
Abstract 
Low-rank representation is powerful for recovering 
and clustering the subspace structures, but it cannot 
obtain deep hierarchical information due to the sin-
gle-layer mode. In this paper, we present a new and 
effective strategy to extend the single-layer latent 
low-rank models into multiple-layers, and propose a 
new and progressive Deep Latent Low-Rank Fusion 
Network (DLRF-Net) to uncover deep features and 
structures embedded in input data. The basic idea of 
DLRF-Net is to refine features progressively from 
the previous layers by fusing the subspaces in each 
layer, which can potentially obtain accurate features 
and subspaces for representation. To learn deep in-
formation, DLRF-Net inputs shallow features of the 
last layers into subsequent layers. Then, it recovers 
the deeper features and hierarchical information by 
congregating the projective subspaces and cluster-
ing subspaces respectively in each layer. Thus, one 
can learn hierarchical subspaces, remove noise and 
discover the underlying clean subspaces. Note that 
most existing latent low-rank coding models can be 
extended to multilayers using DLRF-Net. Extensive 
results show that our network can deliver enhanced 
performance over other related frameworks.  

1 Introduction 
Representation learning is always a fundamental problem to 
obtain the underlying explanatory factors and features for the 
subsequent data classification or clustering tasks [Chen et al., 
2019 and 2020] [Zhang et al., 2016 and 2019]. Representa-
tion learning is still challenging in reality due to the com-
plexity and diversity of data [Lu et al., 2019] [Su et al., 2019] 
[Acharya et al., 2019] [Ding et al., 2018].  

Since most real data can be characterized using low-rank 
subspaces, low-rank coding methods can recover the under-
lying subspaces and obtain notable features [Liu et al., 2019] 
[Ren et al., 2019]. Low-Rank Representation (LRR) [Liu et 
al., 2013] is one of the most classical algorithms to discover 
multi-subspaces, but it is essentially a transductive method 

failing to handle new data efficiently. To address the out-of- 
sample issue, Inductive Robust Principal Component Analy-
sis (IRPCA) [Bao et al., 2012] was recently proposed seeking 
a low-rank projection to map samples into underlying sub-
spaces. To enable a solution for subspace segmentation and 
feature extraction, Latent LRR (LatLRR) [Liu et al., 2011], 
was proposed, which decomposed data into a principal fea-
ture part, a salient feature part and a sparse error. Although 
LatLRR resolves the insufficient sampling issue and obtains 
enhanced performance over LRR, it still suffers from a high 
computational cost due to using Nuclear-norm to approxi-
mate the rank function to constrain the subspaces, while the 
computation of the Nuclear-norm needs the time-consuming 
Singular Value Decomposition of matrices at each iteration, 
especially for large-scale datasets. To improve the efficiency, 
a Frobenius-norm based LatLRR (FLLRR) [Yu et al., 2018] 
was proposed, which approximates the rank function using 
Frobenius-norm. But the Frobenius-norm is sensitive to noise 
and outliers, which may produce inaccurate representations.  

It is noteworthy that the above algorithms have a common 
drawback, i.e., they are “shallow” models using single-layer 
structures. As a result, they cannot obtain deep information 
and subspaces. But due to the strong representation ability of 
the deep neural networks [Kim et al., 2019], deep low-rank 
coding models equipped with carefully designed hierarchical 
structures should be able to obtain the enhanced performance. 
In fact, researchers have also designed some deep low-rank 
coding models, such as Weakly-supervised Deep Nonnega-
tive Low-rank Model (WDNL) [Li et al., 2017a], which finds 
the intrinsic relations between images and tags by removing 
noise or irrelevant tags, but it is unclear how to handle images 
directly and the results are usually incomplete. Another deep 
model is Deep Low-Rank Subspace Ensemble (DLRSE) [Xue 
et al., 2019], where the Frobenius-norm is used as a low-rank 
constraint. DLRSE uses the deep matrix factorization to learn 
the diverse hierarchical structures and obtains the low-rank 
representations from extracted factors. But DLRSE is origi-
nally proposed for multi-view clustering, which clearly dif-
fers from our task. To cluster big data effectively, a Projec-
tive Low-rank Sub-space Clustering via Learning Deep En-
coder (PLrSC) [Li et al., 2017] has been recently proposed.  
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Figure 1: Comparison between the mechanisms of traditional latent 
low-rank coding methods (a) and our DLRF-Net (b).  

PLrSC uses a small database randomly sampled from a big 
dataset and train a deep encoder, and then a deep encoder is 
used to compute the low-rank representations of all samples. 
However, it will be not easy to determine the sampling fre-
quency based on different real datasets in practice.  

In this paper, we mainly propose a general and progressive 
deep low-rank fusion network that can unfold existing latent 
low-rank methods into multilayers for the hierarchical rep-
resentation and deep subspace discovery. The major contri-
butions of this paper are summarized as follows:  

(1) Technically, a simple yet effective progressive deep 
representation learning model termed Deep Latent Low-Rank 
Fusion Network (DLRF-Net) is derived. DLRF-Net can learn 
deep hierarchical information and subspaces from input data. 
The advantage of this practice is that multiple layer low-rank 
coding structures can deliver rich and useful hidden hierar-
chical information that has a great potential in learning more 
powerful deep representation and subspace structures. To be 
specific, DLRF-Net in each layer aims to refine the features 
and subspaces progressively from previous layers by fusion, 
i.e., it recovers deep hierarchical information by respectively 
congregating the projective and clustering subspaces in each 
layer to produce accurate results. We compare the traditional 
single-layer low-rank models with DLRF-Net in Figure 1.  

(2) The network of DLRF-Net is simple, general and easy 
to extend. Specifically, many existing latent low-rank coding 
models such as LatLRR and FLLRR can be easily extended 
from single-layer to multiple-layers using DLRF-Net. In this 
paper, we mainly explain our basic idea rather than deriving a 
complex formulation, two simple deep network models are 
constructed based on embedding LatLRR and FLLRR into 
DLRF-Net as examples for the multi-layer low-rank coding, 
which we call Nuclear-norm based DLRF-Net (nDLRF-Net) 
and Frobenius-norm based fast DLRF-Net (fDLRF-Net).  

(3) Extensive simulations on public databases demonstrate 
that both nDLRF-Net and fDLRF-Net can deliver enhanced 
performance than the related single-layer models. That is, the 
multilayer idea of DLRF-Net is feasible and effective.  

2 Related Work 
We describe the closely-related low-rank coding algorithms.  

2.1 LatLRR and FLLRR 
Given a data matrix  1 2, , n N

NX x x x   , where n
ix   is 

a sample represented using an n-dimensional vector and N  

is the number of samples, then LatLRR improves LRR using 
the unobserved hidden data XH to extend the dictionary and 
overcome the insufficient data sampling issue. Specifically, 
LatLRR considers the following coding formulation:   

   min , . . ,O O HZ
rank Z s t X X X Z  ,                   (1) 

where  rank  is rank function and XO is the observed data 
matrix. Supposing that XO and XH are sampled from the same 
collection of low-rank subspaces, by using the Nuclear-norm 
to approximate the rank function and using sparse L1-norm 
on error term E, LatLRR recovers the hidden effects by 

* * 1, ,
min , . .    
Z P E

Z L E s t X XZ LX E ,           (2) 

where 
*

Z  is the Nuclear-norm of Z [Liu et al., 2013] [Xie et 
al., 2017], i.e., the sum of its singular values, XZ and LX are 
principal features and salient features respectively, and   is 
a positive scalar. Since LatLRR uses the Nuclear-norm con-
straints on Z and L, the SVD process is involved, which is 
time-consuming. Note that Frobenius-norm 

F
can also be 

used as the convex surrogate of the rank function [Yu et al., 
2018]. Besides, the optimization of Frobenius-norm is very 
efficient. The objective function of FLLRR is defined as 

   2 2

1, ,

1min , . .
2

    
F FZ P E

Z L E s t X XZ LX E ,         (3) 

from which multi-subspace structures can be recovered by Z 
and the notable features can be extracted using L.  

2.2 Projective Low-rank Subspace Clustering via 
Learning Deep Encoder (PLrSC)  

Assuming that '1, ,    
i k n NY Y Y Y is a big dataset and 

over-sufficiently drawn from a union of k subspaces, where N 
is the number of samples in all subspaces. PLrSC assumes 
that 1, ,i kX X X X   

n N  is a small dataset sampled 
randomly from Y and X is still sufficient. First, PLrSC learns 
a non-iterative deep encoder  ;def X  , where is the learn-
ing parameter to approximate low-rank representations. Then, 
the deep encoder is utilized to obtain the low-rank codes for 
replacing the costly non-linear Singular Value Thresholding 
(SVT) [Cai et al., 2010] operations. Thus, the predictive low- 
rank decomposition of PLrSC can be written as follows:  

 
2

* 2,1
min ;

. .
de FZ

Z E Z f X

s t X XZ E

    

 

,               (4) 

where n NE  denotes a sparse error,   is the regularization 
parameter for E,  is a control parameter for approximation 
term  

2
;de F

Z f X  .      2; = M i
def X g W g W g W X  is a 

deep encoder with M layers, where  g  is an activation 
function (e.g., sigmoid or ReLU).   is a learning parameter 
set, where    2 1 12 , , , , M Ml l l lMW W     . il  denotes 
the number of the units in the i-th layer ( 1l d  and Ml N ). 
Then, PLrSC employs the alternating direction algorithm 
(ADM) [Liu et al., 2013] and a gradient descent algorithm 
(GD) [Li et al., 2015] to optimize the above problem. Finally, 
PLrSC applies the landmark-based spectral clustering (LSC) 
algorithm to cluster the big dataset Y [Li et al., 2017].  
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Figure 2: The framework and flow-chart of our proposed DLRF-Net algorithm.  

3 Proposed DLRF-Net 

3.1 Objective Function 
DLRF-Net designs a hierarchical and progressive approach, 
i.e., the representation in the uncovered subspaces are learnt 
layer by layer. That is, the deep principal features XZ0Z1…Zl-1 
and deep salient features Ll-1…L1L0X from the (l-1)-th layer 
are fed into the l-th layer, which are further decomposed into 
a deep principal feature part, a deep salient feature part and a 
deep sparse error. The whole framework of our DLRF-Net is 
shown in Figure 2. Assuming that DLRF-Net has M layers, 
the decomposition process of our DLRF-Net framework in 
the l-th layer can be presented as follows:  

1 1 1
0 1 1 0 1 1 0 1 1

2 2 2
1 1 0 1 1 0 1 1 0

l l l l l l

l l l l l l

XZ Z Z XZ Z Z Z L XZ Z Z E
L L L X L L L XZ L L L L X E

  

  

  

  
,    (5) 

where 1
lZ  and 2

lZ  are the deep coefficient matrices, 1
lL  and 

2
lL  denote the deep projection matrices that are learned from 

XZ0Z1…Zl-1 and Ll-1…L1L0X in the l-th layer, respectively. 
Note that Z0 and L0 are included to simplify the descriptions, 
which are set to the identity matrices, i.e., the input of the first 
layer is the original data. It should be noted that for the op-
timization in the l-th layer, Z0, Z1, …, Zl-1, L0, L1, …, Ll-1 are 
known variables that are updated in the last layer. As such, 
intuitively from the multilayer leaning process, deep princi-
pal features XZ0Z1…Zl-1 and deep salient features Ll-1…L1L0X 
are learnt progressively from different layers, i.e., extracting 
fine-grained features from layer to layer.  
   Finally, deep principal features XZ0Z1…Zl and salient fea-
tures Ll…L1L0X in the l-th layer can be obtained as 

 

 

1 2
0 1 1 0 1 1

1 2
1 1 0 1 1 0

2

2

l l l l l

l l l l l

XZ Z Z Z XZ Z Z Z Z

L L L L X L L L L L X

 

 

 

 
.             (6) 

    The above subspace fusion operation can potentially make 
the learned representations more accurate by fusing feature 
information from deep principal and salient features in pre-
vious layers. The above averaging operation can also prevent 
the feature information loss and balance the information from 
deep principal and salient features in each layer. As such, we 
have the following model for DLRF-Net in the l-th layer:  

   
   

   

1 2 1 2 1 2
1 1, ,

1 1 1
0 1 0 1 0 1

2 2 2
1 0 1 0 1 0

1min
2

. . ... ... ...

... ... ...



  

  

    

  

  

l l l
l l l l l l lp p p pZ L E

l l l l l l

l l l l l l

Z Z L L E E

s t XZ Z XZ Z Z L XZ Z E

L L X L L X Z L L L X E

,    (7) 

where 
p

is the matrix p-norm, which can be Nuclear-norm 
or squared Frobenius-norm. l  is a positive tunable param-
eter that replies on the noise level of data [Liu et al., 2011]. 
We name the Nuclear-norm based DLRF-Net as nDLRF-Net 
and name the squared Frobenius-norm based DLRF-Net as 
fDLRF-Net. The objective function of fDLRF-Net can then 
be defined as follows for deep subspace discovery:   

   

   

   

2 2 2 21 2 1 2 1 2
1 1, , 1

1 1 1
0 1 0 1 0 1

2 2 2
1 0 1 0 1 0

1min
2

. . ... ... ...

... ... ...

l l l

M

l l l l l l lF F F FZ L E l

l l l l l l

l l l l l l

Z Z L L E E

s t XZ Z XZ Z Z L XZ Z E

L L X L L X Z L L L X E




  

  

 
     

 

  

  



.(8) 

Next, we show the optimization procedures of DLRF-Net.  

4 Optimization 
We mainly describe the optimization of fDLRF-Net in detail, 
as the optimization of nDLRF-Net is similar. Since Zl, Pl and 
El depend on each other, we update them alternately. We use 
the inexact Augmented Lagrange Multiplier (Inexact ALM) 
algorithm [Lin et al., 2009] for efficiency.  
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Algorithm 1   Solving Eq.(9) by Inexact ALM (l-th layer) 
Inputs: Reconstructed data 1lA 

, tunable parameters ,  .l l   
Initialization:          

0 0 0 0 01 2 1 2 10, 0, 0, 0, 0, 0     l l l l lt Z Z L L E ,  
     

0 0 02 1 2 6 0 6 7
max0, 0, 0, 10 ,  =10 , =1.12, 10        l l lE Y Y .  

While not converged do 
1. Update the coefficients sub-matrices  

11 t

lZ and  
12 t

lZ  by 
using Eq.(12-1e), and obtain     1 11 1 2 2

 
  

t tt
l l lZ Z Z ;  

2. Update the projection sub-matrices  
11 t

lL and  
12 t

lL  by using 
Eq.(14-15), and obtain     1 11 1 2 2

 
  

t tt
l l lL L L ;  

3. Update the sparse errors  
11 t

lE and  
12 t

lE  by Eq.(16-17);  
4. Update the Lagrange multipliers  

11 t

lY and  
12 t

lY ;  
5. Update the parameter l  by  1

max= min ,  t t
l l ; 

6. Check for convergence: Suppose  1 1 1
1 1 1 ,   
  l l l l l lP P Z L P E   

2 2 2
1 1 1    
   l l l l l lS S Z L S E , stop; else 1 t t .  

End while 
Output: * 1 * 1, .  t t

l l l lZ Z P P   

   To simplify the descriptions of optimization, we train the 
model layer by layer. To learn features in the l-th layer (l=1, 
2,…, M), the target function can be defined as 

   
   

   

2 2 2 21 2 1 2 1 2
1 1, ,

1 1 1
0 1 0 1 0 1

2 2 2
1 0 1 0 1 0

1min
2

. . ... ... ...

... ... ...

l l l
l l l l l l lF F F FZ L E

l l l l l l

l l l l l l

Z Z L L E E

s t XZ Z XZ Z Z L XZ Z E

L L X L L X Z L L L X E



  

  

    

  

  

.   (9) 

Denote by 1 0 1... l lP XZ Z and 1 1 0...l lS L L X =  two auxiliary 
matrices, the Lagrange function of Eq.(9) can be obtained as 

     

 

2 2 2 21 2 1 2 1 2
1 1

1 1 1 1 2 2 2 2
1 1 1 1 1 1

2 21 1 1 2 2 2
1 1 1 1 1 1

1, ,
2

, ,

2

l l l l l l l l lF F F F

l l l l l l l l l l l l l l

l
l l l l l l l l l l l lF F

Z L E Z Z L L E E

Y P P Z L P E Y S S Z L S E

P P Z L P E S S Z L S E





     

     

      

       

       

, 

(10) 
where 1

lY  and 2
lY  are Lagrange multipliers, and l denotes a 

positive parameter. Then, fDLRF-Net updates the variables 
by solving  . Note that the optimization procedures of our 
fDLRF-Net in the l-th layer can then be detailed as follows:  
Fix others, update Zl:  For the optimization of lZ , we need 

to solve 1
lZ  and 2

lZ . By removing the irrelevant terms, we can 
update 1

lZ  and 2
lZ by the following reduced problem:  

   

 

2 21 2 1 2 1 1
1 1

2 22 2 1 2
1 1 1 1 1 1

1, ,
2

,
2

l l l l l l l lF F

l
l l l l l l l l l lF F

Z Z Z Z Y P Z

Y S Z P Z S Z

 

     

    

        

=
, (11) 

where 1 1
1 1 1l l l l lP L P E      and 2 2

1 1 1l l l l lS L S E      . We 
first show the optimization of 1

lZ . By taking the derivative of 
 1 2, l lZ Z  w.r.t. 1

lZ  and zeroing the derivative, we can infer 
the coefficients matrix 1

lZ  at the (t+1)-th iteration as follows:  

      1 11 1
1 1 1 1 /

t tt T t T t t
l l l l l l l l lZ I P P P Y  

 

       ,       (12) 

where    1 1
1 1 1     

t tt
l l l l lP L P E . Similar to the optimization 

of 1
lZ , we can infer  

12 t

lZ
 in the (t+1)-th iteration as 

      1 12 2
1 1 1 1 /  

 

      
t tt T t T t t

l l l l l l l l lZ I S S S Y ,        (13) 

where    2 2
1 1 1     

t tt
l l l l lS L S E . After optimizing the  

11 t

lZ
 and  

12 t

lZ , we can obtain     1 11 1 2 2
 

  
t tt

l l lZ Z Z .  
Fix others, update Ll:  By removing the irrelevant terms 

from  , taking the derivatives of  1 2, l lL L
 
w.r.t 1

lL  and 2
lL ,, and zeroing the derivatives, we can similarly obtain 

     
1 111 1

1 1 1/  
 

     
t ttt t T

ll l l l l lL Y I P P ,          (14) 

     
1 112 2

1 1 1/  
 

     
t tt T

ll t l t l lL Y I S S ,         (15) 

where    
11 1 1

1 1 1

t tt
l l l l lP P Z E


     
+ and 

   

1 2 2
1 1 1 1



   
   

t
l l l l lt tS S Z E . 

After optimizing the projection matrices  
11 t

lL and  
12 t

lL , we 
can obtain     1 11 1 2 2

 
  

t tt
l l lL L L .  

Fix others, update 1
lE  and 2

lE : By taking the derivative 
of Lagrange function w.r.t. 1

lE and 2
lE  respectively and zero-

ing the derivatives, we can infer 1
lE and 2

lE  as 

   1

211 1 1 1
11

1argmin
2l

t

l l l l lt FE
l

E E E P





     ,          (16) 

   2

212 2 2 2
11

1argmin
2l

t

l l l l lt FE
l

E E E S





     ,         (17) 

which can be easily solved by the shrinkage operator [Lin et 
al., 2009], where 1l  and 2l  are auxiliary matrices defined 
as      

1 11 1 1 1
1 1

t t t t
l l l l l l lP Z L P Y 



    
+  and  

12 2
1



  
t

l l lS Z  
   

12 2
1  

+t t t
l l l lL S Y . For complete presentation of our model, 

we summarized the optimization procedures of solving the 
sub-problem of Eq.(9) in the l-th layer in Algorithm 1.  

5 Discussion 

5.1 Relationship Analysis 
We mainly discuss the relations of our DLRF-Net to LatLRR 
and FLLRR. To facilitate the analysis, we consider the spe-
cial case that l=1.We first express this special case as 

 
1 1 1

1 1 1 1 1, ,

0 0 1 1 0 1 0 0 1 1 0 1

1min
2

. . ,

p pZ L E
Z L E

s t XZ XZ Z L XZ E L X L XZ L L X E

 

     

. (18) 

Since Z0 and L0 are initialized to the identity matrices in the 
optimization, the two constraints are the same. As such, it is 
clear that when we use the Frobenius-norm to constrain the 
matrices Z1 and L1, the problem identifies FLLRR; while we 
use the Nuclear-norm as constraints, the resulting problem is 
identical to LatLRR. That is, both FLLRR and LatLRR are 
the special causes of our DLRF-Net framework.  

5.2 Computational Time Complexity 
We analyze the complexity of each layer of our deep models. 
For fDLRF-Net, SVD is not used and the major computation 
is updating the matrices Zl and Ll. Thus, the time complexity 
of Algorithm 1 is equal to that of FLLRR. Thus, it is easy to 
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Dataset Name # Samples # Dim # Classes 
CMU PIE 11554 1024 68 

UMIST face  1012 1024 20 
Fashion MNIST  70000 784 10 

Table 1: Descriptions of used image datasets.  
 
infer that the total time complexity of fDLRF-Net is M times 
that of each layer, where M is the number of layers, which is 
usually a small value. For nDLRF-Net, the time complexity 
of each layer is the same as that of regular LatLRR and the 
total time complexity is M times that of each layer.  

6 Experimental Results and Analysis 
We conduct experiments to evaluate the effectiveness of our 
fDLRF-Net and nDLRF-Net, and show the comparison re-
sults with other related methods, including FLLRR, LatLRR, 
LRR, Robust LatLRR (rLatLRR) [Zhang et al., 2014b], 
Laplacian Regularized LRR (rLRR) [Zhang et al., 2014a], 
Sa-LatLRR [Wang et al., 2018] and PLrSC  [Li et al., 2017b]. 
Three real image databases are involved, including two face 
datasets (i.e., CMU PIE [Sim et al., 2003], UMIST [Graham 
et al., 1998]) and the Fashion MNIST database [Xiao et al., 
2017]. The details of used databases are described in Table 1. 
We follow the common procedure to resize each face image 
into 32×32 pixels and images of the Fashion MNIST dataset 
are resized into 28×28 pixels. We perform all experiments on 
a PC with Intel (R) Core (TM) i7-7700 CPU @ 3.6 GHz 8G.  

6.1 Visual Image Analysis by Visualization 
Visualization of coefficient matrix Z.   To represent data 
appropriately, Z should have a block-diagonal structure. Each 
block denotes the coefficients for certain subject so that each 
sample can be reconstructed by the samples of one class as 
much as possible. We follow [Liu et al., 2011] to construct 10 
independent subspaces  

10

1i iS


and apply this artificial data for 
DLRF-Net. The visualization of Z in the first four layers are 
illustrated in Figure 3. We see that all coefficient matrices Z 
have block-diagonal structures. But compared with the 1-th 
layer, the results of other layers have less noise and wrong 
inter-class connections. It can also be found that the subspace 
structures of Z are improved progressively, i.e., the learned 
structures from the 3-rd and 4-th layers are better that from 
the 2-nd layer. But the difference of the structures of Zs in the 
3-rd and 4-th layers is small, i.e., our DLRF-Net can remove 
noise contained in features and recovery the subspaces of Z 
by using small number of layers. That is, the structures of the 
coefficient matrix Z will not become better, even though we 
use more layers involving high computational cost. In all the 
simulations, the results of fDLRF-Net and nDLRF-Net in the 
1-th layer corresponds to FLLRR and LatLRR, respectively.  
Visualization of the recovered features XZ.    We evaluate 
fDLRF-Net and nDLRF-Net by visualizing recovered deep 
features XZ. Given a data matrix X,  DLRF-Net decomposes 
it into principal features XZ, salient features LX and a sparse 
error E in each layer. CMU PIE face dataset is used. This face 
image database contains 68 persons with 41368 images under 

 
(a) 1-st layer          (b) 2-nd layer      (c) 3-rd layer      (d) 4-th layer 

 
(e) 1-st layer          (f) 2-nd layer      (g) 3-rd layer      (h) 4-th layer 

Figure 3: Visualization of the representation coefficient matrices Z of 
our fDLRF-Net (a-d) and nDLRF-Net(e-h).  

Original Noised 1st layer 2nd layer 3rd layer

 

Original Noised 1st layer 2nd layer 3rd layer

 
Figure 4: Recovered principal features on CMU PIE face database (Left: 
fDLRF-Net; Right: nDLRF-Net).  

varying poses, illuminations and facial expressions. 170 near 
frontal images per person are employed for CMU PIE, which 
contains five near frontal poses (C05, C07, C09, C27, and 
C29). To evaluate the robustness properties, random Gauss-
ian noise with variance 500 is included into the image data. 
Some original images, noisy images and recovered principal 
features in the first three layers are shown in Figure 4. We see 
find that fDLRF-Net and nDLRF-Net can effectively remove 
the shadow and noise in images in a progressive way, com-
pared with the recovered results of FLLRR and LatLRR.  

6.2 Quantitative Clustering Evaluations 
We compare each model for clustering images. UMIST and 
Fashion MNIST are evaluated. UMIST has 1012 images 
from 20 different individuals. Fashion-MNIST has 10 classes 
and 70000 unique products. In this study on Fashion-MNIST, 
we choose 1000 samples per class, i.e., totally 10000 samples. 
To evaluate the performance, we follow the common pro-
cedures and use the coefficient matrix Z* of each method to 
construct the weights by  * * 2TW Z Z   and then use the 
Normalized Cuts (NCut) [Shi et al., 2000] for clustering. For 
PLrSC and DLRF-Net, we use the coefficients from the final 
layer. For each number K of clusters, we choose K categories 
randomly and the results are averaged over 30 initializations.  

The clustering accuracy (AC) [Cai et al., 2017] is used as 
the quantitative metric. The values of AC on evaluated da-
tabases are shown in Table 2. We see that: (1) the clustering 
accuracy of each method goes down as the number of cate-
gories increases, since clustering more data is difficult than 
clustering less; (2) Our fDLRF-Net and nDLRF-Net deliver 
higher ACs than the other competitors, especially for FLLRR 
and LatLRR, implying that DLRF-Net can learn more effec-
tive representations by mining deep information.   
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Method 
Clustering Accuracy (%) on UMIST Clustering Accuracy (%) on Fashion MNIST 

K=2 K=4 K=6 K=8 K=2 K=4 K=6 K=8 
LRR 78.57±15.67 72.08±14.57 66.67±4.97 62.57±9.56 85.21±4.37 62.27±9.11 51.83±1.99 45.75±3.24 

rLatLRR 86.25±15.06 79.44±9.94 69.67±7.40 67.51±6.56 89.55±13.83 65.50±9.01 63.33±8.47 56.75±4.83 
SA-LatLRR 84.57±14.30 78.35±12.26 72.08±7.40 67.52±9.29 91.07±11.74 68.74±4.28 63.54±11.91 56.12±6.41 

rLRR 82.35±14.41 78.52±6.48 70.67±9.49 66.57±7.52 89.48±14.49 67.48±8.74 62.17±7.05 56.87±5.47 
PLrSC 87.89±8.74 79.89±6.77 71.11±10.27 67.79±7.38 91.42±5.39 72.06±6.47 64.43±8.27 57.61±6.75 
FLLRR 84.16±17.37 79.25±8.98 71.56±8.18 66.29±7.70 90.52±10.60 71.58±10.31 62.67±9.51 56.33±5.78 

fDLRF-Net (2 layers) 88.17±16.58 80.42±10.61 73.83±8.20 69.83±7.96 91.67±10.69 73.50±11.06 64.58±9.92 58.38±4.87 
fDLRF-Net (3 layers) 88.83±16.64 81.08±10.66 76.44±8.19 70.88±8.62 92.67±9.07 73.75±11.51 64.61±9.24 59.17±5.84 
fDLRF-Net (4 layers) 90.16±16.49 77.92±11.14 71.50±8.70 66.67±8.30 93.17±8.76 72.75±11.51 64.67±10.03 57.87±5.61 
fDLRF-Net (5 layers) 88.83±16.05 75.0±13.47 68.06±8.98 65.08±7.40 92.33±9.54 70.66±11.91 60.78±8.70 55.96±5.48 

LatLRR 81.50±9.73 77.25±15.02 69.17±10.77 67.00±7.58 90.17±13.03 70.25±12.91 65.66±8.39 59.83±7.68 
nDLRF-Net (2 layers) 82.52±9.14 79.52±12.41 73.33±7.54 67.38±9.98 92.17±10.64 71.31±11.43 67.00±8.31 61.52±7.37 
nDLRF-Net (3 layers) 85.05±12.35 80.75±11.74 76.59±12.70 71.37±6.07 93.33±8.54 73.03±11.58 67.60±9.16 61.56±6.68 
nDLRF-Net (4 layers) 94.00±7.75 76.25±12.20 70.16±10.33 65.00±3.46 89.33±14.29 73.00±12.27 66.06±9.15 59.58±6.25 
nDLRF-Net (5 layers) 90.20±7.09 76.71±15.48 68.83±14.03 64.63±6.48 87.33±15.52 72.11±12.39 63.50±8.18 57.13±5.79 

Table 2: Numerical clustering evaluation results on the UMIST and Fashion MNIST databases.  

  
(a) fDLRF-Net                          (b) nDLRF-Net                  (c) Examples                   (d) fDLRF-Net                              (e) nDLRF-Net 

Figure 5: Clustering performance vs. varying variance on the UMIST (a-b) and Fashion MNIST (d-e) database.  

6.3   Noisy Image Clustering Against Corruptions 
We investigate the robustness properties against noisy cases 
that images are corrupted. UMIST and Fashion MNIST are 
used. Random Gaussian noise with different variance (100, 
200, …, 500) is added to examine the robustness. For each 
setting, we average the result over 30 random initialization 
for NCut. We set the number K of clusters as 5. Some noisy 
images and clustering accuracy are shown in Figure 5, where 
the clustering results of five layers of our fDLRF-Net and 
nDLRF-Net are described. We see clearly that: (1) generally 
speaking the clustering accuracy of each method goes down 
with the increasing level of noise, as clustering data of high 
noise level is more difficult than clustering that of low noise 
level; (2) the best records are usually obtained in the 2-nd 
layer and the 3-rd layer, by comparing with the other cases.  

6.4 Investigation of Parameters 
UMIST database is used. DLRF-Net has one parameter  , so 
we can select the most important one by a linear search from 
 8 6 6 810 ,10 ,...,10 ,10  . We set the number K of clusters to 5 
and show the analysis results of the first three layers in Figure 
6. For each layer, we select the best parameter, and then we 
fix it to learn deeper features of next layer. We find that   
usually becomes a lager one with increasing number of layers, 
which is easy to understand. Since DLRF-Net recovers the 
subspaces progressively and learnt susbapces become clean 
layer by layer. Note that similar observations can be found 
from the other datasets, but the results will be not presented.  

   (a) The first layer         (b) The second layer        (c) The third layer 
Figure 6: Parameter sensitivity analysis on the UMIST face database.  

7 Conclusion 
We proposed a new progressive deep latent low-rank fusion 
network to uncover deep hidden features and deep clustering 
structures. DLRF-Net discovers the subspaces by refining the 
principal and salient features from previous layers progres-
sively and then fusing the subspaces. Specifically, DLRF-Net 
recovers hierarchical features by congregating the projective 
subspace and subspaces in each layer. Most existing latent 
low-rank coding models can also be easily extended to mul-
tilayer scenario for learning deep features. In future, more 
effective deep low-rank fusion strategies will be explored.  
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