous kernel space, which is optimal
for convex loss functions, where T is the number
of rounds, and reduces the computational complex-
ities at each round from linear to constant with re-
spect to the number of rounds. Experimental results
demonstrate that the proposed hypothesis sketching
approach significantly improves the efficiency of
online kernel selection in continuous kernel space
while retaining comparable predictive accuracies.

1 Introduction
Online kernel learning obtains hypotheses incrementally in
a reproducing kernel Hilbert space in a single-pass over
the data, which aims to make a sequence of accurate pre-
dictions [Freund and Schapire, 1999; Kivinen et al., 2001;
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Crammer et al., 2003; Zhang and Liao, 2019]. Since the per-
formance of online kernel learning significantly depends on
the chosen kernel, kernel selection is critical to online kernel
learning. In the literature of online kernel learning, the kernel
function is typically chosen beforehand, which is not theo-
retically sound and needs multiple passes over all the data.
In batch learning settings, most of the offline kernel selec-
tion approaches, such as cross-validation [Liu et al., 2014;
Liu et al., 2018] and randomized kernel selection [Ding et
al., 2018], first learn the hypotheses on the training data for
each candidate kernel, and then select the optimal kernel on
the validation data. But in online learning settings, there is no
such delineation among training, validation and testing [Di-
ethe and Girolami, 2013; Zhang et al., 2019]. The selection
of optimal kernels for online kernel learning is more chal-
lenging than offline kernel selection, which only has access
to the arrived data for kernel selection at each round, must
construct the hypothesis space incrementally in low compu-
tational complexities, and requires a sublinear regret without
i.i.d. assumption. Given candidate kernels, we refer to the dy-
namic selection of the optimal kernel at each round for online
kernel learning as online kernel selection, which intermixes
kernel selection and training, and requires a sublinear regret
and constant computational complexities at each round. We
call an online kernel selection problem using a continuous
kernel space containing continuously many candidate kernels
the continuous online kernel selection problem, and that using
a discrete kernel set containing a finite number of candidate
kernels the discrete online kernel selection problem.

Recently, several online kernel selection approaches have
been presented. Foster et al. [2017] presented a meta-
algorithm framework using the multi-scale aggregation for
online model selection, which can be used for discrete on-
line kernel selection. This meta-algorithm framework enjoys
a sublinear regret bound that is suitable for multi-scale losses.
Yang et al. [2012] formulated a randomized online kernel se-
lection approach, which measures the relative importance of
the candidate kernels by maintaining a probability distribu-
tion via an exponential weighted average [Auer et al., 2002;
Cesa-Bianchi and Lugosi, 2006]. This randomized online
kernel selection approach to discrete online kernel selection
has a quadratic overall time complexity and a linear space
complexity with respect to the number of rounds. To ad-
dress this issue, Zhang et al. [2018] proposed a random-
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ized approach using a novel kernel alignment for discrete
online kernel selection with a strongly convex loss func-
tion, which has constant computational complexities at each
round. These two randomized approaches have sublinear
regret bound for discrete online kernel selection, but can-
not be applied to continuous online kernel selection with
regret guarantees. Besides, they are not efficient for on-
line kernel selection with a large number of candidate ker-
nels. Adaptive kernel is another kind of online kernel se-
lection approaches that use the gradient descent to minimize
the losses for the updating of the hypotheses and the ker-
nel parameters [Singh and Prı́ncipe, 2011; Chen et al., 2016;
Nguyen et al., 2017]. Although existing adaptive kernel ap-
proaches can be applied to continuous online kernel selection,
they do not have sublinear regret guarantees that are essential
for online kernel learning.

The aim of this paper is to propose a novel hypothesis
sketching approach to continuous online kernel selection,
which is theoretically solid and computationally efficient. We
construct the hypothesis sketches by the basis function vector
sketching and the weight vector sketching. Then we define
the instantaneous loss of the hypothesis sketches, and use the
gradient of this instantaneous loss to update the optimal ker-
nel at each round. For regret analysis, we decompose the
regret for continuous online kernel selection into three terms
and derive a sublinear regret bound. When applied to con-
tinuous online kernel selection, our hypothesis sketching ap-
proach has only linear time and space complexities with re-
spect to the budget at each round. Finally, we empirically
demonstrate that our hypothesis sketching approach to online
kernel selection achieves better performance than the existing
approaches in efficiency with a comparable accuracy.

2 Notations and Background
Let R and R+ be the set of real numbers and the set of posi-
tive real numbers, respectively. Let [T ] = {1, 2, . . . , T}, [·]+
be the function satisfying [a]+ = a when a > 0 and [a]+ = 0
when a ≤ 0, S = {(xi, yi)}Ti=1 ⊆ (X × Y)T be the se-
quence of T instances, where X ⊆ Rd and Y = {−1, 1}.
We denote the Moore-Penrose pseudoinverse of A by A†,
the loss function by ` : Y × Y → R+ ∪ {0}, the kernel
function by κ : X × X → R and its corresponding ker-
nel matrix by K = (κ(xi,xj)) ∈ RT×T . The reproduc-
ing kernel Hilbert space (RKHS) associated with κ is de-
fined as Hκ = span{κ(·,x) : x ∈ X}. We denote a set
containing N candidate kernels for online kernel selection by
KN = {κi}Ni=1.

Given a candidate kernel set KN = {κi}Ni=1, online kernel
selection is to update the hypothesis and select the optimal
kernel from KN at each round in an online setting, which
requires a sublinear regret guarantee and low computational
complexities. Given convex loss functions, Yang et al. [2012]
proposed a randomized kernel selection approach to discrete
online kernel selection, which enjoys the regret bound of or-
der O(N

√
T ) against the optimal hypothesis in hindsight

g∗ = arg min
f∈Hκi , κi∈KN

T∑
t=1

`(f(xt), yt).

But the regret bound of order O(N
√
T ) for online kernel se-

lection is invalid for continuous online kernel selection due
to the unbounded regret when N → ∞. In this paper, we
propose an efficient hypothesis sketching approach to online
kernel selection, which enjoys a sublinear regret bound for
continuous online kernel selection.

3 Novel Hypothesis Sketching Approach
In this section, we propose a novel hypothesis sketching ap-
proach, which has an efficient computation and can be applied
to continuous online kernel selection with regret guarantees.
We first define the hypothesis sketches as follows. Let

ψ(t)
κ (·) = [κ(·, x̃1), κ(·, x̃2), . . . , κ(·, x̃|Vt|)]

ᵀ, x̃i ∈ Vt,
be the basis function vector, where Vt = {x̃1, . . . , x̃|Vt|} is
the buffer of examples at round t and |Vt| is the size of Vt,
and

ω(t) =
[
ω

(t)
1 , ω

(t)
2 , . . . , ω

(t)
|Vt|

]ᵀ
be the weight vector. Then we call

ft(·) = 〈ω(t),ψ(t)
κ (·)〉

the hypothesis sketch for prediction at round t, which can be
seen as an approximation of the original hypothesis over the
first t− 1 instances1:

ht(·) =
∑

i∈[t−1]

β∗t,iκ(·,xi),

where {β∗t,i}i∈[t−1] is the set of the optimal coefficients of
the original hypothesis. Then we give the novel hypothesis
sketching approach under a fixed budget. Specifically, we re-
strict the size of the hypothesis sketch ft(·) by |Vt| ≤ B at
each round, where the budget B > 0. The novel hypothesis
sketching approach includes the following two steps: the ba-
sis function vector sketching and the weight vector sketching.

Basis Function Vector Sketching: We first define a cri-
terion to maintain the basis function vector of the hypothesis
sketch, called randomized linear dependency condition. At
round t, we use the inner product to measure the correlation
between the newly arrived kernel function κ(·,xt) and the
j-th kernel function in the basis function vector as follows:

q
(t)
j = 〈κ(·,xt), κ(·, x̃j)〉Hκ , x̃j ∈ Vt,

which yields a probability vector

pt =
[
q

(t)
1 , q

(t)
2 , . . . , q

(t)
|Vt|

]ᵀ/ |Vt|∑
i=1

q
(t)
i ∈ R|Vt|+ .

We regard pt as a multinomial distribution in the probability
simplex on [|Vt|], and sample s (s � |Vt|) kernel functions
without replacement from the basis function vector according
to pt, where the indices of the sampled kernel functions are
k

(t)
j ∈ [|Vt|], j = 1, 2, . . . s. Then the Randomized Linear

Dependency (RLD) condition at round t is given by

δt := min
αt∈Rs

∥∥∥∥∥κ(·,xt)−
s∑
i=1

α
(t)
i κ(·, x̃

k
(t)
i

)

∥∥∥∥∥
2

Hκ

> ν, (1)

1It follows from the representer theorem that it is sufficient to
consider the original hypothesis of the linear combination form.
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where ν > 0 is the RLD parameter and

αt =
[
α

(t)
1 , α

(t)
2 , . . . , α(t)

s

]ᵀ
∈ Rs.

RLD condition measures the linear dependency between the
newly arrived kernel function and the random subset of the
kernel functions in the basis function vector. Solving the min-
imization problem in (1) yields the optimum solution

α∗t =
(
K̃(t)
s

)†
ψ̃(t)
s ∈ Rs, (2)

where

ψ̃(t)
s =

[
κ(xt, x̃k(t)1

), . . . , κ(xt, x̃k(t)s
)
]ᵀ
∈ Rs,

and

K̃(t)
s = [κ(x̃i, x̃j)]

k(t)s

i,j=k
(t)
1

∈ Rs×s.

Given a budget B, if |Vt| < B at round t, we directly in-
sert the kernel function κ(·,xt) into the basis function vector.
Next, we consider the case that the size of the basis function
vector reaches the budget, i.e., |Vt| = B. When RLD con-
dition holds, we delete the kernel function κ(·, x̃rt) with the
smallest weight

rt = arg min
i∈[|Vt|]

∣∣∣ω(t)
i

∣∣∣ ,
and insert κ(·,xt) into the basis function vector, which is
equivalent to Vt+1 = Vt \ {x̃rt} ∪ {xt}, otherwise set
Vt+1 = Vt. Finally, we can obtain the updated basis func-
tion vector
ψ(t+1)
κ (·) = [κ(·, x̃1), . . . , κ(·, x̃|Vt+1|)]

ᵀ, x̃i ∈ Vt+1,

and the hypothesis sketch after the basis function vector
sketching as fb

t (·) = 〈ω(t),ψ
(t+1)
κ (·)〉.

Weight Vector Sketching: After the basis function vector
sketching, we maintain the weight vector of the hypothesis
sketch. Given a convex loss function `(·, ·), at round t, in-
stead of the instantaneous loss of the original hypothesis, we
define the Sketched Instantaneous Loss (SIL) of the hypothe-
sis sketch fb

t (·) by

SIL(fb
t (xt)) := `(fb

t (xt), yt) = `(〈ω(t),ψ(t+1)
κ (xt)〉, yt).

Then, given a stepsize η > 0, we update the weight of the
hypothesis sketch fb

t (·) using the Kernelized Online Gradient
Descent (KOGD) [Kivinen et al., 2001] for SIL as follows:

fw
t (·) = fb

t (·)− η∇fb
t (xt)SIL(fb

t (xt)) κ(·,xt).
The key ingredient of the weight vector sketching is to com-
pensate the weight vector when ignoring the newly arrived
examples. When |Vt| < B, we obtain Vt+1 = Vt ∪ {xt} and
insert the following weight into the weight vector

ω
(t+1)
|Vt+1| = −η∇fb

t (xt)SIL(fb
t (xt)).

When the budget has been reached, we discuss the weight
vector sketching in two cases: (a) for the case that RLD con-
dition does not hold, we compensate the weight vector as

ω
(t+1)
i = ω

(t)
i − ηα

∗
t (i)∇fb

t (xt)SIL(fb
t (xt)),

where i ∈ {k(t)
1 , . . . , k

(t)
s } and α∗t (i) is the i-th component

of α∗t in (2); (b) for the case that RLD condition holds, we
replace κ(·, x̃rt) with κ(·,xt) in the basis function vector,

and obtain the weight corresponding to κ(·,xt) as

ω(t+1)
rt = −η∇fb

t (xt)SIL(fb
t (xt)).

We finally obtain the hypothesis sketch after weight vector
sketching as

fw
t (·) = 〈ω(t+1),ψ(t+1)

κ (·)〉.

4 Application to Online Kernel Selection
In this section, we apply the proposed hypothesis sketching
approach to continuous online kernel selection. Specifically,
we update the optimal kernel at each round to determine the
reproducing kernel Hilbert space (RKHS) in which the pre-
diction and the hypothesis sketching are performed at the
next round. In this paper, we focus on the continuous kernel
space containing differentiable candidate kernels, denoted by
KΩ = {κσ| σ ∈ Ω}, where Ω is the kernel parameter space
of KΩ and κσ is the kernel function with the kernel param-
eter σ ∈ Ω. For convenience, in the following sections, we
denoteψ(t+1)

κσ (·) byψ(t+1)
σ (·). At round t, we select the opti-

mal kernel σt+1 by minimizing SIL of the hypothesis sketch
fw
t (·) = 〈ω(t+1),ψ

(t+1)
σt (·)〉 as follows:

σt+1 = arg min
σt∈Ω

SIL(fw
t (xt)). (3)

When the buffer Vt is changed, i.e., Vt+1 6= Vt,we update the
optimal kernel by minimizing (3) using the online gradient
descent [Zinkevich, 2003] as follows:

σt+1 = σt − ρ ∇σtSIL(fw
t (xt)), (4)

where ρ > 0 is the stepsize. After the hypothesis sketch-
ing and the optimal kernel updating at round t, we obtain the
hypothesis sketch for prediction at round t+ 1 as follows:

ft+1(·) = 〈ω(t+1),ψ(t+1)
σt+1

(·)〉.
Next, we specify the loss function and the candidate ker-

nels. For a hinge loss function ` (f(x), y) = [1 − yf(x)]+,
∇f(x)SIL(f(x)) is −y if yf(x) < 1 and 0 otherwise. For a
candidate Gaussian kernel function2

κσ(x1,x2) = exp
(
−‖x1 − x2‖2/(2σ2)

)
, σ > 0,

we set γ = 1/(2σ2) and denote this Gaussian kernel function
by κγ(x1,x2) = exp

(
−γ‖x1 − x2‖2

)
. Then, (4) is equiv-

alent to

γt+1 = γt − ρyt
|Vt+1|∑
j=1

ω
(t+1)
j κγt(xt, x̃j)‖xt − x̃j‖2.

We finally summarize the above stages into Algorithm 1,
called OKS-SIL.

5 Theoretical Analysis
In this section, we prove the regret bound of our hypothe-
sis sketching approach to continuous online kernel selection,
analyze the computational complexities of our approach, and
compare our approach with the existing online kernel selec-
tion approaches with respect to the theoretical results.

2The optimal kernel updating in (4) can be directly applied to
different types of candidate kernels, including the anisotropic RBF
kernels and other differentiable kernels.
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Algorithm 1 OKS-SIL Algorithm

Require: The stepsizes η and ρ, budget B, RLD parameter
ν, sampling size s, initial kernel parameter σ1

1: Initialize the weight vector ω(1) = 0 and the buffer V1 =
∅

2: for t = 1, . . . , T do
3: Compute

ψ
(t)
σt (xt) = [κσt(xt, x̃1), . . . , κσt(xt, x̃|Vt|)]

ᵀ

4: Compute ft(xt) = 〈ω(t),ψ
(t)
σt (xt)〉

5: Predict ŷt = sgn(ft(xt))
6: if ytft(xt) < 1 then
7: if |Vt| < B then
8: Vt+1 = Vt ∪ {xt}
9: else

10: if RLD condition holds then
11: Set rt = arg mini∈[|Vt|] |ω

(t)
i |

12: Vt+1 = Vt \ {x̃rt} ∪ {xt}
13: else
14: Vt+1 = Vt
15: end if
16: end if
17: Update ω(t+1) using KOGD with the compensation

18: if Vt+1 6= Vt then
19: Update the optimal kernel using γt+1 = γt −

ρyt
∑|Vt+1|
j=1 ω

(t+1)
j κγt(xt, x̃j)‖xt − x̃j‖2

20: end if
21: end if
22: end for

5.1 Regret Analysis
Consider a continuous kernel space KΩ containing candi-
date Gaussian kernels with the kernel parameter space Ω =
{σ|σ ∈ [σmin, σmax]}, where σmin, σmax ∈ R+. For con-
venience, we denote the Gaussian RKHS associated with the
kernel parameter σ by Hσ in the following theoretical analy-
sis. In contrast to the regret analysis for online kernel learning
in a given hypothesis space, the key challenge of the regret
analysis for continuous online kernel selection is to bound
the regret of a hypothesis sequence in an incrementally con-
structed hypothesis space. Our goal is to analyze the regret
against the optimal hypothesis f∗ with the optimal kernel κσ∗

as follows:

(f∗, σ∗) = arg min
f∈Hσ, σ∈Ω

T∑
t=1

`(f(xt), yt),

where f∗(·) = 〈ω∗,ψ∗σ∗(·)〉. Since Gaussian RKHS has a
nested structure [Minh, 2010; Yukawa, 2015] as Hσmax

⊆
Hσ ⊆ Hσmin , σ ∈ Ω, it is reasonable to assume that

‖f‖Hσmin
≤ R, f ∈ Hσ, σ ∈ Ω.

Let f̄∗σt(·) = 〈ω∗,ψ∗σt(·)〉 and denote the optimal hypothesis
in hindsight in Hσt by f∗σt . Finally, we demonstrate the re-
gret bound of the proposed hypothesis sketching approach to
continuous online kernel selection as in Theorem 1.

Theorem 1 (Regret Bound). Let `(·, ·) be a hinge loss

function, KΩ be a continuous kernel space containing
Gaussian kernels with the kernel parameter space Ω =
{σ|σ ∈ [σmin, σmax]}, and C(ν) be a decreasing func-
tion of ν which is of order O(lnT ) of magnitude. For
any sequence of T instances S = {(xi, yi)}Ti=1 ⊆
(X × Y)T , let Cmax = maxi,j∈[T ] ‖xi − xj‖2, as-
sume that maxt∈[T ] |∇σtfw

t (xt)| ≤ L and σmax <

minx̃i,x̃j∈V, x̃i 6=x̃j ‖x̃i − x̃j‖/
√

3,V = ∪Tt=1Vt. Then, let
{ft}Tt=1 be the hypothesis sequence generated by Algo-
rithm 1, we have

T∑
t=1

E [`(ft(xt), yt)− `(f∗(xt), yt)] ≤ Ra + Rb + Rc,

where W = σ−3
minCmax maxt∈[T ]

(∣∣f̄∗σt(xt)∣∣+ |fw
t (xt)|

)
,

Ra =
R2

2η
+ ηO(T ) +O

(√
νT + C(ν)

)
,

Rb = T max
t∈[T ]

(|f̄∗σt(xt)|+ |f
∗
σt(xt)|),

Rc =
(σ∗)2

2ρ
+

(W + L)2

2
ρT + 2σmaxWT.

Proof Sketch. We first decompose the instantaneous regret at
round t into the following three terms

Regt(ft, f
∗
σt)︸ ︷︷ ︸

Optimization error

+ Regt(f
∗
σt , f̄

∗
σt)︸ ︷︷ ︸

Estimation error

+ Regt(f̄
∗
σt , f

∗)︸ ︷︷ ︸
Approximation error

,

where Regt(a, b) := `(a(xt), yt) − `(b(xt), yt). Then we
prove the upper bounds of the three terms by bounding the
gradient errors of the hypothesis sketches, and obtain the final
regret bound.

Remark 1. For online classification, it is reasonable to as-
sume that the values of the hypotheses are O(1/

√
T ) as in

[Zhao et al., 2012; Hu et al., 2015], because it does not
have any influence on the prediction when multiplying the
weight vector by a factor of order O(1/

√
T ). Besides, it is

a reasonable assumption that S is compact in online learn-
ing [Cesa-Bianchi and Lugosi, 2006], which indicates that
Cmax is a positive constant. Then, for ∀t ∈ [T ], we as-
sume that S is compact and |f∗σt(xt)| , |f̄∗σt(xt)|, |f

w
t (xt)|

are of the order ofO(1/
√
T ), which yields Rb = O(

√
T ) and

W = O(1/
√
T ). Setting η, ρ = O(1/

√
T ) and ν = O(1/T ),

we obtain a O(
√
T ) regret bound for continuous online ker-

nel selection that is optimal for convex loss functions and
an online gradient descent approach [Shalev-Shwartz, 2011;
Hazan, 2016].

5.2 Complexity Analysis
At each round, for the basis function vector sketching, con-
structing the multinomial distribution has a linear time com-
plexity with respect to the budget B, and computing the RLD
condition is in O(s3) time complexity, where s is the sam-
pling size and s � B. The time complexities of the weight
vector sketching and the optimal kernel updating are O(s)
and O(B), respectively. Therefore, the time complexity of
OKS-SIL at each round is O (B), where B is the budget of
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Approach
Computational complexities Regret guarantees

Time (round t) Time (overall) Space Candidate kernels Regret bound

OKS O(N + t) O(T 2 +NT ) O(T ) N O
(
N
√
T
)

OKL-GD O (t) O(T 2) O(T ) Continuously many –

OKS-SIL O (B) O(BT ) O (B) Continuously many O
(√

T
)

Table 1: Comparisons between the proposed OKS-SIL and OKS, OKL-GD for convex functions (T : the number of rounds, N : the number
of candidate kernels; t: the index of the round; B: the budget, a constant; Candidate kernels: the number of candidate kernels; “–”: not
available).

the hypothesis sketches which is a constant. Since OKS-SIL
only stores the hypothesis sketch under the budget B, the to-
tal space complexity of OKS-SIL is O(B). Table 1 summa-
rizes the theoretical results of our OKS-SIL, OKS [Yang et
al., 2012] and OKL-GD [Chen et al., 2016]. From Table 1,
we have the following observations: (a) our OKS-SIL reduces
the time and space complexities at each round from linear to
constant with respect to the number of rounds; (b) for con-
tinuous online kernel selection, in contrast to the existing ap-
proaches without regret guarantees, our OKS-SIL enjoys a
sublinear regret bound.

6 Experiments
In this section, we present experimental results to demon-
strate the effectiveness and efficiency of our OKS-SIL. We
compared OKS-SIL algorithm with the following state-of-
the-art online kernel selection algorithms: (a) OKS [Yang
et al., 2012] maintains a probability distribution for discrete
online kernel selection, and updates the optimal kernel and
the hypothesis at each round according to this distribution;
(b) OKL-GD [Chen et al., 2016] uses KOGD to minimize
the squared loss for the hypothesis updating and the kernel
parameter updating3; (c) Similar to the two-stage approach
[Cortes et al., 2012], the two-pass algorithm Proj-KA uses
the first m = min{T, 104} instances to form a validation
set, selects the kernel using the kernel alignment criterion
[Kandola et al., 2002] on the validation set, and runs Pro-
jectron [Orabona et al., 2008] with the selected kernel. For
each benchmark dataset4 we merged the training and testing
data into a single dataset. Experiments were conducted over
20 different random permutations of the datasets and all the
algorithms were implemented in R 3.3.2 on a PC with 3.60
GHz Intel Core i7 CPU and 16GB memory. The mistake rate
is used to evaluate the performance for classification, which
is defined by

∑T
t=1 I(ytft(xt) < 0)/T × 100.

We chose a set of Gaussian kernels with kernel parame-
ters σ ∈ {2−(i+1)/2, i = [−12 : +1 : 12]} as the dis-
crete candidate kernel set for OKS and Proj-KA, and re-
stricted the kernel parameter space of OKS-SIL and OKL-
GD to the closed interval Ω = [2−6.5, 25.5] for fair compar-
ison. The index i of the initial kernel parameter was chosen

3For the online classification task, we use the hinge loss instead
of the squared loss, and limit the number of instances in memory to
2000 for OKL-GD to prevent the curse of kernelization.

4http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/

in [−12 : +1 : −6] using uniform sampling, for avoiding
the vanishing of the initial gradient. For our OKS-SIL, we
set B = 150 for the small datasets (T < 104), B = 200
for the other datasets (T ≥ 104), and ν = 0.9, s = 3 ac-
cording to the empirical analysis in the subsection “Param-
eter Influence”. We used a time-varying stepsize ρt = 1/t
at round t for optimal kernel updating, and tuned the step-
size of KOGD in a range 10[−5:+1:0] for all the algorithms.
For OKS, we ran the algorithm in a single pass over the data
with the smoothing parameter δ = 0.2 and the stepsize of
weight updating η =

√
2(1− δ) lnN/NT as in [Yang et

al., 2012]. For Projectron, we set the projection parameter
U = 1/4

√
(B + 1)/ log(B + 1) as in [Orabona et al., 2008].

6.1 Performance Evaluation

In this subsection, we evaluate the performances of OKS-SIL
compared with OKL-GD, OKS, and Proj-KA for online clas-
sification on benchmark datasets. The results are listed in
Table 2, including mistake rates (mean ± std) and running
time after T rounds. From the results, we draw some obser-
vations as follows. First, the experimental results show that
OKS-SIL is computationally more efficient than the other on-
line kernel selection algorithms for online classification task
when the number of rounds exceeds 1000. This is because the
computation of the instantaneous loss on hypothesis sketches
has a linear time complexity with respect to the budget per
round, in comparison with the quadratic time complexity af-
ter T rounds of OKL-GD and OKS. Besides, the projection
strategy of Projectron is in quadratic time complexity with
respect to the budget B, while RLD condition in our hy-
pothesis sketching approach is more efficient with a O(s3)
time complexity, where s � B. Second, OKS-SIL has
lower mistake rates than other algorithms on most datasets
for online classification, and preserves a comparable accu-
racy to the compared algorithms in terms of mistake rates on
w7a and cod-rna, which demonstrates the effectiveness of
OKS-SIL. The empirical performances of OKS-SIL conform
to the regret analysis in Theorem 1. The main difference be-
tween OKL-GD and OKS-SIL is that, OKL-GD only updates
the kernel parameter for the newly arrived kernel function,
while OKS-SIL updates the kernel parameters for both the
new kernel function and the previously chosen kernel func-
tions, which yields better performances.
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Algorithm
german svmguide3 spambase mushrooms

Mistake (%) Time (s) Mistake (%) Time (s) Mistake (%) Time (s) Mistake (%) Time (s)
OKS-SIL 29.610 ± 0.363 0.250 21.480 ± 0.624 0.170 28.209 ± 0.104 1.526 0.351 ± 0.420 1.785
OKL-GD 30.990 ± 0.899 0.217 23.821 ± 0.407 0.208 31.869 ± 0.145 5.567 3.957 ± 1.623 39.625
OKS 42.590 ± 1.049 0.253 29.879 ± 0.852 0.287 34.432 ± 0.282 3.965 7.749 ± 0.532 7.690
Proj-KA 38.280 ± 1.405 2.318 25.567 ± 0.829 3.307 30.596 ± 0.293 35.336 0.375 ± 0.415 175.815

Algorithm
a9a w7a ijcnn1 cod-rna

Mistake (%) Time (s) Mistake (%) Time (s) Mistake (%) Time (s) Mistake (%) Time (s)
OKS-SIL 23.753 ± 0.502 32.026 2.975 ± 0.012 72.826 9.574 ± 0.327 23.392 12.989 ± 0.201 89.190
OKL-GD 23.929 ± 0.436 319.956 2.973 ± 0.010 434.908 9.582 ± 0.322 110.356 13.558 ± 0.225 109.410
OKS 24.302 ± 0.512 983.808 7.199 ± 0.860 837.220 9.873 ± 0.412 519.114 12.927 ± 0.707 1786.890
Proj-KA 23.901 ± 0.471 321.434 5.430 ± 1.816 622.044 11.940 ± 1.540 212.476 15.151 ± 0.304 163.144

Table 2: The mistake rates (Mistake) and running time (Time) of OKL-GD, OKS, Proj-KA and our OKS-SIL after T rounds for online
classification task.

6.2 Parameter Influence
To analyze in more detail the behavior of OKS-SIL, we fur-
ther conduct experiments with a range of values of B, s and
ν on spambase. From the experimental results in Figure 1,
we have the following observations for OKS-SIL.

For the budget B ∈ {50, 100, 200, 300, 400} in Figure 1
(a)-(b), we observe that the mistake rate of OKS-SIL de-
creases gradually with the increase of the budget while the
runtime increases. But when the budget B > 50, the
varying B has little influence on the accuracy of OKS-
SIL, which demonstrates the effectiveness of our hypothe-
sis sketching approach in OKS-SIL. Figure 1 (c)-(d) show
the performances of OKS-SIL using different sampling size
s ∈ {1, 2, . . . , 6} in RLD condition. We can see that OKS-
SIL with larger sampling sizes has better empirical perfor-
mances in terms of the mistake rate, and the mistake rate of
OKS-SIL is no longer significantly reduced when the sam-
pling size is relatively large. For a larger s, more values of
kernel functions need to be computed for RLD condition,
leading to a higher running time cost. The RLD parame-
ter ν controls a trade-off between

√
ν and C(ν) in Ra in

the regret bound of Theorem 1. From the results in terms
of RLD parameter in Figure 1 (e)-(f), we can observe that
OKS-SIL using RLD parameters closed to 1 yields better per-
formances than that using other small RLD parameters, and
OKS-SIL has a similar efficiency under different RLD param-
eters. The reason is that larger RLD parameters in (1) ensure
that the kernel functions in the basis function vector are ap-
proximately orthogonal.

7 Conclusion
We have proposed a novel hypothesis sketching approach to
online kernel selection in continuous kernel space, which is
theoretically guaranteed and computationally efficient. Our
sketching approach enjoys the optimal regret bound for on-
line kernel selection, and has linear time and space complex-
ities with respect to the budget at each round. The theoretical
formulation and algorithmic implementation of the sketching
mechanism are also promising for sketching approaches to
online model selection and online learning.
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Figure 1: Average mistake rate and average runtime of OKS-SIL
using different budget B, sampling size s and RLD parameter ν of
RLD condition (1) on spambase.
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