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Abstract
Counterfactual Explanation (CE) is one of the post-
hoc explanation methods that provides a perturba-
tion vector so as to alter the prediction result ob-
tained from a classifier. Users can directly inter-
pret the perturbation as an ”action” for obtaining
their desired decision results. However, an action
extracted by existing methods often becomes unre-
alistic for users because they do not adequately care
about the characteristics corresponding to the em-
pirical data distribution such as feature-correlations
and outlier risk. To suggest an executable action for
users, we propose a new framework of CE for ex-
tracting an action by evaluating its reality on the
empirical data distribution. The key idea of our
proposed method is to define a new cost function
based on the Mahalanobis’ distance and the local
outlier factor. Then, we propose a mixed-integer
linear optimization approach to extracting an op-
timal action by minimizing our cost function. By
experiments on real datasets, we confirm the effec-
tiveness of our method in comparison with existing
methods for CE.

1 Introduction
1.1 Background and Motivation
In recent years, complex machine learning models, such
as deep neural networks and tree ensemble models, have
achieved high prediction accuracy and been widely used for
assisting the decision-making tasks in the real world, such
as medical diagnosis and loan approval. As a result, to un-
derstand not only why an undesired prediction is obtained,
but also how to act to obtain a desirable outcome, post-hoc
methods for extracting explanations from the individual pre-
diction of complex models have increasingly been attracting
attention [Guidotti et al., 2018; Molnar, 2019]. One of the
post-hoc explanation approaches is the Counterfactual Ex-
planation (CE) [Wachter et al., 2018]. For a given classifier
H : X → Y , target class t ∈ Y , and instance x̄ ∈ X such
that H(x̄) 6= t, the aim of CE is to find an optimal solution
a? of the following optimization problem:

a? := arg min
a∈A

C(a | x̄) subject to H(x̄+ a) = t,

where A is a set of actions, and C : A → R≥0 is a cost func-
tion that measures the required efforts of an action a ∈ A.
This problem is related to the adversarial examples [Szegedy
et al., 2014] in the sense that it finds a perturbation a that al-
ters the output of a classifier H . In the context of CE, on the
other hand, an action a is interpreted as a required action for
a user x̄ to obtain the desired prediction result (e.g., low risk
of default). Therefore, the action suggested by CE should be
executable for users. In this paper, we focus on this charac-
teristic property of CE, and discuss how to provide a realistic
action so that users can directly refer to and execute.

To extract realistic actions, we need to define a cost func-
tionC that considers the empirical distribution. While several
useful cost functions, such as the total log-percentile shift
(TLPS) [Ustun et al., 2019], have been proposed, we argue
that they often extract unrealistic actions. Figure 1 presents
two demonstrations on the FICO dataset [FICO et al., 2018],
which is a real dataset of Home Equity Line of Credit (HE-
LOC) applications. The task is to predict whether individuals
will default on their HELOC. Figure 1 shows actions a (yel-
low arrows) extracted by using the TLPS from random forest
classifiers trained on the dataset, and these modified instances
x̄ + a (yellow triangles). Table 1(a) shows the actual values
of them. From Figure 1, we can observe that these modified
instances x̄ + a are located in the region predicted as ”low
risk of default”, however, we argue that these actions are not
realistic for users from the following two perspectives corre-
sponding to the characteristics of the empirical distribution:

• Feature-correlation: Because each feature is often de-
pendent on others, having non-zero correlation, the cost
of changing a value with respect to a feature should be
evaluated depending both on the amount of its difference
and relation to other features. In Figure 1 (left), it seems
unnatural to increase only ”MSinceOldestTradeOpen”
without increasing ”AverageMInFile” because these fea-
tures are correlated.

• Outlier risk: By minimizing the cost of a, there is a risk
that its modified instance x̄ + a becomes an outlier of
the empirical distribution. In Figure 1 (right), it seems
unrealistic to increase ”ExternalRiskEstimate” without
decreasing ”PercentInstallTrades”, because there are no
training instances near x̄+ a.

Based on the above observations, our goals are (i) to model
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Figure 1: 2-dimensional illustrations of extracted actions on the FICO dataset. The arrows represent actions for the input instances (red
diamonds) extracted by TLPS (yellow) and our DACE (green).

Feature to Change Action MD LOF

”MSinceOldestTradeOpen” 30→ 126 (+96) 4.39 1.93

”ExternalRiskEstimate” 65→ 77 (+12) 1.35 7.92

(a) TLPS [Ustun et al., 2019]

Feature to Change Action MD LOF
”MSinceOldestTradeOpen” 30→ 109 (+79) 1.11 1.17”AverageMInFile” 20→ 46 (+26)

”ExternalRiskEstimate” 65→ 76 (+11) 1.40 1.04”PercentInstallTrades” 90→ 58 (-32)

(b) DACE (ours)

Table 1: Examples of CE extracted on the FICO dataset. These
actions provide how to change feature values so as to be predicted
as ”low risk of default” from the classifier learned on the dataset.

the reality of an action as a cost functionC, and (ii) to propose
a method to optimize C for extracting realistic actions.

1.2 Our Contributions
In this paper, we propose a new framework of CE, named
Distribution-Aware Counterfactual Explanation (DACE), that
extracts a realistic action for users. Our contributions can be
summarized as follows:
• We propose a new cost function based on the Maha-

lanobis’ distance (MD) [Mahalanobis, 1936] and Local
Outlier Factor (LOF) [Breunig et al., 2000] to evaluate
the reality of actions. MD is known as a metric that cap-
tures the relationships between features, and LOF is a
popular outlier score that measures how unusual a given
instance is by using k-nearest neighbor (k-NN).
• We formulate the problem of finding an optimal action

according to our cost function as a mixed-integer linear
optimization (MILO) problem, which can be solved by
modern MILO solvers, such as CPLEX [IBM, 2018].

For computational efficiency, we show that if we use
`1-norm based MD and 1-NN based LOF for the cost
function, the number of variables and constraints of the
problem can be reduced dramatically.

• We demonstrate the effectiveness of DACE compared to
other existing methods including MAD [Wachter et al.,
2018; Russell, 2019], TLPS [Ustun et al., 2019], and
PCC [Ballet et al., 2019] on real datasets.

Table 1(b) and the green arrows in Figure 1 show the ac-
tions extracted by our DACE. These results suggest that the
MD and LOF of actions reflect the feature-correlations and
outlier risks well, respectively, and that DACE can extract re-
alistic actions in the sense of these properties.

1.3 Related Work
Counterfactual Explanation. A number of post-hoc meth-
ods for generating explanations from complex models have
been proposed [Ribeiro et al., 2016; Lundberg and Lee, 2017;
Koh and Liang, 2017; Ribeiro et al., 2018]. Counterfactual
Explanation (CE) is one of the post-hoc methods that has
been attracting attention in recent years. Most of existing
CE methods are either gradient-based [Wachter et al., 2018;
Dhurandhar et al., 2018; Moore et al., 2019] or heuris-
tic search [Lash et al., 2017]. These methods can deal
with differentiable models over continuous features. On the
other hand, there have been increasing demands for learn-
ing non-differentiable models over possibly non-continuous
features such as tree ensembles over categorical data, to
which existing gradient-based methods are not applicable.
To overcome these difficulties, several authors proposed in-
teger linear optimization (ILO) approaches [Cui et al., 2015;
Ustun et al., 2019; Russell, 2019], using linear costs. Our re-
sults extend their approach to a cost function containing non-
linear terms such as MD and LOF.

Distribution-aware score for CE. Recently, some studies
have pointed out the risk that existing post-hoc methods of-
ten suffer from a lack of robustness [Ghorbani et al., 2019;
Rudin, 2019]. For this problem, the following scores for CE
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were proposed. [Laugel et al., 2019b] has introduced the no-
tion of connectedness of an action to exclude a meaningless
action that transfers a given data to an empty decision region
containing no training data. They also pointed out that most
of existing CE methods can generate non-connected actions.
Note however that their connectedness and our criterion are
incomparable. Actually, in Figure 1, all the actions are con-
nected, while some of them are classified as bad according
to our criterion. Another distribution-aware criterion, called
proximity [Laugel et al., 2019a] for CE, is related to the LOF.
To the best of our knowledge, our method is a first attempt to
optimize it, while the above work proposed criteria only.

2 Preliminaries
2.1 Notations and Settings
For a positive integer n ∈ N, we denote by [n] := {1, . . . , n}.
For a proposition ψ, I [ψ] denotes the indicator of ψ, i.e.,
I [ψ] = 1 if ψ is true, and I [ψ] = 0 if ψ is false.

Throughout this research, we consider a binary classifi-
cation problem as a prediction task, which is sufficient for
CE. For a multi-class classification problem, we can reduce
it to a binary classification problem between the target class
and other classes. We denote input and output domains by
X = X1× · · ·×XD ⊆ RD and Y = {−1,+1}, respectively.
Let a vector x = (x1, . . . , xD) ∈ X be an instance, and a
function H : X → Y be a classifier.

We assume that categorical features included by a dataset
are one-hot encoded by pre-processing. Let G ⊆ [D] be a
set of features that represents a one-hot encoded categorical
feature with |G| categories. Then, Xg = {0, 1} for g ∈ G
and

∑
g∈G xg = 1 for any x ∈ X . We denote a set of one-hot

encoded categorical features G by G ⊆ 2[D].

2.2 Mahalanobis’ Distance (MD)
The Mahalanobis’ distance (MD) is a popular metric in
the literature on statistics and metric learning [Mahalanobis,
1936; Kulis, 2013]. For two vectors x, x′ ∈ RD and a posi-
tive semi-definite matrixM ∈ RD×D, Mahalanobis’ distance
dM : RD × RD → R≥0 between x and x′ is defined by

dM(x, x′ |M) :=
√

(x′ − x)>M(x′ − x).

Since M is positive semi-definite, M can be decomposed as
M = U>U , where U ∈ RD×D. Hence, dM(x, x′ | M) can
be also expressed as follows:

dM(x, x′ |M) = ‖U(x′ − x)‖2,

where ‖ · ‖p denotes the `p-norm. In statistics, the inverse
matrix of the covariance matrix Σ of the distribution where
x and x′ follow is often used as M . It is known that the
MD d(x, x′ | Σ−1) is scale-invariant and takes the feature
correlations into account [Maesschalck et al., 2000].

2.3 Local Outlier Factor (LOF)
The local outlier factor (LOF) is a prominent outlier score
based on the local densities of instances [Breunig et al.,
2000]. We assume a metric space (X ,∆) and a set of N in-
stances X ⊆ X . We omit them if it is clear from context. For

x ∈ X , let Nk(x) be its k-nearest neighbors (k-NN) on X .
The k-reachability distance rdk of x with respect to x′ is de-
fined by rdk(x, x′) := max{∆(x, x′), dk(x′)}, where dk(x′)
is the distance ∆ between x′ and its the k-th nearest instance
on X . The k-local reachability density of x is defined by
lrdk(x) := |Nk(x)| · (

∑
x′∈Nk(x)

rdk(x, x′))−1. Then, the
k-LOF of x on X is defined as follows:

qk(x | X) :=
1

|Nk(x)|
∑

x′∈Nk(x)

lrdk(x′)
lrdk(x)

.

As a metric ∆ : X × X → R≥0, we assume ∆(x, x′) =∑D
d=1 ∆d(xd, x

′
d), where ∆d : Xd × Xd → R≥0 is some

dissimilarity measure of the feature d ∈ [D].

2.4 Additive Classifiers
In this paper, we focus on additive classifiers H : X → Y
expressed as the following additive form:

H(x) = sgn

(
T∑

t=1

wt · ht(x)− b

)
,

where h1, . . . , hT : X → R are base learners, wt ∈ R is a
weight value of ht for t ∈ [T ], and b ∈ R is an intercept.
Linear Model. Linear models (LM), such as Logistic Re-
gression and Linear Support Vector Machines, are one of the
most standard classifiers [Hastie et al., 2009]. If H is a LM,
T = D and each base learner hd(x) = xd. A LM makes a
prediction depending on the sign of the inter product 〈w, x〉,
where w = (w1, . . . , wD) ∈ RD.
Tree Ensemble Model. Tree ensemble models (TEM), such
as Random Forest [Breiman, 2001] and Gradient Boosted
Trees [Friedman, 2000; Chen and Guestrin, 2016; Ke et al.,
2017], are renowned for their high prediction performances
in machine learning competitions. If H is a TEM, each base
learner ht is a decision tree, which is a classifier that con-
sists of a set of if-then-else rules expressed by a binary tree
structure. It makes the prediction according to a leaf that the
input instance x ∈ X reaches, and the corresponding leaf is
determined by traversing the tree from the root depending on
whether the statement xd ≤ t is true or not, where d ∈ [D]
and t ∈ R are a pair of parameters corresponding to the in-
ternal node. A TEM makes a prediction by combining the
prediction results from T decision trees.

3 Problem Statement
3.1 Action and Action Set
For a classifier H : X → Y , and an instance x̄ ∈ X such
that H(x̄) = −1, we define an action as a perturbation vector
a ∈ RD such that H(x̄ + a) = +1. An action set A =
A1 × · · · × AD is a finite set of feasible actions such that
0 ∈ Ad and Ad ⊆ {a ∈ R | x̄d + ad ∈ Xd} for d ∈ [D]. We
denote by Id = |Ad| for d ∈ [D].

We can automatically determine each Ad depending on the
type of the classifier H [Ustun et al., 2019; Cui et al., 2015]
and the feature d ∈ [D]. For example, if xd is a feature rep-
resenting ”age”, then ad ∈ N∪{0} holds for any ad ∈ Ad. If
xd is an immutable feature (e.g., gender) then Ad = {0}.
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3.2 Cost Function
As a score to evaluate whether an action is realistic for users,
we introduce a new cost function CDACE : A → R≥0. Given
a positive semi definite matrix M ∈ RD×D, set of N in-
stances X ⊆ X , positive integer k ∈ [N ], and λ ≥ 0, we
define CDACE with respect to an input instance x̄ ∈ X as

CDACE(a | x̄) := d2M(x̄, x̄+ a |M) + λ · qk(x̄+ a | X),

where

• d2M(x̄, x̄+ a | M) is the squared MD between the input
instance x̄ and its modified instance x̄+ a,

• qk(x̄+ a | X) is the k-LOF of x̄+ a on X , and

• λ ≥ 0 is a trade-off parameter between d2M and qk.

3.3 Problem Definition
Our aim is to find an action a ∈ A that minimizes the cost
CDACE(a | x̄), and this problem can be defined as follows:

Problem 1. Given an additive classifier H : X → Y , input
instance x̄ ∈ X such that H(x̄) = −1, positive semi definite
matrix M ∈ RD×D, set of N instances X ⊆ X , positive in-
teger k ∈ [N ], and λ ≥ 0, find an action a∗ ∈ A such that is
an optimal solution for the following optimization problem:

minimize
a∈A

CDACE(a | x̄) subject to H(x̄+ a) = t,

4 MILO Formulation
In this section, we propose an MILO formulation for solving
Problem 1.

4.1 Basic Ideas
While CDACE is non-linear and has a discrete structure
caused by Nk(x̄ + a), we can exactly formulate Problem 1
as an MILO problem using modeling techniques on integer
optimization. However, to linearize the non-linearity and dis-
creteness, this naive formulation requiresO(|A|2 +N2) aux-
iliary variables and constraints, where |A| :=

∑D
d=1 |Ad|.

Preliminary experiments made clear that this formulation was
computationally infeasible on standard datasets.

In order to avoid introducing O(|A|2 + N2) auxiliary
variables and constraints, we introduce a surrogate objective
function and optimize it instead of CDACE. Our main ideas
are (i) fixing k = 1 for the LOF qk(x̄+a) of CDACE, and (ii)
replacing the MD d2M of CDACE with `1-norm based Maha-
lanobis’ distance (`1-MD) d̂M defined as

d̂M(x, x′ |M) := ‖U(x′ − x)‖1,

which is based on the fact that d2M can be expressed as
dM(x, x′ | M) := ‖U(x′ − x)‖2. Overall, we formulate
the following problem as an MILO problem instead of Prob-
lem 1:

minimize
a∈A

d̂M(x̄, x̄+ a |M) + λ · q1(x̄+ a | X)

subject to H(x̄+ a) = +1.

First, we introduce binary variables πd,i ∈ {0, 1} for d ∈
[D] and i ∈ [Id], which indicate that the action ad,i ∈ Ad is
selected (πd,i = 1) or not (πd,i = 0). Then, πd,i must satisfy
the following constraints:

Id∑
i=1

πd,i = 1, ∀d ∈ [D], (1)

∑
d∈G

(x̄d +

Id∑
i=1

ad,iπd,i) = 1, ∀G ∈ G. (2)

Each element of the action a = (a1, . . . , aD) ∈ A can be
expressed as ad =

∑Id
i=1 ad,iπd,i. Constraint (2) is corre-

sponding to one-hot encoded categorical features G. In the
rest of this section, we formulate the constraint and objective
function by using linear constraints of πd,i.

4.2 Base Learner Constraints
Because the output value of each base learner ht for x̄ + a
varies depending on the value of a, i.e., the program vari-
ables πd,i, we must express the value of ht(x̄ + a) by linear
constraints of πd,i. We introduce variables ξt ∈ R such that
ξt = ht(x̄ + a) for t ∈ [T ]. From the definition of additive
classifiers, the constraint H(x̄+ a) = +1 is equivalent to the
following linear constraint of ξt:

T∑
t=1

wtξt ≥ b. (3)

In the following, we show how to express ξt when H is a
linear model (LM) or tree ensemble model (TEM).
Linear Models. From the definition of LM, T = D and
hd(x̄ + a) = x̄d + ad holds for d ∈ [D]. Hence, we can
simply express the base learner of the LM as follows:

ξd = x̄d +

Id∑
i=1

ad,iπd,i, ∀d ∈ [D]. (4)

Tree Ensemble Models. Each base learner ht of the TEM
is a decision tree. It is known that a decision tree ht : X → Y
with Lt leaves represents a partition {rt,1, . . . , rt,Lt} of the
input domain X [Hastie et al., 2009], and can be expressed as
ht(x) =

∑L
l=1 ŷt,l · I [x ∈ rt,l], where ŷm,l ∈ Y is a predic-

tive label corresponding to the leaf l ∈ [Lt] of ht. In order to
express the statement x̄+a ∈ rt,l, we can utilize the decision
logic constraint proposed by [Cui et al., 2015] expressed as

φt,l ∈ {0, 1}, ∀t ∈ [T ], l ∈ [Lt], (5)
Lt∑
l=1

φt,l = 1, ∀t ∈ [T ], (6)

D · φt,l ≤
D∑

d=1

∑
i∈I(d)

t,l

πd,i, ∀t ∈ [T ], l ∈ [Lt], (7)

where I(d)t,l = {i ∈ [Id] | x̄d + ad,i ∈ r
(d)
t,l } and r(d)t,l is the

subspace of Xd such that rt,l = r
(1)
t,l × · · · × r

(D)
t,l . φt,l is an
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indicator variable such that φt,l = I [x̄+ a ∈ rt,l]. Then, we
can express the base learner of the TEM as follows:

ξt =

Lt∑
l=1

ŷt,l · φt,l, ∀t ∈ [T ]. (8)

Because I(d)t,l , Lt, and ŷt,l can be computed when H and A
are given, they are constant values.

4.3 Surrogate Objective Function
`1-norm based Mahalanobis’ Distance (`1-MD). The `1-
MD between x̄ and x̄+ a can be expressed as follows:

d̂M(x̄, x̄+ a |M) = ‖Ua‖1 =
D∑

d=1

|〈Ud, a〉| ,

where Ud = (Ud,1, . . . , Ud,D) is the d-th row vector of U .
We introduce variables δd ≥ 0 for d ∈ [D] such that δd =

|〈Ud, a〉|. Then, d̂M(x̄, x̄+ a |M) can be expressed as

d̂M(x̄, x̄+ a |M) =
D∑

d=1

δd,

with the following constraints:

−δd ≤
D∑

d′=1

Ud,d′

Id∑
i=1

ad′,iπd′,i ≤ δd, ∀d ∈ [D]. (9)

d̂M is not exactly the same as d2M however, we show the ap-
proximation ratio of d̂M with respect to d2M as follows:

Proposition 1. Let a∗, â ∈ RD be two vectors such
that a∗ = arg mina∈RD d2M(x̄, x̄ + a | M) and â =

arg mina∈RD d̂M(x̄, x̄ + a | M), respectively. Then
dM(x̄, x̄+ â |M) ≤

√
D · dM(x̄, x̄+ a∗ |M) holds.

Proof. Let U ∈ RD×D be a matrix such that M = U>U . By
the definitions, dM(x̄, x̄+ a | M) and d̂M(x̄, x̄+ a | M) are
expressed as dM(x̄, x̄+ a | M) = ‖Ua‖2 and d̂M(x̄, x̄+ a |
M) = ‖Ua‖1, respectively. From the properties of Lp-norm,
it holds that ‖Uâ‖2 ≤ ‖Uâ‖1 and ‖Ua∗‖1 ≤

√
D · ‖Ua∗‖2.

Recall the definitions of a∗ and â, ‖Uâ‖1 ≤ ‖Ua∗‖1 holds.
By combining these inequalities, we have ‖Uâ‖2 ≤

√
D ·

‖Ua∗‖2, which is equivalent to dM(x̄, x̄ + â | M) ≤
√
D ·

dM(x̄, x̄+ a∗ |M). �

1-Local Outlier Factor (1-LOF). From the definitions of
qk and lrdk, qk(x̄+ a | X) for k = 1 can be expressed as

q1(x̄+ a | X) = lrd1(x(m)) · rd1(x̄+ a, x(m)),

where m = arg minn∈[N ] ∆(x̄+ a, x(n)), i.e., N1(x̄+ a) =

{x(m)}. Because m and rd1(x̄ + a, x(m)) varies depending
on x̄ + a, i.e., the variables πd,i, we need to formulate it by
linear constraints of πd,i. We introduce variables νn ∈ {0, 1}
and ρn ≥ 0 for n ∈ [N ] such that νn = I

[
x(n) ∈ N1(x̄+ a)

]

#Vars #Consts

d2M O(|A|2) O(|A|2)
Nk O(N2) O(N2)
qk O(N2) O(N2)

#Vars #Const

d̂M O(D) O(D)
N1 O(N) O(N2)
q1 O(N) O(N)

Table 2: The numbers of variables (#Vars) and constraints (#Consts)
required for the exact formulation of Problem 1 (left) and our for-
mulation (14) (right). Note that the problem (14) optimizes `1-MD
d̂M and 1-LOF q1 instead of d2M and qk for k > 1.

and ρn = rd1(x̄+a, x(n)) ·νn, respectively. Then, q1(x̄+a)
can be expressed as a linear form of ρn as follows:

q1(x̄+ a | X) =
N∑

n=1

l(n) · ρn,

with the following constraints:
N∑

n=1

νn = 1, (10)

D∑
d=1

Id∑
i=1

(c
(n)
d,i − c

(n′)
d,i )πd,i ≤ Cn(1− νn), ∀n, n′ ∈ [N ],

(11)

ρn ≥ d(n) · νn, ∀n ∈ [N ], (12)

ρn ≥
D∑

d=1

Id∑
i=1

c
(n)
d,i πd,i − Cn(1− νn), ∀n ∈ [N ], (13)

where c(n)d,i , Cn, dn, and l(n) are constant values such that

c
(n)
d,i = ∆d(x̄d + ad,i, x

(n)
d ), Cn ≥ maxa∈A∆(x̄ + a, x(n)),

d(n) = d1(x(n)), and l(n) = lrd1(x(n)). Constraints (10)
and (11) are based on the statement νm = 1 ⇒ ∀n ∈ [N ] :
∆(x̄ + a, x(m)) ≤ ∆(x̄ + a, x(n)), which is for expressing
the nearest instance of x̄ + a. Note that ∆(x̄ + a, x(n)) =∑D

d=1

∑Id
i=1 c

(n)
d,i πd,i, and Constraints (12) and (13) are based

on the definition of k-reachability distance rdk. All constant
values can be computed when X and A are given.

4.4 Overall Formulation
Finally, we show our overall formulation as follows:

minimize
D∑

d=1

δd + λ ·
N∑

n=1

l(n) · ρn

subject to Constraint (1− 3),{
Constraint (4), if H is a LM,
Constraint (5− 8), if H is a TEM,

Constraint (9− 13),

πd,i ∈ {0, 1}, ∀d ∈ [D], ∀i ∈ [Id],

δd ≥ 0, ∀d ∈ [D],

νn ∈ {0, 1}, ρn ≥ 0, ∀n ∈ [N ].

(14)
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Logistic Regression Random Forest
dM(x̄, x̄+ a | Σ−1) q10(x̄+ a | X+) Time[s] dM(x̄, x̄+ a | Σ−1) q10(x̄+ a | X+) Time[s]

MAD 5.42 ± 4.04 1.65 ± 1.29 0.0261 ± 0.00439 2.29 ± 1.58 1.56 ± 1.14 34.4 ± 57.8
TLPS 9.09 ± 2.97 3.86 ± 1.49 0.0208 ± 0.00761 2.22 ± 1.31 1.49 ± 1.07 22.5 ± 36.6
PCC 9.46 ± 6.66 1.61 ± 1.31 0.0238 ± 0.0036 3.76 ± 2.36 1.6 ± 1.27 29.8 ± 78.7

DACE 1.97 ± 1.46 1.54 ± 1.12 67.9 ± 75.8 1.54 ± 1.18 1.33 ± 0.496 519 ± 171

(a) FICO dataset (D = 23)

Logistic Regression Random Forest
dM(x̄, x̄+ a | Σ−1) q10(x̄+ a | X+) Time[s] dM(x̄, x̄+ a | Σ−1) q10(x̄+ a | X+) Time[s]

MAD 8.89 ± 2.73 1.94 ± 3.41 0.0488 ± 0.00215 7.5 ± 6.12 1.91 ± 2.19 33.6 ± 47.1
TLPS 3.73 ± 2.26 1.78 ± 0.718 0.0113 ± 0.00163 2.44 ± 3.91 1.34 ± 0.75 133 ± 193
PCC 8.14 ± 3.15 1.94 ± 3.41 0.042 ± 0.0022 6.73 ± 4.12 1.95 ± 2.18 11.9 ± 10.9

DACE 2.27 ± 1.51 1.27 ± 0.35 1.03 ± 0.276 1.23 ± 1.34 1.13 ± 0.27 240 ± 239

(b) german dataset (D = 61)

Table 3: Experimental results on the FICO and german datasets.

Table 2 presents the numbers of variables and constraints
required for the naive formulation of Problem 1 and the prob-
lem (14). It shows that the latter reduces variables and con-
straints dramatically compared to the former. Therefore, our
DACE solves the problem (14) to extract the desired action
for computational efficiency.

As with the existing ILO-based methods [Ustun et al.,
2019; Russell, 2019], our formulation can be (i) efficiently
solved by powerful off-the-shelf MILO solvers, such as
CPLEX [IBM, 2018], (ii) customized by adding constraints
that users desire, such as a limitation of features changed by
actions, and (iii) applied to an algorithm for enumerating dis-
tinct actions as its subroutine. To summarize the above ad-
vantages, we can obtain actions that satisfy user-defined con-
straints without implementing designated algorithms.

5 Experiments
We conduct experiments on real datasets to investigate the
effectiveness of our DACE by comparing the performance
with existing methods for CE. All codes were implemented in
Python 3.6 with scikit-learn and IBM ILOG CPLEX v12.8.
All experiments were conducted on 64-bit Ubuntu 18.04.1
LTS with Intel Xeon E5-1620 v4 3.50GHz CPU and 62.8GiB
memory, and we imposed a 600 second time limit for solving.

5.1 Experimental Setting
We used the FICO dataset (D = 23) [FICO et al., 2018] and
german dataset (D = 61) [Dua and Graff, 2017], where D
is the number of features. For german dataset, each categor-
ical feature was transformed into as many one-hot encoded
features as its distinct values. The task of these datasets is
to predict whether individuals will default on their loan. We
randomly split each dataset into train (70%) and test (30%)
instances, and trained `2-regularized logistic regression (LR)
classifiers and random forest (RF) classifiers with T = 100
decision trees on each training dataset, respectively. Then,
we extracted actions for the instances x̄ of each test dataset
who have been received bad prediction results, i.e., predicted
as ”high risk of default” from each classifier.

Baseline Methods. We compared our proposed method
(DACE) to three existing methods. A main difference be-
tween DACE and the others is a cost function to be optimized.
One cost function is the weighted `1-norm based on the in-
verse of median absolute deviation (MAD) [Wachter et al.,
2018; Russell, 2019]. Another cost function is the total log-
percentile shift (TLPS) [Ustun et al., 2019] that evaluates
actions based on the cumulative distribution functions esti-
mated from training instances. In addition to these cost func-
tions, we also compared to the weighted `2-norm based on the
Pearson’s correlation coefficients (PCC) proposed by [Ballet
et al., 2019] to generate imperceptible adversarial examples.

Evaluation Scores. In order to compare the qualities of ob-
tained actions a, we measured (i) the MD dM(x̄, x̄+a | Σ−1),
where Σ is the covariance matrix estimated from the train-
ing instances X , (ii) the 10-LOF q10(x̄ + a | X+) on the
training instances labeled as ”low risk of default” X+ ⊆ X ,
and (iii) running times for solving each MILO problem. The
MD dM(x̄, x̄ + a | Σ−1) can measure the effort for x̄ to ex-
ecute an action a by taking the feature-correlations into ac-
count [Maesschalck et al., 2000]. k-LOF qk(x̄ + a | X+)
represents the risk of that the action a leads x̄ to be an outlier
on the instances with the target label. We evaluate whether
actions extracted by baselines and DACE have realities for
users in terms of the above criteria.

5.2 Comparison with Existing Methods
We compared the actions extracted by DACE with ones by the
baselines. We set λ = 1.0 for the FICO dataset and λ = 0.01
for the german dataset, respectively. These parameters are se-
lected based on the sensitivity analyses described below. Ta-
ble 3 presents the average MD, 10-LOF, and running time for
each classifier and dataset, and shows that DACE achieved
lower MD and 10-LOF than those of the baselines methods
regardless of classifiers and datasets. These results suggest
that DACE obtain more realistic actions than the other base-
lines do by considering the feature correlation and the risk
of leading to an outlier. Regarding the average running time,
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Figure 2: Scatter plots between MD and 10-LOF of the actions ex-
tracted by baseline methods and our DACE.
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Figure 3: Sensitivity analyses of the trade-off parameter λ of DACE
between the average MD and LOF.

DACE was certainly slower than the other baselines. How-
ever, Table 3 also indicates that DACE found actions of better
quality in terms of both MD and 10-LOF within 600 seconds,
which is a reasonable calculation time. Figure 2 presents scat-
ter plots between MD and 10-LOF of each obtained action,
and we can see that DACE stably achieved lower MD and 10-
LOF than the other baselines did. From these results, the ef-
fectiveness of DACE has been confirmed in real datasets, and
we also argue that our method is favorable when the quality of
an action is required by decision-makers and their customers.

5.3 Sensitivity Analysis of Trade-off Parameter
Finally, we show the sensitivity of λ in CDACE on LR clas-
sifiers. Figure 3 presents the average MD and 10-LOF of ob-
tained actions a for each λ. We can see that there is a trade-off
between MD and LOF of actions obtained by DACE with re-
spect to the value of λ. Consequently, we need to choose
λ depending on whether a user emphasizes the preference
or reliability of an action. In other words, by varying the
value of λ, we can obtain several distinct actions that have di-
verse characteristics in terms of MD and LOF. As mentioned
in [Wachter et al., 2018], suggesting multiple actions may
help users for referring to as their future guidelines. Figure 3

indicates that by varying the value of λ, we can obtain several
distinct actions that have diverse characteristics in terms of
MD and LOF.

6 Conclusion
In this paper, we proposed a new framework of CE for ex-
tracting a realistic action by considering the empirical distri-
bution on labeled examples. We introduced a new cost func-
tion based on the Mahalanobis’ distance (MD) and the local
outlier factor (LOF), and then proposed a MILO formulation
for optimizing it. By experiments, we confirmed the effec-
tiveness of our method by comparing with existing methods.
For future work, there are some directions. First, we plan
to devise a more efficient MILO formulation and extend our
framework to deal with other classifiers, such as kernel SVMs
and deep neural networks. Also, it is interesting to learn the
matrix M for MD based on an empirical distribution and a
given instance. To clarify when the use of DACE makes more
sense, we also plan to conduct further detailed experiments
where our assumptions do not hold strongly — e.g., correla-
tions between features are low, etc.
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and Carlos Guestrin. “Why Should I Trust You?”: Ex-
plaining the predictions of any classifier. In Proceedings
of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, page 1135–1144,
2016.

[Ribeiro et al., 2018] Marco Túlio Ribeiro, Sameer Singh,
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