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Abstract

Structured learning algorithms usually involve an
inference phase that selects the best global output
variables assignments based on the local scores of
all possible assignments. We extend deep neural
networks with structured learning to combine the
power of learning representations and leveraging
the use of domain knowledge in the form of out-
put constraints during training. Introducing a non-
differentiable inference module to gradient-based
training is a critical challenge. Compared to us-
ing conventional loss functions that penalize every
local error independently, we propose an inference-
masked loss that takes into account the effect of in-
ference and does not penalize the local errors that
can be corrected by the inference. We empirically
show the inference-masked loss combined with the
negative log-likelihood loss improves the perfor-
mance on different tasks, namely entity relation
recognition on CoNLL04 and ACE2005 corpora,
and spatial role labeling on CLEF 2017 mSpRL
dataset. We show the proposed approach helps to
achieve better generalizability, particularly in the
low-data regime.

1 Introduction

Structured learning considers learning to predict output vari-
ables that are interdependent and need to obey some structural
constraints. Structured learning approaches involve an infer-
ence phase after computing local predictions along with their
probabilities/scores which can be generally formulated by a
Maximum A Posteriori (MAP) inference problem. On one
hand, structured learning are powerful in its flexibility to in-
corporate domain knowledge and requirement of fewer data.
On the other hand, deep neural networks have achieved sig-
nificant results by using large number of parameters and ex-
amples. Exploiting structured output in deep neural networks
can help to combine the power of learning representations and
leveraging the use of output structure during training. It will
enable deep neural networks in imposing explicit structural
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constraints on their predictions by using domain knowledge
on top of the data.

Current neural network architectures are able to repre-
sent structures such as sequences [Cho e al., 2014] and
graphs [Wu et al., 2019]. However, the structure is mostly
considered in the input side based on processing real-valued
tensors and there is a lack of systematic way to predict dis-
crete structured outputs. Neural networks are data-hungry.
If we rely on the model to capture the global structure with-
out explicitly modeling them, the need to the large data is
even more critical. While providing explicit structural infor-
mation to the model can reduce the need to large parameters
and examples of deep neural networks, introducing the non-
differentiable inference to gradient-based training is still a
critical challenge. Deep neural networks are trained by back-
propagation algorithms that calculate the gradient of the pa-
rameters. In most cases, the inference procedures are non-
differentiable and the gradients can not be calculated based
on the model output and the loss function.

In the previous studies on combining inference with learn-
ing of neural networks, we can observe at least two differ-
ent types of techniques. One tries to learn local models
to generate local predictions and rely on the inference for
a global result, for example, structured perceptron [Collins,
2002]. However, the studies are mostly limited to linear
models. More studies focus on incorporating the constraints
from output structure and domain knowledge in the architec-
ture of neural networks [Li and Srikumar, 2019] or learn-
ing algorithms [Chen er al., 2015; Nandwani et al., 2019;
Liang et al., 2019] so that the local neural networks learn to
generate outputs respecting all the constraints.

In this work, we present a new loss function to extend deep
neural network to use inference and exploit the structure of
the output. Our proposed Inference-Masked Loss (IML) al-
lows neural networks to keep the local predictions, even if
they are false, as much as the inference can correct them.
IML belongs to the first class of techniques mentioned above
because instead of forcing the local output to respect the con-
straints, it trains the deep neural networks to rely on the in-
ference. Compared to structured perceptron [Collins, 2002],
IML integrates the inference result with the loss in a fully
differentiable way and makes it compatible with arbitrary un-
derlying deep neural networks. By relying on inference, the
network needs less number of examples compared to train-
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ing without information about the output structure. There are
other recent works involving deep neural networks learning
with inference. For example, Nandwani ef al. formulates the
learning with inference as a primal-dual problem, solves it by
alternating optimization, and addresses the problem by train-
ing the neural networks to respect the constraints [Nandwani
et al., 2019]. However, to produce the structured output and
respect the constraints, it requires the neural networks to use
global information even in producing a part of the output. In
contrast, IML allows the neural networks to make local pre-
dictions without the constraints, and rely on the inference to
correct the false predictions. It helps to decompose the depen-
dencies of the output variables and allows the (sub-) neural
networks to focus on training for parts of the output locally.
The contribution of this paper is as follows:

e We propose the inference-masked loss (IML) that uti-
lizes the global inference not only for prediction but
also to train the parameters for structured output learning
with deep neural networks.

e We evaluate the proposed method with two different
tasks on three datasets under various settings to show the
effectiveness of the proposed approach, especially with
low training data.

2 Related Work

In structured learning, the inference is usually described by
a Maximum A Posteriori (MAP) problem and formulated by
a log-linear model, which takes the form of a combination
of local feature functions or probabilistic factors [Sutton and
McCallum, 2006].

The structured perceptron was proposed to extend the per-
ceptron with structured output [Collins, 2002]. The algo-
rithm updates the model parameters based on the difference
between inference assignments and the ground-truth. A re-
cent practice [Weiss ef al., 2015] has shown that the algo-
rithm works with deep features. The structured perceptron
was applied on top of a deep neural network that generates
the features. However, the structured perceptron was trained
separately from the deep neural network. Our proposed IML
shares the same intuition of structured perceptron, that is,
training based on the inference error. Both algorithms are
tolerant to the local inconsistencies where there is no error in
the inference results. However, the structured perceptron is
limited to linear models. IML is a differentiable loss function
to train deep neural networks. It can be incorporated with
all sophisticated deep neural network architectures and deep
learning regularizers.

The recent research regarding training neural networks
concerning structural constraints are mainly imposing the
constraints either by modifying the architectures, loss func-
tions, or the formulation of the optimization.

Shen et al. worked on designing specific architectures and
proposed a cumulative softmax to enforce ordering relation
among a sequence of neurons. Li and Srikumar proposed a
new approach to augment the neural networks with first-order
logic by modifying the architecture by applying soft logic on
the named neurons inside an existing architecture.
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For reformulating the loss function, there is a collection of
classical structured loss [Edunov et al., 2018] used in com-
bination with deep features. “SoftmaxMargin” loss [Gim-
pel and Smith, 2010] augments negative log-likelihood with
a cost that penalizes high cost outputs proportional to their
cost, which is similar to the “Margin Softmax” loss [Yang et
al., 2019; Tharco er al., 2019]. Researchers also investigated
the approaches to incorporate soft and hard constraints with
the loss function. Hard constraints are applied by smooth-
ing out the loss function in [Pathak ef al., 2015] and by using
Krylov subspace methods in [Marquez Neila et al., 2017].
Also, Muralidhar ef al. proposed to use an added term to
the loss function imposing soft constraints. In this approach,
hard constraints can be achieved by using a very large cost
coefficient.

Training deep neural networks with inference can be for-
mulated by a min-max optimization problem. The con-
strained maximization, which can be converted to uncon-
strained form with the Lagrangian multiplier, plays the role
of the inference. The minimization updates the weights in
the neural networks. To address the problem, Nandwani et
al. took the dual form of the problems and solved the two
optimizations alternatively. Chen ef al. proposed to use a sin-
gle step of message passing to estimate the inference and to
train the neural networks with the estimated inference. Con-
straint guided semi-supervised learning algorithm was pro-
posed to generate pseudo-labeled data by the constraints to
train the parameters in a model with a supervised learning
algorithm [Chang et al., 2012]. Taking a different type of
approach, Maes et al. formalized the problem of structured
prediction as a Reinforcement Learning task and proposed to
solve it by learning the policy.

Instead of training neural networks to respect the con-
straints, our proposed IML allows neural networks to keep
local predictions, even if they are false, as long as the global
inference can correct them. The model will count on the in-
ference for a global output and tends to learn better decom-
position of the task that helps to improve the generalizability
of the model.

As mentioned before, MAP inference is usually an essen-
tial component of structured learning models. Inference can
be performed with various approaches including probabilistic
models, classical search algorithms, dynamic programming,
or constrained optimization techniques. Some of recent prac-
tices integrate predictions of deep neural networks with con-
ditional random fields (CRF) [Ma and Hovy, 2016] based on
a chain structure with Viterbi algorithm. Besides, the beam-
search algorithm is commonly used to improve the search ef-
ficiency of the inference. However, the efficiency of these
approaches heavily depends on the independence structure of
the underlying probabilistic model in a certain application.
On a different thread, using integer linear programming (ILP)
approach, one can represent the dependencies with linear con-
straints that can be solved by efficient off-the-shelf solvers'.
Roth and Yih propose to model CRF inference as ILP for effi-
cient solving and imposing global constraints over the output

lSolving ILP is known to be NP-Hard. However, the derived
ILPs are usually very sparse and can be solved in a satisfactory time.
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space beyond sequential structures [Roth and Yih, 2005].

One essential but orthogonal aspect to inference problem
is the representation of the structure. Researchers have in-
vestigated approaches to represent domain knowledge in the
form of first-order expressions and using inference over lo-
cally trained classifiers [Rizzolo and Roth, 2007], which was
extended to the approaches that support joint training and in-
ference [Chang er al., 2012; Kordjamshidi et al., 2015]. On-
tologies were also investigated to generate constraints to im-
prove local outputs of deep neural networks by global infer-
ence [Guo et al., 2019]. We follow these approaches to rep-
resent the output structure and domain knowledge by ontolo-
gies and logical expressions, which are converted to linear
constraints in the inference problem.

3 Inference-Masked Loss

3.1 Model Formulation

We assume training a deep neural network given a set of
examples {(X,Y)}, that is, pairs of inputs X and outputs
Y. Both inputs and outputs can have arbitrary structures.
We assume the structure of the output variables can be ex-
pressed with a set of linear constraints among them, denoted
by C (Y') < 0. The constraints can be represented with a set
of inequalities without loss of generality [Nandwani et al.,
2019]. These constraints originate from our knowledge about
the domain and are expressed using logical expressions or in
ontologies that are converted to linear constraints —this is de-
tailed in Section 3.4. In this study, we focus on the case where
all parts of the output structure are discrete values and can be
associated with a collection of binary predicates ¢ € Q where
Q is the set of all possible predicates. Each component Y; of
the structured output Y is a binary random variable and indi-
cates whether ¢ is true or not.

We are interested in the joint probability distribution of
structured output variables y given input X, P (y|X). The
inference is finding the best assignment of y that yields the
maximum joint probability. Our framework and loss function
are agnostic to the inference method. In this study, we exploit
ILP, which solves the problems with constraints that are not
satisfying first order Markov property, efficiently [Roth and
Yih, 2005]. The joint probability distribution is estimated by
a normalized exponential function with logarithm estimated
by the total scoring function g (y, X; 6) that log P (y|X)
g (y, X; 0). Given the linear constraints, the inference can be
represented as an ILP problem as follows.

y* = argmaxg (y, X;60) subjectto C(y)<0. (1)
y

To train such a model, first, we make local predictions for
each component of y. In other words, for each predicate ¢ €
Q, we make a local prediction f, (X;6) with deep neural
networks, where f, is a local network and 6 is the weights
and biases. Following the log-linear model formulation, we
calculate a local scoring function g, = log f; (X;0) and a
corresponding negative term g, = log (1 — f, (X;6)). We
calculate the total scoring function for the output y by a linear
model,

9 W, X:0) = gg¥q + 9-q¥-q- )
€Q
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IML
‘Yq fq NLL yi=0 yr=1
TP| 1 1 |—log fq (X;0) —log fq (X;0) 0~
IN| 0 | |—log (1l — fq (X;0)) 0~ —log (1 — fq (X;0))
FP| 0 1 |—log (1 — fq(X;0)) ot —log (1 — fq (X;0))

FN| 1 | |-log fq (X;0) —log fq (X;6) ot

Notations:

1 a probability close to 1; |: a probability close to 0.

07 : a voided penalty in IML when the local prediction is correct;

07 a voided penalty in IML when the false prediction is corrected by the inference.

Table 1: Penalty term of NLL and IML regarding one predicate q.

The inference problem in (1) can be solved efficiently by off-
the-shelf solvers?.

3.2 The Loss Function

The commonly-used negative log-likelihood (NLL) loss
function is given by

LNLL = D —Yylog fy (X30)—(1 - Y,)log (1 — f, (X;0)).

q€eQ
3)
In fact, the ground-truth Y, and the term (1 — Y, ) serves as a
selective mask to select penalizing the parameters of negative
log-likelihood — log f, (X;6) or —log (1 — f, (X;6)).
Inspired by the idea mentioned above, we introduce the
IML. For each predicate g, if the associated component in the
global inference y; is correct according to the ground-truth
Y,, IML will nullify the corresponding terms by the mask.
The resulting IML is as follows,

Loy = Y — (1—y;) Yylog £, (X3 0)
q€Q “4)

=Yy (1 =Yy)log (1 = [, (X;6)).

It can be observed that both masks (1—y;)Y; and y; (1 —Y,)
will be zero if y; = Y;. When y; # Y, the masks will
become Y, and (1 —Y) as in the NLL that, consequently,
selects either the —log f, (X;0) or —log (1 — f, (X;6)) to
be penalized according to the ground-truth.

Table 1 shows the term that is added to the total loss regard-
ing a predicate ¢ based on NLL and IML, respectively. The
first column denotes the True/False Positive/Negative nota-
tions regarding the local prediction. The 7 in the third column
indicates a probability close to 1 while a | indicates that close
to 0.

In the NLL, the term is selected by the ground-truth Y.
Moreover, the magnitude is determined by how correct (or
incorrect) the local prediction f, (X; ) is. As we introduced
the inference to IML, the conditions become different. 01
and 0~ are the cases that the global inference gives the cor-
rect result (H; = Y;), while the others are for the cases when
the inference is wrong. (FN, y; = 0) and (FP, y; = 1) are
the criminals that we want to penalize. The 0T are the false
local predictions that can be corrected by inference. There-
fore, we do not need to penalize them. The (TP, y;; = 0) and
(TN, y; = 1) are innocent cases because they were correct
locally and inference changed them to be wrong. However,

>We solve the ILP problems by Gurobi https://www.gurobi.com
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we argue that if they get a higher local score, they should be
able to help in correcting other false predictions. The 0~ are
not problematic because they are correct, and they support the
correct inference. No update needs to be applied in this case.

3.3 Combination

Training solely with IML in (4) could lead to “lazy” update
and is more likely to be trapped in a local minimum compared
to traditional loss because IML would ignore many of the lo-
cal errors. The effect is two-fold. On one hand, with IML,
the model receives fewer updates, which leads to a slower
convergence. On the other hand, using IML would miss the
opportunity to update a weak local model, which may cause
trouble at testing time. We combine NLL and IML to enforce
accurate local prediction.

LIML (0
= ACNLL + (1= A LvmL

=Y (1 (1N y) Yylog f, (X;:6)
q€Q

= (A A =N yg) (1 =Yy log (1 - f4 (X30)),

)
where ) is weighting the trade-off between NLL and IML,
which is a hyper-parameter for the proposed loss. A is also
interpreted as the ratio of penalty to apply when the inference
can resolve the errors on the local prediction and correct them
in the global inference. A times the corresponding NLL loss
term will be penalized. Otherwise, if there are still errors
according to the ground-truth, the penalty term is the same
as NLL. This leads to having a better local prediction even
if the inference can resolve the incorrectness. It is shown to
be helpful in the Experiments Section and Analysis Section.
However, A is a new (and the only) hyper-parameter in this
work. Experimental results with different A will be reported
and analyzed in Section 4.

3.4 Structure and Domain Knowledge

To represent the structure of the output and the domain
knowledge, we follow the line of study on declarative knowl-
edge representation for inference. We consider three types of
generic relations between the parts: is-a indicates sub-typing
of categorical predicates; disjoint-with indicates mutual ex-
clusiveness of categorical predicates; and has-a indicates the
composition of parts. These relations can be expressed by
logical expressions. More specifically, is-a and has-a are
mapped to implication q,, = q,,. disjoint-with is implemented
by alternative denial — (g, A g,). Then we derive the linear
constraints from the logical expressions by the rules in [Riz-
zolo and Roth, 2007].

4 Experiments

We evaluate the proposed approach with several structured
learning tasks: Two different entity relation extraction (ER)
tasks and spatial role labeling (SpRL) task. We investigate
the entity and relation recognition corpora (CoNLLO04) [Roth
and Yih, 2004] and ACE 2005 Corpus (ACE2005) [Li and Ji,
2014] for ER task. The two datasets contain different types
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of entities and relationships. For SpRL task, CLEF 2017
mSpRL dataset (SpRL2017) [Kordjamshidi et al., 2017a;
Kordjamshidi ez al., 2017b] is investigated.

CoNLL04. CoNLLO04 [Roth and Yih, 2004] is a publicly
available corpus® for ER. The task is to recognize four types
of entities among tokens in a sentence and classify five types
of relations between entities. This corpus contains 5, 516 sen-
tences, 11, 182 entities, and 2, 048 relations. The applied hard
constraints are between the types of relations and the types of
their two entities [Roth and Yih, 2004].

ACE2005. The ACE dataset contains documents with an-
notations defined for several tasks, including Named Entity
Recognition, Relation Extraction, and Event Detection and
Recognition. The dataset contains seven types of entities and
45 sub-entity types. We use the same data split used in [Li and
Ji, 2014]. The training set contains 10, 360 sentences each of
which includes at least one entity. The test set contains 2, 637
sentences some of which may not contain any entities. The
total number of entities within the sentences of the training
set is 47,406, while the testing set contains 10, 675 of them.

CLEF 2017 mSpRL. The SpRL task is to identify and clas-
sify the spatial arguments of the spatial expression in a sen-
tence [Kordjamshidi et al., 2017a]. To be specific, we identify
spatial roles, including “Trajector”, “Spatial_indicator”, and
“Landmark”, and detect their spatial triplet relation. We eval-
vated with CLEF 2017 mSpRL dataset [Kordjamshidi et al.,
2017al, which has 600 sentences in the training set and 613
sentences in the testing set. The dataset is more challenging
because of the complicated triplet relations and fewer exam-
ples compared to other tasks.

4.1 Experimental Setup and Results

In this section, we will show the experiment settings for each
task and report the results. We implemented all the experi-
ments using Pytorch*. In all the tables IML()\) denotes the
training with the combined loss and a specified A, and the
prediction without inference. IML(\)+ denotes training with
the combined loss and a specified A and the prediction with
inference. Similarly, NLL denotes the training with NLL and
prediction without inference while NLL+ means training with
NLL and prediction with inference.

CoNLL04

We employ 768-dimensional pre-trained BERT [Devlin et
al., 2019], followed by an fully-connected layer of 768-
dimensional hidden neurons as the token representation. For
pairs based on which the relations are classified, we concate-
nate the representations of its two tokens and map it to a rep-
resentation of the pairs by an additional fully-connected layer
with 768-dimensional hidden neurons. Leaky ReLU, with a
negative slope of 0.01, is used in the fully-connected layers.
Independent Softmax of two classes based on the representa-
tion of the token or the pair are applied for local predictions.
We handcrafted a simple ontology based on the constraints

3https://cogcomp.seas.upenn.edu/page/resource_view/43
“Our code is available at https:/github.com/HLR/
Inference-Masked-Loss
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Task | Constraints
1. Entity Disjoint;
CoNLLO4 2. Relation Composition.
1. Entity Disjoint;
2. Entity Sub-typing.
1. Triplet Composition.

ACEO05
CLEF 2017 mSpRL

Table 2: Constraints used in different experiments.

B1(L+]) B2 (IBT) IML (0.6) IML (0.6)+
Location | 0.8369 0.8160 0.8534 0.8707
Organization | 0.7246 0.7115 0.7801 0.8035
People | 0.7857 0.7888 0.9329 0.9381
Other - - 0.6885 0.6893
Average Entities 0.8137 0.8254
Kill - - 0.9871 0.9855
Live-in | 0.6075 0.6948 0.9511 0.9614
Located-in - - 0.9416 0.9457
Orgbase-on - - 0.9487 0.9514
Work-for | 0.5797 0.6900 0.9607 0.9610
Average Relations - - 0.9578 0.9610
Average All 0.8938 0.9007

B1, B2: Baseline [Kordjamshidi et al., 2015]

Table 3: F1 score compared with baseline, on CoNLLO04.

in [Roth and Yih, 2004], adding disjoint constraints among
all entity types. As shown in Table 2, we consider two types
of constraints for CONLLO4. Entity disjoint constraint means
each token can have at most one entity type. Relation com-
position constraint indicates that the arguments of a relation
must have entity types consistent with the relation type as
defined in [Roth and Yih, 2004]. The constraints are used
for global inference in both training and testing. IML (0.6)
(i.e. with A = 0.6) is used and optimized by Adam opti-
mizer [Kingma and Ba, 2014] in batches of 8 examples. We
train for 100 epochs with the learning rate of 1le — 4, which
is decayed 10 times every ten epochs. We use weight decay
le — 5 and a dropout rate of 0.35 to avoid over-fitting. Focal
loss v = 2 and label smoothing 0.01 are used for imbalanced
class labels. We conducted five-fold cross-validation over all
samples for the final evaluation.

The baseline [Kordjamshidi e al., 2015] used sophisticated
linguistic features and structured features with a linear model
and constraints [Roth and Yih, 2004]. Different training and
testing settings are reported: local models (LO), Local learn-
ing and global prediction (L+I), joint training (IBT). Table 3
shows our Fl-score compared with the baseline using L+1
and IBT setting. Our model shows significant improvement,
however, mainly because of BERT, which is capable of en-
coding each token with its context. We also achieve signifi-
cant additional improvement by making inference after local
prediction for most of the cases. The only case that inference
decreases the performance is for the “Kill” relation, where lo-
cal prediction performance is very high. It is connected to two
“People”, whose local prediction performance is rather weak,
which may cause trouble for inference of “Kill”. However,
“Kill” gives “People” a boost. This is a trade-off between
strong and weak local models.

ACE2005

We have designed a model as a baseline to experiment
with both NNL and IML loss functions. The model is
using BERT [Devlin et al., 2019]+FLAIR [Akbik et al.,
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NER NLL NLL+ IML (0.5) IML (0.5) +
Entities [ 84.3 84.19 84.95 84.5 85.05

NER: [Strakovd et al., 2019]

Table 4: F1-score of The ACE2005 entity recognition.

| NLL NLL+ IML(0) IML(0)+ IML(0.6) IML(0.6)+
Entities | 7698 7732 10.8 68.41 77.43 77.65

Table 5: F1-score of the ACE2005 entity recognition with hierarchi-
cal constraint on reduced training set

2018]+GLoVe [Pennington et al., 2014] for the representa-
tion of tokens. The first layer of the model is a Bi-directional
LSTM layer converting the 5, 236-dimensional input of each
token to a 2 x 240 representation vector. It is followed by a
shared fully connected layer to a 480-dimensional represen-
tation and then classified by logistic regression for each class
of entity and sub-entities. We exploit two different types of
constraints for ACEOS5 as shown in Table 2. First, the disjoint
property of different entity types. Second, the hierarchical
constraints between entity types and sub-types in the dataset.
The results of this experiment are listed in Table 4. Training
with NLL, the model exceeds the published results [Strakova
et al., 2019] after inference. With IML (0.5), we gain bet-
ter results even without inference and get additional improve-
ment after inference.

The IML (0.5) (with A = 0.5) is optimized by Adam op-
timizer. We train for 100 epochs, with the learning rate of
0.04. We use focal loss v = 2 and label smoothing 0.01 to
deal with imbalanced class labels.

We have also compared the results of training on a smaller
dataset (1000 sentences) to show whether IML improves the
predictions in the low data regime. Table 5 shows the result
of this experiment. In this experiment, we increased our rep-
resentation space from 480 to 1000. While overall constraints
helped in improving the results in the previous experiment we
noticed the hierarchical constraints did not help significantly
when working on the whole dataset. However, both types of
constraints were helpful to achieve some improvements when
training on the smaller number of examples in Table 5.

CLEF 2017 mSpRL

In this task, we firstly encode the input phrases with differ-
ent linguistic features generated by SpaCy?, such as POS-tag,
lemma, dependency path. For spatial relation extraction, we
concatenate the phrase encoding of the three spatial roles.
Then, we use Recurrent Neural Networks and Logistic Re-
gression to predict spatial role labels of phrases and extract
spatial triplet relations among them.

We consider only one type of constraint according to the
Table 2. Spatial triplets must include the three spatial roles,
which are “Trajector”, “Spatial Indicator”, and “Landmark”.
We jointly predict the spatial roles and triplets. We trained
IML (0.6) (A = 0.6) by Adam for 20 epochs with a learning
rate of 0.005, weight decay of 0.001 and dropout rate of 0.5
to avoid over-fitting.

Shttps://spacy.io/
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B B+ | NLL NLL+ IML(0.6) IML (0.6)+
Trajector | 0.5787 0.6255 | 0.7598 0.7604 0.7604 0.7649
Landmark | 0.7638 0.8065 | 0.8674 0.8674  0.8904 0.8904
Spatial Indicator | 0.9520 0.9496 | 0.9482 0.9482  0.9509 0.9509
Spatial Triplet | 0.6282 0.6825 | 0.5070 0.5138  0.5279 0.5346

B: Baseline [Manzoor and Kordjamshidi, 2018]

Table 6: CLEF 2017 mSpRL results compared with baseline.

091 o All
4 All+
0.898
o,
g ©0.8938
$ 0.885 B
=
0.873
0.86

1 090.80.70.60.50.40.30.2 0.‘1 0
A
Figure 1: Different A.

Table 6 shows IML improves the performance of spatial
role labeling. Specifically, the inference improves the predic-
tion results in most cases, and IML strengthens the utiliza-
tion of inference compared to NLL. We use totally different
parsing tools from the published result [Manzoor and Kord-
jamshidi, 2018], which leads to different phrases and relation
candidates. Therefore, the input features are different and our
results of triplet extractions which needs a lot of feature en-
gineering are not competitive. However, we improve the spa-
tial role extractions and IML+ consistently provides the best
results for the triplet extraction compared to NLL and other
variations in the scope of our own feature representations.

5 Analysis

To investigate the impact of IML and to find the optimal con-
figuration, we conducted a series of variant experiments on
EMR with the CoNLLO4. For the sake of experimental time
efficiency, we only evaluated using the first data split of the
five-folds. All the experimental setting remains the same ex-
cept those specified for each experiment.

Variation on A. In IML ()), X is the parameter that con-
trols the penalty that we apply on a false local prediction even
if it can be corrected by inference. IML (0) is identical to
IML while IML (1) is equivalent to NLL. The performance
of the model with different A values is shown in Figure 1.
The dashed line with boxes shows the performance of local
predictions, and the solid line with triangles shows the per-
formance of global inference. Inference improves local pre-
dictions most of the time. A = 1 (NLL) achieved a strong
baseline performance. However, it is not the best. A = 0.6
achieves the best inference result in this experiment. The per-
formance with A = 0 (IML) is too low to be shown properly
in the chart. However, the corresponding inference perfor-
mance is still competitive. A is the only hyper-parameter pro-
posed in this work.

Data Subsampling. We evaluate the training approach by
using different variants of IML (\) with less training data by
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Figure 2: Different portion training set.

subsampling the training set (4,413 sentences). The result is
shown in Figure 2. The dashed lines with boxes are the per-
formance of local prediction, and the solid lines with triangles
are the performance of the global inference. Blue, green, and
red curves show the result of different As. In terms of infer-
ence performance, A = 0 is rather weak compared with A = 1
and A = 0.6 when training with full data. For A = 1, 0.6, the
performance keeps decreasing when the data scale is reduced,
while A = 0 performs quite stable. It becomes competitive
when 1/2 of the data is used and among the best is when only
1/8 of the data is available. When only 1/16 of the data is
used, A = 0 surpasses the other two settings by 9.6%. The
prediction performance with A = 0 is clearly very stable all
over the time. With IML (A = 0), the model can be trained
to use local neural networks to learn minimal facts from the
data and count on the constraints to get a robust global result.
This is because IML decouples the structured learning task
and leads to the need for fewer data.

6 Conclusion

We investigated the combination of deep neural networks
with structured output by introducing the inference-masked
loss. The proposed structured output learning model imposes
the structure of data and domain knowledge in the form of
logical constraints that describe the correlations between out-
put variables. Inference-masked loss takes the inference into
account based on the domain knowledge compiled from logi-
cal expressions. It allows local deep neural networks to make
false local predictions that can be corrected by the inference.
The loss helps to decompose the learning task and let the
neural networks focus on local representations and make lo-
cal predictions. The inference collects the local predictions
based on the structure of output and domain knowledge. One
advantage of IML approach is being agnostic to the inference
model and treating it as a black box. This helps to plug in any
inference mechanism in the loop of deep learning iterations.
The proposed approach improves the generalizability of the
model and robustness of training, leading to state-of-the-art
results on entity relation extraction and spatial role labeling
tasks, with CoNLL04, ACE2005, and CLEF 2017 mSpRL
datasets, respectively. In particular, it shows improvements
when there is only a small set of annotated data available.
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