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Abstract

Drug-drug interaction (DDI) prediction is a chal-
lenging problem in pharmacology and clinical ap-
plication, and effectively identifying potential D-
DIs during clinical trials is critical for patients and
society. Most of existing computational models
with AI techniques often concentrate on integrating
multiple data sources and combining popular em-
bedding methods together. Yet, researchers pay less
attention to the potential correlations between drug
and other entities such as targets and genes. More-
over, recent studies also adopted knowledge graph
(KG) for DDI prediction. Yet, this line of methods
learn node latent embedding directly, but they are
limited in obtaining the rich neighborhood infor-
mation of each entity in KG. To address the above
limitations, we propose an end-to-end framework,
called Knowledge Graph Neural Network (KGN-
N), to resolve the DDI prediction. Our frame-
work can effectively capture drug and its potential
neighborhoods by mining their associated relation-
s in KG. To extract both high-order structures and
semantic relations of the KG, we learn from the
neighborhoods for each entity in KG as their local
receptive, and then integrate neighborhood infor-
mation with bias from representation of the current
entity. This way, the receptive field can be natural-
ly extended to multiple hops away to model high-
order topological information and to obtain drugs
potential long-distance correlations. We have im-
plemented our method and conducted experiments
based on several widely-used datasets. Empirical
results show that KGNN outperforms the classic
and state-of-the-art models.

1 Introduction
Drug-drug interactions (DDIs) can often occur when a drug is
co-administered with another and multiple drugs, which will
result in many adverse drug reactions (ADRs) that may cause
injuries or deaths [Vilar et al., 2014]. Therefore, to alleviate

∗Corresponding author.

the impact of unexpected pharmacological effects, it is criti-
cal to effectively identify potential DDIs, which can minimize
unexpected ADRs and maximize synergistic benefits [Lin et
al., 2019] when treating a disease to some extent.

Most of existing DDI prediction methods often concentrate
on integrating multiple data sources to obtain drug features,
including similarity features [Vilar et al., 2012; Ma et al.,
2018; Ryu et al., 2018], adverse or side effects [Jin et al.,
2017; Zitnik et al., 2018] and multi-task learning [Chu et al.,
2019]. These methods are relied on the assumption — drugs
with similar representations will perform similar DDIs. In the
meanwhile, some computational approaches prefer to com-
bine with popular embedding methods [Quan et al., 2018;
Le et al., 2018; Quan et al., 2019b], which seek to learn drug
representation automatically, and then model DDI by specif-
ic operations such as matrix factorization, random walk, and
graph neural networks [Hamilton et al., 2017]. Although the
methods mentioned above have achieved strong performance,
a neglected deficiency is that they model DDI as an indepen-
dent data sample and do not take their related correlations
(e.g., drug-target pairs) into consideration.

On the other hand, owing to the ubiquity of knowledge
graph (KG), it has widely led to an influx of research on rela-
tion inference and recommendation [Wang et al., 2019], and
particularly, recent studies [Celebi et al., 2018; Karim et al.,
2019] have used KG for DDI prediction. They both apply
KG to machine learning models to extract drug features us-
ing various embedding methods. These methods learn node
latent embedding directly, but they are limited in obtaining
the rich neighborhood information of each entity in KG.

To address the aforementioned limitations of related cor-
relations and neighborhood information existed in KG, our
design objective is to automatically capture both high-order
structures and semantic relations in KG. Inspired by graph
neural networks [Hamilton et al., 2017; Quan et al., 2019a]
that try to learn from neighboring information, in this paper
we propose a novel end-to-end framework named Knowledge
Graph Neural Network (KGNN) for DDI prediction. In a nut-
shell, our framework consists of three major building block-
s. The first block is to extract DDIs as well as to construct
knowledge graph from collections of datasets. The second
block learns drug and its topological neighborhood represen-
tations from KG, by using graph neural networks to extrac-
t both high-order structures and semantic relations. The fi-
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nal block is to predict the potential DDIs after trained sam-
ples are sent to a classifier for binary classification. Different
from existing methods, our framework needs neither chem-
ical structure nor specialized drug representation, and so it
could be more easy-to-use. Additionally, the proposed frame-
work takes advantage of abundant information with struc-
tural relations of KG and uses a newly designed graph neural
network, which differentiates KGNN from the existing deep
learning models. Our contributions are summarized as fol-
lows:
• To the best of our knowledge, we are the first to pro-

pose knowledge graph neural network (KGNN), an end-
to-end framework that explores drugs’ topological struc-
tures in knowledge graph for potential drug-drug inter-
action prediction. By extending the receptive field of
each entity in KG, KGNN is able to capture high-order
relations between drug pairs.
• The KGNN framework has three distinct technical high-

lights. (i) KGNN exploits topological information of
each entity in KG that is beneficial for DDI prediction.
(ii) KGNN aggregates all topological neighborhood in-
formation from their local receptive to extract both high-
order structures and semantic relations. (iii) KGNN
adopts graph neural networks compatible with (i) and
(ii) to predict the potential DDIs.
• The experimental results on two widely used datasets il-

lustrate the superiority of KGNN over classic and state-
of-the-art DDI prediction models.

2 Related Work
Over the years, most of previous works are proposed to pre-
dict the potential DDIs by ether integrating multiple data
sources or combining the popular embedding methods. D-
ifferent from drug similarity obtained from multiple sources
[Vilar et al., 2014], a deep learning framework named Deep-
DDI [Ryu et al., 2018] is proposed to use molecular structures
of drug as inputs, and to predict additional DDI types. In the
same line of work, [Yue et al., 2019] integrates several graph
embedding methods for DDI task, and with the assistance of
knowledge graph, [Karim et al., 2019] models DDI as link
prediction. With comparison to the classic and graph embed-
ding methods, our proposed framework is able to automati-
cally extract drug features from the data, and requires neither
chemical structure nor specialized drug representation.

Recently, there has been an increasing interest in apply-
ing graph neural networks for DDI prediction. To effectively
aggregate the feature vectors of its neighbors, different aggre-
gation strategies lead to different variants of GNNs. Decagon
[Zitnik et al., 2018] applies a relational GNN for modeling
polypharmacy side effects. To extract DDIs from text, [Asada
et al., 2018] utilizes a graph convolutional network (GCN) to
encode the molecular structures. Moreover, attentive multi-
view graph auto-encoders [Ma et al., 2018] is integrated into
an coherent representation. And a co-attentional mechanism
[Deac et al., 2019] is proposed by using side-effect informa-
tion and the molecular structure of the drugs alone. More
recently, CASTER [Huang et al., 2019] develops a dictio-
nary learning framework for predicting DDIs given chemical

structures of drugs. Although these methods have achieved
strong performance, a neglected deficiency is that they model
DDI as an independent data sample and do not consider their
multiple related correlations in knowledge graph. The major
difference between our work and the literature is that we of-
fer a new perspective for DDI prediction with the assistance
of knowledge graph neural network.

Some works that employ knowledge graph (KG) [Wang
et al., 2019] are also related to our work. In general, KG
is inherently described as a heterogeneous network, and can
provide abundant information with structural relations among
multiple entities, as well as unstructured semantic relations
associated with each node. Different from traditional graphs
or networks with only a single relation, KGs normally con-
sist of multiple entities (e.g., drug, target and pathway) and
different types of relations that encode heterogeneous infor-
mation. Owing to its merits, KG has been applied to DDI
prediction [Celebi et al., 2018; Karim et al., 2019]. Existing
KG-based models often extract drug features using various
embedding methods, and learn node latent embedding direct-
ly. Thus, they are limited in obtaining the rich neighborhood
information of each entity in KG. Compared to this line of
methods, our model takes advantage of abundant information
with structural relations of KG, and uses a newly designed
graph neural network, which differentiates it from the exist-
ing KG-based models.

3 The Proposed KGNN
In this section, we first formulate the DDI prediction problem
(Section 3.1). Then we provide an overview of the proposed
KGNN framework (Section 3.2). After that, we introduce
the input of the proposed framework and the KGNN layer,
respectively (Section 3.3 and 3.4). Finally, we discuss the
DDI prediction with KGNN (Section 3.5).

3.1 Problem Formulation
We formulate the knowledge graph-based DDI prediction
problem from two aspects as follows.
DDI matrix. In a typical DDI scenario, we consider a set
Nd of drugs, and define the drug-drug interaction matrix Y ∈
(0, 1)|Nd|×|Nd|, where |Nd| denotes the number of drugs. In
the matrix, for each entry yi,j = 1 (i, j ∈ Nd, j 6= i), if
its value is 1, then it means that drug j interacts with drug
i. Note that when yi,j = 0, it does not necessarily mean no-
interaction between drug pair (i, j) in KG, as it may be the
potential interaction while it has not been found before.
Knowledge graph. In addition to the interactions between
drug pairs, we consider neighborhood topologies for drug re-
lated entities (e.g., targets), in the form of knowledge graph.
Formally, we denote a KG by G = (Ne, Nr), which is com-
prised of entity-relation-entity triples, whereNe (resp.,Nr) is
the set of entities (resp., relations). For any knowledge graph
triple Ti = (hi, ri, ti), where hi, ti ∈ Ne and ri ∈ Nr, it de-
scribes a relationship of type ri between entity hi and ti (the
head and tail of a triple, respectively).

Given the DDI matrix Y and the knowledge graph G, we
aim to predict whether drug i(i ∈ Nd) has potential interac-
tion with drug j(j ∈ Nd, j 6= i), while such an interaction
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Figure 1: The overview of KGNN.

has not been discovered before. To achieve it, our main task
is to learn a prediction function ŷi,j = Γ(i, j|β, Y,G), where
ŷi,j denotes the probability that drug j will interact with drug
i, and β denotes the model parameters of function Γ.

3.2 Overview
Figure 1 shows the overview of KGNN. It takes the parsed
DDI matrix and knowledge graph obtained from preprocess-
ing (i.e., DDI extraction and KG construction) of dataset as
the input. It outputs the interaction value for the drug-drug
pair. Remind that the central idea of KGNN is to consid-
er both high-order structure and semantic relation, by using
graph neural network to encode the drug and its topologi-
cal neighborhood information to a distributed representation.
Therefore, we design KGNN as a three-step framework for
DDI prediction:

1. Extracting DDI and constructing the KG from the col-
lection of datasets;

2. Encoding the drug features and its neighborhood struc-
tures (i.e., entities and relations) between drug-drug
pairs in KG;

3. Predicting the interaction value based on the encodings
learned from the previous step.

Generally, in the first step we collect, from the dataset,
to extract the DDI data sources that contains the drug-drug
pairs, and simultaneously to construct the corresponding KG.
In the second step we extract features of drug and its neigh-
borhood structures of related entities using KGNN, from the
DDI matrix and the constructed knowledge graph. To further
predict the interaction value between drug-drug pairs, in the
third step KGNN output the latent representations of drugs
and their neighborhood topologies between drug pairs. Then
we compute the score between them, and output a real value
interaction. Next, we present the detail of our model.

3.3 DDI Extraction and KG Construction
The first step of KGNN is divided into two parts, including
DDI extraction and KG construction.

DDI extraction. The extraction phase is trivial. In brief,
one can first download the data from the public drug database
(e.g., DrugBank), and then parse the DDI information from

the provided xml file, and finally compile an edge list of drug
identifiers combinations.

KG construction. We recollect the latest raw data (e.g.,
DrugBank dataset) from the corresponding portals and con-
vert them into RDF graph by using Bio2RDF tool, which in-
terlinks data that contains multiple types of biological enti-
ties (e.g., drug, protein, and disease). Then, the RDF graph
is uploaded to a RDF triplestore. After that, the federated
SPARQL queries are executed based on the billion triples
benchmark to extract selected triples. Therefore, the extract-
ed triples in the form of (subject, predicate, object) are con-
structed in KG, which shows that the specified relation exists
between the subject and the object. Consequently, we can ob-
tain the triples (entity, relation, entity) from the preprocessed
RDF file.

Note that, we here create two data sources from DrugBank
dataset: (i) the parsed DDI matrix that contains the drug-drug
pairs; and (ii) the constructed knowledge graph.

3.4 KGNN Layer
The KGNN layer has guided the development of our method
for tackling the topological neighborhood representation
problem. Conceptually inspired by spatial-based GNN
method [Hamilton et al., 2017], our work here can be regard-
ed as a spatial-based method for a special type of graphs (i.e.,
knowledge graph). The central idea of the proposed KGNN
is to effectively capture high-order neighborhood topologies
of drugs between drug pairs in KG. To generate the embed-
ding for a drug’s neighborhood topologies between drug-drug
pairs, we apply similar convolutions that aggregate and inte-
grate topological neighborhood information (i.e., entities and
relations) from drugs’ local receptive field. Such an operation
can learn how to capture the local topological structures, and
meanwhile characterize both the semantic information of KG
and relations between drugs and related entities.

To understand, consider a candidate pair (i, j) of drug i
and j, where i, j ∈ Nd and j 6= i, we denote the set of
entities connecting directly to a drug by Nneigh(e), where
Nneigh(e) ⊂ Ne. We compute the score between a drug i and
a relation r by a function g as follows: g(i, r) = Ci

r, where i
(i ∈ Rd) and r (r ∈ Rd) are the drug and relation representa-
tions, respectively (the superscript d denotes the dimension of
representation), and Ci

r performs the correlation of a relation
r to a drug i. To better represent the topological neighborhood
structure of a drug i’s entities e (e ∈ Ne, é ∈ Nneigh(e)), we
also compute the linear combination of each entity e’s neigh-
borhood: eiNneigh(e) = Σé∈Nneigh(e)C̃

i
re,é

e, where C̃i
re,é

de-
notes the normalized drug-relation score, and e (e ∈ Rd) is
the representation of entity e.

Local receptive. Inspired by GNN approach [Hamilton et
al., 2017] that simply examines H-hop/order graph neigh-
borhoods, our solution also definesH-hop neighborhoods (or
equally the depth of receptive field). Note that, besides the
immediate neighbors, we also extend KGNN to 2-hop/layer
to extract both high-order structures and semantic relations.

Neighborhood sampling. In a real-world knowledge
graph, the size of Nneigh(e) may vary significantly over all
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Figure 2: A two-layer receptive field (different entities with different
color) of the given drug (red) in a KG.

entities. To consider efficiency and the fixed computation pat-
tern of each batch data, we uniformly sample a fixed size set
S(e) instead of using its full neighbors Nneigh(e). Then, we
can obtain the neighborhood representation eiS(e) of entity e.
Technically, S(e) may contain duplicates if |Nneigh(e)| < k,
where k denotes the number of neighbor sampling size of
each depth. Note that, in our paper S(e) is also called the
receptive field of entity in a single layer, as the final repre-
sentation êi is sensitive to these locations. Figure 2 gives an
example of a 2-layer receptive field, we here set the neighbor
sampling size k=2 in each layer.

Aggregation. The final step in a KGNN layer is to aggre-
gate the entity representation e and its neighborhood rep-
resentation eiS(e) into a single vector. We implement sim-
ilar multiple types of aggregations [Wang et al., 2019] as
aggre in KGNN as follows: aggresum = σ(W · (e +
eiS(e)) + b), aggreconcat = σ(W · concat(e, eiS(e)) + b) and
aggreneighbor = σ(W · eiS(e) + b). Aggregation is a key step
in KGNN, as the representation of a drug is bound up with its
topological neighborhoods by aggregation. We will evaluate
these aggregations in the ablation study (Section 4.3).

Algorithm 1 shows the pseudo-codes of applying KGNN
for topological neighborhood representation between given
drug pairs. H represents the depth of receptive field or the
number of aggregation iterations. Specifically, for a given
drug-drug pair (i, j) (Line 2), we first calculate the receptive
field RF of entity e between drug-entity pair (i, e) (also
for (j, e)) in an iterative manner (Line 3), and we consider
RF (e) = RF (e) ∪ S(e) in each depth. Meanwhile, we cal-
culate the entity representation ei and ej of drug i and j at the
current depth, respectively (Line 4). Then the aggregation is
repeated h (h ∈ [1, H]) times (Line 5): in iteration h for drug
i, we calculate the neighborhood representation eiS(e) of each
entity e ∈ RF [h] (Line 7), then aggregate it with its own rep-
resentation ei[h − 1] to obtain the one to be used at the next
iteration (Line 8). The final h-order entity representation is
denoted as ei (Line 11), which is fed into a function τ togeth-
er with drug representation i and j for calculating the score
of drug and entities (Line 12), and finally obtain the predicted
probability of ŷi,j .

3.5 Drug-drug Interaction Prediction
In this study, we view DDI prediction as a binary classifica-
tion task by predicting the interaction values. With the rep-
resentation learned from the previous sections, we can inte-

Algorithm 1 KGNN algorithm
Input: DDI matrix Y; knowledge graph G(Ne, Nr); neigh-
borhood field S(e)(e ∈ Ne); hyper-parameter: H , k, g( ),
aggre( ), τ ( ), f ( )
Output: Γ(i, j|β, Y,G)

1: while KGNN not converge do
2: for (i, j) ∈ Y do
3: {RF [h]}Hh=0 ← Receptive-Field(e);
4: ei[0]← e, ∀e ∈ RF [0];
5: for h=1, ..., H do
6: for e ∈ RF [h] do
7: eiS(e)[h− 1]←

∑
é∈S(e) C̃

i
re,é

éi[h− 1];
8: ei[h]← aggre(eiS(e)[h− 1], ei[h− 1]);
9: end for

10: end for
11: êi ← ei[h];
12: Calculate the score ŷi = τ(i, êi), ŷj = τ(j, êj);
13: Calculate predicted probability ŷi,j = f(ŷi, ŷj);
14: Update parameters β;
15: end for
16: end while
17: return Γ

grate all the information from drugs and topological neigh-
borhood to predict the interaction value between drug-drug
pairs. In brief, we concatenate all the representations and
feed them to output the interaction value. More precisely,
for the KGNN layer, we use multiple aggregation methods to
update the neighborhood structures of drugs in KG consid-
ering their topology. Besides, we use Rectified Linear Unit
(ReLU) as the activation function, which is widely adopted
in deep learning research. Given a set of drug-drug pairs and
the ground-truth interaction values in the training dataset, we
can use the binary cross-entropy as the loss function: Loss =∑

(i,j)∈Y (i,j∈Nd,j 6=i)−yi,j logŷi,j − (1 − yi,j)log(1 − ŷi,j),
where ŷi,j is the predicted value, yi,j is the ground-truth val-
ue, and Y represents the set of drug-drug pairs.

4 Experiment
4.1 Datasets and Settings
We evaluate our proposed KGNN1 by using two datasets. (1)
DrugBank: we parse the verified DDIs of the provided pro-
file from DrugBank (V5.1.4) and compile an edge list of drug
identifier combinations, which obtains 2,578 approved small
molecule drugs and 612,388 unique approved DDIs spanning
13,339 drugs; (2) KEGG-drug: we parse the sources from
KEGG and map it to DrugBank identifiers (IDs), which re-
sults in 1,925 approved drugs and 56,983 approved interac-
tions spanning 11,147 drugs and 324,183 interactions respec-
tively.

Different from the preprocessing of [Karim et al., 2019]
that it integrates multiple datasets into a unified KG, which
will result in the loss of mutually exclusive information.
Specifically, we collect and construct the KG for each dataset

1https://github.com/xzenglab/KGNN
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DrugBank KEGG-drug
Drugs 2, 578 1,925
Interactions 612,388 56,983
Entities 2,129,712 129,910
Relation Types 72 167
KG Triples 7,852,852 362,870

Table 1: The statistic of two widely used datasets.

to keep its original integrity. Meanwhile, the KG should
not contain any explicit information about drug-drug inter-
actions, we exclude the information in the form of url: ddi-
interactor-in and url:Drug-Drug-Interaction from DrugBank
and KEGG-drug datasets, respectively. The basic statistics of
the used datasets are summarized in Table 1.

Baselines. We compare KGNN against a variety of base-
lines which can be categorized as follow.
(1) Matrix Factorization: We choose two most represen-
tative MF-based methods, Laplacian [Belkin and Niyogi,
2003] and GraRep [Cao et al., 2015]. They aim to factorize
the matrix of input data into lower dimensional matrices.
(2) Random Walk: RW-based methods learn node rep-
resentations by generating node sequences and by using
different random walks strategies in graphs. We choose
two representative RW-based methods, namely DeepWalk
[Perozzi et al., 2014] and Struc2Vec [Ribeiro et al., 2017].
(3) Neural Network: We choose three most representative
NN-based methods including LINE [Tang et al., 2015],
SDNE [Wang et al., 2016] and GAE [Kipf and Welling,
2016]. They adopt different neural architectures and different
kinds of graph information as input to learn node embedding.
(4) DeepDDI: [Ryu et al., 2018] develops a deep learning-
based method that reduces the dimension of drug features,
based on a principal component analysis.
(5) KG-ddi: [Karim et al., 2019] is a KG-based method for
DDI prediction, by encompassing over 12,000 drug features
from integrated knowledge graph of multiple data sources,
and it adopts a CNN-LSTM model using the embeddings.

In the experiment, for the comparison with graph embed-
ding methods (e.g., MF/RW/NN-based), we re-implement
BioNEV [Yue et al., 2019] on our machine, and we gener-
ate the embedding of dimension 100 as drug feature for each
dataset. For the comparison with DeepDDI, we construc-
t the DNN architecture and modify the output of the origi-
nal implementation from multi-label to a binary class. For
KGE-ddi, we re-implement the RDF2Vec to generate 300-
dimension embeddings of each dataset as drug features and
load pre-trained model for prediction. The other settings are
as the same as original work.

Metrics. We denote yi,j , ŷi,j as the ground truth, and pre-
dicted values for drug-drug pairs dataset, respectively. We
evaluate the prediction performance using several metrics, in-
cluding ACC, AUPR, AUC-ROC, F1 scores.

Experimental settings. We use Bio2RDF-based method to
construct the knowledge graph for each dataset. For both
datasets, we randomly divide all approved DDIs as positive
samples into training, validation and testing sets in a 8/1/1 ra-

Parameter Setting Parameter Setting
Batch size 4096 Dimension 32
Learning rate 1e-2 Number of depth 2
L2 weight 1e-7 Neighborhood size 16

Table 2: The hyper-parameter settings for the two datasets.

tio, and randomly sample the complement set of positive sam-
ples as negative samples, with an equal number of positive
and negative samples in all phase. We adopt Adam algorithm
to optimize all trainable parameters through a random search
and 5-fold cross-validation tests. Meanwhile, we set the num-
ber of epoch 50 for training, and other hyper-parameter set-
tings are provided in Table 2, which are optimized by AUC-
ROC on a validation set.

4.2 Results and Analysis
In this section, we compare the performance of the pro-
posed method with the baselines. Table 3 reports the aver-
age ACC, AUPR, AUC-ROC, and F1 scores across 5 runs
on DrugBank and KEGG-drug datasets, respectively. From
this table, we found that KGNN significantly outperforms the
baselines across the two datasets. More specifically, KGNN
achieved at least 2.76% on ACC, 4.78% on AUPR, 2.13% on
AUC-ROC and 2.34% on F1 higher performance than other
methods. For example, on DrugBank dataset, KGNNconcat

achieved a ACC score of 0.9561 with 11.18% absolute gain
compared to GreRep (the second best method). This is be-
cause KGNN explores both drug features and related entities
in knowledge graph, while the others like Laplacian, Deep-
Walk and struc2vec only learn from similar drug features.
Compared with NN-based methods, which leverages graph
features with similar connections for DDI prediction, KGN-
N also achieved superior results (e.g., 19.62% improvement
of AUPR on KEGG-drug dataset). This is due to the fac-
t that the drug embeddings in KGNN can better capture the
semantic similarity of relations than the graph embeddings
used in NN-based methods. Moreover, with comparison to
DeepDDI and KG-ddi, KGNN achieved stable performances
across datasets and our three variants all achieved similar re-
sults. This is a very encouraging result. The reason could
be that (i) compared to DeepDDI, our method jointly consid-
ers topological neighborhood structures and related entities
in knowledge graph, which benefits to the performance; (ii)
compared to KG-ddi, our model incorporates GNN model to
obtain the topological neighborhood representations of drug
and related entities, which can obtain more high-order struc-
tures and semantic relations than embedding-based methods
for modeling drugs between drug pairs. Overall, it is essen-
tially a non-trivial achievement in terms of DDI prediction.

4.3 Ablation Study
As mentioned before, existing models for DDI prediction
have leveraged multiple data sources to learn the representa-
tion for drug, while they often ignore the neighborhood infor-
mation and related correlations in knowledge graph. There-
by, this work considers topological neighborhood structures
to learn the interaction between drug pairs. More precisely,
the core idea of KGNN is to fully leverage both high-order
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Metrics
Methods MF-based RW-based NN-based DL-based KG-based KGNNx

Laplacian GreRep DeepWalk struc2vec LINE SDNE GAE DeepDDI KG-ddi neighbor sum concat

ACC 0.7183 0.8443 0.8349 0.7882 0.8280 0.8303 0.7491 0.8123 0.7867 0.9354 0.9538 0.9561
0.8029 0.8718 0.8547 0.8436 0.8655 0.8674 0.7586 0.8229 0.8154 0.8846 0.8882 0.8950

AUPR 0.7533 0.9115 0.9070 0.8672 0.8915 0.8782 0.7403 0.9193 0.9801 0.9890 0.9892
0.8261 0.9055 0.9011 0.8861 0.8968 0.8967 0.7571 0.8442 0.9207 0.9247 0.9533

AUC-ROC 0.7966 0.9230 0.9181 0.8735 0.9092 0.9029 0.8085 0.9261 0.7867 0.9824 0.9902 0.9912
0.8736 0.9305 0.9208 0.9086 0.9264 0.9249 0.8334 0.8994 0.8154 0.9418 0.9453 0.9518

F1 0.7270 0.8461 0.8357 0.7962 0.8318 0.8373 0.7889 0.8466 0.7843 0.9366 0.9544 0.9566
0.8079 0.8748 0.8570 0.8476 0.8695 0.8704 0.7888 0.7966 0.8152 0.8869 0.8909 0.8982

Table 3: Performance of KGNN against comparative approaches. First/second row of each method corresponds to results reported on
DrugBank and KEGG-drug dataset respectively. Note that the standard deviation scores is omitted due to the space limitation.

structures and semantic relations from knowledge graph, by
using multiple aggregation operations, to better learn the drug
and entity representations. To study the effectiveness of the
central idea, we implemented several variants of our mod-
el, named KGNNx, where the subscript x attached denotes
different aggregation operations (recall Section 3.4). The
last three columns in Table 3 show the comparison results.
It can be seen that KGNNconcat outperforms other variants
in all metrics. Moreover, as KGNNneighbor only considers
neighborhood information of knowledge graph, it performs
worse than KGNNconcat and KGNNsum in both dataset. This
shows that combining topological neighborhood representa-
tions with semantic relations between drug and related enti-
ties is benefit to improving the DDI prediction performance.

4.4 Case Study
In this section, we examine the influence of several key hyper-
parameters on the performance of proposed KGNN. We fixed
other parameters when studying one of parameters. Other
settings are kept the same as that in Section 4.1. Figure 3
reports the average and standard deviation of ACC, AUPR,
AUC-ROC, and F1 scores on the KEGG-drug dataset.

Impact of neighborhood size. Firstly, we vary the neigh-
borhood size k and observe that KGNN achieves the best per-
formance when k = 16. This is because a too small k does not
have enough capacity to incorporate neighborhood informa-
tion, while a too large value is prone to be misled by noises.

Impact of depth of receptive field. Secondly, we investi-
gate the influence of depth of receptive field H by varying
from 1 to 6 (Out of system memory when H is equal to 7).
We observe that the performance of our model in all metrics
decreases starting from H = 3, as a larger H brings massive
noises to the model. This is also in accordance with our in-
tuition, since a long relation chain makes little sense when
inferring drug-entity similarities. This implies that an H of 1
or 2 is often enough for real cases, according to the experi-
ment results.

Impact of dimension of embedding. Lastly, we examine
the influence of dimension of embedding d by varying from
8 to 512. The result is rather intuitive: it can boost the perfor-
mance with a proper d that can encode enough information of
drugs and entities from KG, while a too large value adversely
suffers from over-fitting.

Figure 3: Results of KGNN with varying size of k, H , and d.

5 Conclusion
In this paper, we propose a novel model, called KGNN
(knowledge graph neural network), for drug-drug interaction
prediction. KGNN extends spatial-based GNN approaches to
the knowledge graph by multiple aggregating neighborhood
information selectively, which is able to learn both topologi-
cal structure information and semantic relation of knowledge
graph, as well as the neighborhood of drug and related enti-
ties. We implement the proposed method and conduct experi-
mental comparisons on two widely used datasets. The exper-
imental results show that KGNN outperforms the classic and
state-of-the-art DDI prediction models.
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